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Abstract: Untargeted (NMR) and targeted (RP-HPLC-PDA-ESI-MSn, RP-HPLC-FD) analytical
methodologies were used to determine the bioactive components of 19 tea samples, character-
ized by different production processes (common tea and GABA tea), degrees of fermentation (green
and oolong teas), and harvesting season (autumn and spring). The combination of NMR data and a
multivariate statistical approach led to a statistical model able to discriminate between GABA and
non-GABA teas and green and oolong teas. Targeted analyses showed that green and GABA green
teas had similar polyphenol and caffeine contents, but the GABA level was higher in GABA green
teas than in regular green tea samples. GABA oolong teas showed lower contents of polyphenols,
caffeine, and amino acids, and a higher content of GABA, in comparison with non-GABA oolong teas.
In conclusion, the results of this study suggest that the healthy properties of teas, especially GABA
teas, have to be evaluated via comprehensive metabolic profiling rather than only the GABA content.

Keywords: green and oolong teas; bioactive metabolites; targeted and untargeted analyses

1. Introduction

The chemical composition of tea has been extensively studied, leading to the identifi-
cation of many phytochemicals responsible for its healthy properties [1–5]. These bioactive
compounds can be subdivided into polyphenolic components and non-polyphenolic com-
pounds. Green tea leaves are particularly rich in polyphenols (up to 30% of the dry
weight), mainly flavan-3-ols, with EGCG being the most represented (9–13%) [6,7]. In
oolong and black teas, the polyphenol concentration is lower and depends on the degree of
fermentation. In fact, during the oxidation process, flavan-3-ols undergo oxidation and
polymerization reactions, catalyzed by polyphenol oxidase and peroxidase, leading to the
formation of theaflavins (TFs) and thearubigins (TRs), the most representative compounds
of oolong and black teas, respectively [6,8]. The chemical structure of the major TFs is
known, but TRs are still under investigation, due to their high molecular weight and
complexity [9]. Other flavonoids occurring in tea leaves include flavonol glycosides, such
as quercetin, kaempferol, and myricetin mono-, di-, and triglycosides linked to pentose
(xylose or arabinose) or hexose (glucose, galactose, rhamnose). Acylated flavonols (particu-
larly p-coumaroyl derivatives) and methylated flavonols have also been detected by means
of sophisticated hyphenated techniques [10]. Non-flavonoid polyphenols such as benzoic
acids (i.e., gallic acid and galloylquinic acid) and hydroxycinnamic acid derivatives (i.e.,
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caffeoylquinic acid and p-coumaroylquinic acid) are also present in tea leaves. Among
the non-polyphenolic components, xanthines and proteic and non-proteic amino acids are
the most representative categories. Tea beverages contain caffeine and, in lower amounts,
theobromine and theophylline [11]. The total free amino acid content usually accounts for
1–4% of the dry weight of tea leaves, and the types of free amino acids and their proportion
in tea are closely related to tea aroma and taste [12,13]. Theanine, the most abundant amino
acid occurring in tea (37% of the whole amino acid content) and glutamate, responsible for
the umami taste, are important healthy tea compounds [14,15].

Over recent years, the growing demand for tea characterized by a high concentration
of healthy compounds led to the development of different analytical approaches towards
the study of tea beverages [16]. Among the studies found in the literature, Gotti et al.
(2009) studied the differentiation of green tea samples by the analysis of catechins via
CD-MEKC [17]; meanwhile, Meng et al. (2017) used proton NMR spectroscopy and near-
infrared spectroscopy to identify the geographic origin of oolong tea [18]. In the same year,
a comparative study was performed on the volatile components present in fresh leaves
of four Dianhong tea cultivars, using chromatography coupled with mass spectrometry,
multivariate data analysis, and descriptive sensory analysis [19]. Fare clic o toccare qui
per immettere il testo. Nevertheless, important issues about tea chemistry still need to
be studied further. Indeed, despite all the advances in tea chemical characterization, as
described above, in a recent review, Engelhardt pointed out that there is still much to be
conducted in terms of definition and authenticity [16]. In particular, a combined targeted
and untargeted analytical approach has to be applied to overcome each technique’s limits,
in order to obtain more information and a more complete picture.

Thus, the current study was designed to explore how different variables such as
degrees of fermentation (green and oolong), harvesting season (autumn and spring), and
production process (GABA and non-GABA) affect the chemical profile of tea through the
application of a multi-methodological analytical protocol.

This analytical approach, previously used for the study of different food matri-
ces [20–22], consists of three analytical techniques, untargeted NMR spectroscopy and
targeted RP-HPLC-PDA-ESI-MSn and RP-HPLC-FD.

2. Results and Discussion
2.1. Untargeted NMR Analysis

Nineteen tea samples belonging to four types of tea were submitted to untargeted
NMR analysis (Table 1). The 1H spectra (Figure 1) of the analyzed teas were assigned ac-
cording to the literature [22], with the presence of theanine at 1.118 ppm, threonine/lactate
(THR/LAT) at 1.348 ppm, alanine (ALA) at 1.498 ppm, quinic acid (QA) at 1.888 ppm,
gamma aminobutyric acid (GABA) at 2.314 ppm, epicatechin gallate (ECG) at 5.057 ppm,
2-O-arabinopyranosyl-myo-inositol (ARBMI) at 5.207 ppm, α-glucose at 5.255 ppm, su-
crose at 5.427 ppm, GCG/GC at 6.563 ppm, EGCG at 6.597 ppm, EGC at 6.631 ppm, GA
at 7.037 ppm, and caffeine at 7.709 ppm. In the investigated samples, the concentration
of these metabolites turned out to be different and can contribute towards grouping sam-
ples according to their commercial denomination. Therefore, an explorative analysis of
the entire dataset was undertaken using PCA to highlight dissimilarities and similarities.
Figure 2 shows a PCA sample biplot (PC2 versus PC1) with the first two PCs accounting
for 56.2% of the variability within the data. PC1 provided differentiation between GABA
and non-GABA teas, whereas PC2 was mostly responsible for discriminating oolong from
green teas. The loadings reported in the biplot (Figure 2) clearly show the variables respon-
sible for the separation of GABA and non-GABA teas. Comparisons of metabolites from
different tea groups suggest that GABA teas (loadings lying on the left side of the PC1 axis)
contained a high level of GABA, glucose, ALA, THR/LAT, and QA, whereas non-GABA
teas (both oolong and green teas) showed higher caffeine, theanine, EGC, EGCG, GCG/GC,
and sucrose contents (loadings lying on the right side of the PC1 axis). Therefore, all the
fine homogenate dried GABA tea leaves were found to have very low concentrations of
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green tea characteristic polyphenolic compounds. Moreover, the GT7 sample was found
to be similar to oolong teas being characterized by a low content of ARBMI, theanine,
and caffeine. Although the literature data reported a significant effect of pedoclimatic
conditions (including climate condition, soil) on teas’ chemical composition [23–25], in-
dependently of the production season (autumn or spring), green teas were characterized
by very high levels of caffeine, ARBMI, and theanine, which provided a great stimulating
capacity, whereas oolong tea samples showed a higher level of sucrose. These results are in
agreement with Lee et al., Le Gall et al., and Tarachiwin et al., by which caffeine, gallic acid,
and theanine are believed to be possible quality markers of green tea, and thus their high
contents are responsible for the high quality of the tea [26–28].

Table 1. List of selected teas, their abbreviations, the degree of fermentation, the origin, the infusion conditions as suggested
by the supplier, and the dry residue obtained after freeze drying.

N. Tea Sample Abbreviation Degree of
Fermentation Country of Origin Infusion

Parameter
Dry Residue
(mg/50 mg)

1 Lung Ching GT1 1 Green China 85 ◦C
3 min 12.3

2 Gunpowder GT2 Green Zhejiang Province (China) 85 ◦C
3 min 10.5

3 Mao Feng GT3 Green Anhui Province (China) 85 ◦C
4 min 17.0

4 Jade Snow GT4 Green Guangxi region (China) 80 ◦C
4 min 11.1

5 Kabusecha GT5 Green Japan 70 ◦C
2 min 13.7

6 Sencha GT6 Green Japan 80 ◦C
2 min 12.7

7 Gyokuro Kyushu GT7 Green Japan 75 ◦C
2 min 13.9

8 GABA green GGT1 2 Green Japan 80 ◦C
2 min 11.2

9 Dong Ding OTA1 3 Low degree of
fermentation Taiwan 85 ◦C

4 min 7.9

10 Anxi Ti Kuan Yin OTA2 Low degree of
fermentation Fujian region (China) 85 ◦C

4 min 8.2

11 Si Ji Chun OTA3 Low degree of
fermentation Taiwan 85 ◦C

4 min 8.0

12 Wenshan Baozhong OTA4 Low degree of
fermentation Taiwan 85 ◦C

4 min 8.5

13 Dong Ding OTS1 4 Low degree of
fermentation Taiwan 85 ◦C

4 min 7.1

14 Si Ji Chun OTS3 Low degree of
fermentation Taiwan 85 ◦C

4 min 6.6

15 Wenshan Baozhong OTS4 Low degree of
fermentation Taiwan 85 ◦C

4 min 11.7

16 GABA oolong GOT1 5 Low degree of
fermentation Taiwan 80 ◦C

2 min 7.2

17 GABA oolong GOT2 Low degree of
fermentation Taiwan 80 ◦C

2 min 3.6

18 GABA oolong GOT3 Low degree of
fermentation Taiwan 80 ◦C

2 min 4.2

19 GABA oolong GOT4 Low degree of
fermentation Taiwan 80 ◦C

2 min 2.2

1 GT = green tea. 2 GGT = GABA green tea. 3 OTA = oolong tea. 4 GOT = GABA oolong tea. 5 GOT = GABA oolong tea.
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2.2. RP-HPLC-PDA-ESI-MSn Analysis

Tea beverages were submitted to RP-HPLC-PDA-ESI-MSn analysis to investigate
their metabolite profile. RP-HPLC-PDA-ESI-MSn (Figure 3) allowed the identification of
90 compounds, as reported in Tables S1–S3. Identification was accomplished by compar-
ing experimental data (retention time, MS and MSn spectra) with those available in the
literature, and with commercial standard compounds where possible.
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Caffeine and theobromine identified in peaks 12 and 37, respectively, are common
xanthine alkaloids occurring in tea leaves [29]. Fare clic o toccare qui per immettere il testo.
QA (peak 1 in Table S1) and galloylquinic acid (peak 6 in Table S1) were detected in all tea
beverages (Tables S2 and S3).

Indeed, oolong teas are a great GA source, as GA (peak 19 in Table S1) was detected in
all GOTs [30]. In GOT4, the gallic acid methyl ester (peak 20 in Table S1) was also detected.
This RP-HPLC-PDA-ESI-MSn method allowed the identification of hydroxycinnamic acids,
among which there were three isoforms of p-coumaroylquinic acid (peaks 32, 41, and 44
in Table S1), that differ thanks to the MS/MS fragment ion ratio, as shown by Clifford
et al. [31]. Moreover, both 3-caffeoylquinic acid and 5-caffeoylquinic acid were detected in
a few green tea samples (i.e., GT1, GT5, GT6, and GT7 in Table S2).

As far as flavones (Table S1) are concerned, six glycosilated apigenins were identified
on the basis of the MS/MS spectra and the retention time [32]. Apigenin 6-C-glucosyl-
8-C-arabinoside (peak 49 in Table S1) and 6-C-glucosyl-8-C-arabynoil apigenin (peak 50
in Table S1) were detected in all teas, as reported by Dou et al. [33] (Tables S2 and S3).
6,8-C-di-pentosyl apigenin (peak 62) was identified in all teas, with the exception of GOT1,
GOT2, GOT3, and OTA2 (Tables S2 and S3). Apigenin hexosides (apigenin glucoside and
apigenin galactoside), di-hexosides (peaks 46 and 59 Table S1), and rhamnosyl-hexoside
(peak 58 Table S1) were detected, but not in all the analyzed tea samples (Tables S2 and S3).
In detail, the GT6 tea showed the presence of two compounds with these MS/MS spectra
and different retention times [32], revealing the presence of both apigenin hexosides and
di-hexosides. All teas showed the presence of apigenin rhamnosyl-hexoside (peak 58
Table S1), with the exception of GT5, GT6, and GT7 (Table S2).

In addition, 27 tannins (Table S1) were identified: 6 hydrolyzable tannins, and 21 proan-
thocyanidins (Table S1), assigned by comparing retention times and MS/MS spectra with
the literature data [34]. Of the hydrolyzable tannins, strictinin (peak 24 Table S1), galloyl-
glucose (peak 4 Table S1), and digalloylglucose (peak 21) were identified in all samples,
with the exception of GT1 and OTA2, GT1 and GOT4, and GOT1, OTA2, OTA4, OTS3, and
OTS4, respectively (Tables S2 and S3). Trigalloylglucose (peak 43 Table S1) was detected
only in green teas, with the exception of GT5 and GT7 (Tables S2 and S3). Regarding
proanthocyanidins, procyanidin (peaks 15, 25, and 34, Table S1), prodelphinidin (peak 7,
Table S1), and procyanidin gallate (peaks 35 and 36, Table S1) were detected in the 19 tea
beverages (Tables S2 and S3). Prodelphinidin gallate (peak 11, Table S1) was not detected
in GOT1 and GOT2 and in all oolong teas.

Among flavan-3-ols (Table S1), two isoforms of (epi)catechin-(epi)gallocatechin (peaks 8
and 14 in Table S1) and (epi)afzelechingallate-(epi)catechingallate (peaks 18 and 23 in Table
S1) were identified in all teas, with the exception of GGT1, GOT1, and GOT2, and GT1,
GT4, and GGT1, respectively. Interestingly, among the oolong teas, (epi)gallocatechin-
(epi)catechingallate (peak 26 in Table S1) was identified only in autumn-harvested teas
(i.e., OTA1, OTA2, OTA3, OTA4), suggesting the potential use of this compound as a
marker if this finding is confirmed in a larger number of samples. The presence of
(epi)catechin-(epi)gallocatechingallate, whose parent ion and fragmentation were reported
by Lui et al. [35], was not registered in GGT1, GOT1, and GOT2.

Following a previously published description of theasinensins performed by Dai
et al. [36] and by Li et al. [37], studying MS/MS fragmentations both in GABA oolong and
non-GABA oolong teas, three theasinensins (peaks 2, 5, 13, 16, 22, 29, and 39, Table S1)
were identified (theasinensin A, theasinensin B, and theasinensin C).

Considering flavonols (Table S1), 2 myricetin derivatives, 13 quercetin derivatives,
and 12 kaempferol derivatives were identified. Myricetin hexoside (peak 53) was identified
in all tea beverages, with the exception of GT1. Myricetin hexosyl-rutinoside (peak 51)
was detected only in GT1, GT5, and GT7 (Table S2). Quercetin rutinoside (peak 67) was
identified in all teas. In the GT6 and GT7 teas, another peak (no. 80 in Table S1) was regis-
tered with the same m/z but different MS/MS spectra: the presence of a major fragment
ion at m/z 463 suggested the loss of a rhamnosyl moiety (−146 Da), leading to identifica-
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tion as a mono-glycosilated quercetin [13]. This fragmentation led to the consideration
that the two sugars could be linked at different positions; thus, the proposed structure
for peak 80 (Table S1) is quercetin 3-hexosyl-7-rhamnoside. Two isomers of quercetin,
characterized by the same UV–Vis and MS/MS spectra but with different retention times,
corresponding to quercetin hexose conjugates (quercetin glucoside and quercetin galac-
toside), were detected in all teas, with the exception of GT5 and GT7. Finally, quercetin
rhamnosyl derivatives were identified in GT4 (dirhamnosyl derivative) and GT1, GT3,
GT4, and GT5 (rhamnosyl-hexosyl-rhamnoside). Many kaempferol derivatives have al-
ready been detected in all types of tea (Table S1) [32]. Our analysis showed the presence
of kaempferol hexoside (peak 76, Table S1) and kaempferol hexosyl-rutinoside (peak 77,
Table S1) in all tea beverages, whilst kaempferol rutinoside was present in all teas, with
the exception of GGT1 (Table S2). Kaempferol rhamnosyl derivatives were also identified
in GT4 (rhamnosyl and dirhamnosyl derivatives), GT7 (rhamnosyl derivative), and GT1,
GT2, GT3, GT4, and GGT1 (kaempferol rhamnosyl-hexosyl-rhamnoside). The GOT4 and
OTA3 teas were characterized by the presence of kaempferol pentoside, which was not
identified in the corresponding spring-harvested tea, OTS3 (Tables S2 and S3). All peaks
were assigned according to the description provided by Del Rio et al. [9]. Fare clic o toccare
qui per immettere il testo. Due to the common loss of 146 amu between the pseudomolec-
ular ion and the principal fragment ion, a peculiar shift in absorbance spectra toward
310–316 nm (due to the addition of hydroxyl-aromatic organic acids [9,32,38] Fare clic o
toccare qui per immettere il testo.), and high retention times (peaks 79, 82, 83, 84, 89, and 90
in Table S1), these compounds were identified as p-coumaroyl conjugates of quercetin and
kaempferol. For peaks 63 and 70 (Table S1), which showed the same features as the peaks
reported above, the shorter retention time did not support this assignment. Thus, they were
identified as tetra-glycosilated quercetin and tetra-glycosilated kaempferol, respectively.

Concerning flavan-3-ols, GC and EGCG were detected in all the tea beverages analyzed
(Tables S2 and S3). For the two monomers, catechin and its epimer EC, the former was
identified in all green teas, with the exception of the GT5 tea, but only in a few oolong teas
(i.e., GOT4, OTA3, OTS1, OTS3, and OTS4). EGC and EGCG were identified in all teas,
with the exception of GT6 and GGT1 and GOT3, respectively. Catechingallate (peak 47,
Table S1) was detected only in GT1 and GT4 (Table S2). Gallocatechingallate was identified
in a larger number of samples, including some oolong teas. Two methylated flavan-3-ols
were identified both in green and in oolong teas: epigallocatechin-3-O-(3-O methyl)-gallate
and epicatechin-3-O-(3-O methyl)-gallate, with the latter detected in a larger number
of samples [38]. (Epi)afzelechin, a less common flavan-3-ol, was also detected in some
samples, together with its derivative, methoxyepiafzelechin gallate.

Finally, some catechin condensation products, formed during the fermentative process,
were identified. In GOTs, the main TFs (i.e., theaflavin, theaflavin-gallate, and theaflavin-
digallate) were identified, resulting from the dimerization of a catechin and a gallocatechin
and responsible for the bright and red-orange appearance of oolong tea [19]. Their absence
in oolong teas could be attributed to their low degree of fermentation.

In conclusion, RP-HPLC-PDA-ESI-MSn analysis revealed some differences in the
metabolite profiles. Xathine alkaloids (i.e., caffeine and theobromine), quinic acid and
galloylquinic acid, some flavones (i.e., apigenin 6-C-glucosyl-8-C- and 6-C-glucosyl-8-C-
arabynoil apigenin), condensed tannins (i.e., procyanidin, prodelphinidin, and procyanidin
gallate), flavonols (i.e., quercetin rutinoside, kaempferol hexoside, and kaempferol hexosyl-
rutinoside), and flavan-3-ols (i.e., gallocatechin and (-)-epigallocatechin-3-gallate) were
found in all tea samples. No relevant differences were found between green teas and
GABA green teas, but the three Japanese teas (GT5, GT6, and GT7) are the only ones in
which caffeoylquinic acids were detected. Among oolong teas, also in this case, regarding
theasinensins, no relevant differences were found between non-GABA oolong teas and
GABA oolong teas. Moreover, the autumn-harvested tea Anxi Ti Kuan Yin differs from the
other tea samples in its chemical composition because of the absence of p-coumaroyl quinic
acids and strictinin, the presence of tetraglycosilated kaempferol, and fewer flavones than
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in the other oolong teas. Further research on a larger number of oolong tea samples should
be carried out to verify whether (epi)gallocatechin-(epi)catechingallate can be considered a
marker of autumn-harvested teas.

2.3. Quantification of Targeted Bioactive Molecules by RP-HPLC-PDA

The GA, caffeine, EGCG, ECG, EC, and catechin contents are reported in Figure 4. As
expected, EGCG was the most abundant flavan-3-ol in all the analyzed teas, and its content
was higher in green teas than in oolong teas (Figure 4A).
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Among oolong teas, GABA oolong teas held the lowest content of all quantified
catechins (Figure 4B–D).

A possible explanation for these results is that non-GABA oolong teas are characterized
by a low degree of fermentation during which flavan-3-ols do not undergo polymerization
reactions, remaining in their original form. The two shaded Japanese green teas (GT5
and GT7) resulted in being less rich in catechins, with the exception of the EC content
(Figure 4C), partially confirming the results obtained by Zheng et al., according to which
tea leaves accumulate catechins to protect themselves from UV-B radiation damage [39].

Our results indicate that Mao Feng tea is the richest green tea beverage in terms of
EGCG. At the operating conditions, catechin was found only in a few samples, among
which were two oolong tea beverages, OTS1 and OTS3, which showed a catechin content
of 164.83 ± 2.13 µg/mL and 144.48 ± 2.14 µg/mL, respectively, and a GABA green tea,
GGT1, which showed a content of 361.93 ± 3.91 µg/mL.

In regard to caffeine, our results are in agreement with the data previously published
by Horzic et al. (2009) showing that green teas contained more caffeine than oolong teas,
with the only exception of oolong tea OTA4, which was found to be richer than green tea
GT6 [40]. The caffeine concentration in the analyzed green teas generally ranged from 0.9
to 1.2 mg/mL, with the exception of the GT3 and GT6 teas, which showed a concentration
of 1.5 mg/mL and 0.79 mg/mL, respectively (Figure 4D).
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2.4. RP-HPLC-FD Analysis

Free amino acid identification was based on the chromatographic behaviors of their
derivatives, compared with those of derivatized commercial standards. A total of 18 proteic
and non-proteic amino acids were identified (Figure 5).
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Figure 5. (A) HPLC/FLD chromatograms of OTA2 tea extract at the concentration of 0.5 mg/mL.
(B) HPLC/FLD chromatograms of GT5 tea extract at the concentration of 0.5 mg/mL. The analysis
showed the presence of (1) aspartic acid; (2) glutamic acid; (3) serine; (4) glutamine; (5) glycine;
(6) threonine; (7) alanine; (8) arginine; (9) GABA 1; (10) theanine; (11) tyrosine; (12) cysteine; (13) va-
line; (14) GABA 2; (15) phenylalanine; (16) isoleucine; (17) leucine; (18) proline.

Among these compounds, we quantified those that exert the most important healthy
properties and thus could be considered markers of high-quality teas used as a functional
beverage (i.e., GABA, glutamic acid, glutamine, and theanine).

Although the concentration was extremely variable, the results (Figure 6) show that,
according to Yu et al. [41], on average, theanine (with a concentration ranging from 6.38 to
56.15 µg/mg) and its precursor, glutamic acid (with a concentration ranging from 0.75 to
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19.71 µg/mg), were the most abundant amino acids present in the tea samples. GT5 differed
from the other green teas, having the highest concentrations of glutamic acid, glutamine,
and theanine. A possible explanation of the high level of glutamic acid, a proteinaceous
amino acid, could be that in this tea sample, high proteolysis occurs, probably due to the
effects of preharvest treatments such as dark treatment of tea plants [42]. The high content
of glutamic acid could also justify the high content of glutamine and theanine derived from
glutamic acid by reaction with free ammonia and ethylamine, catalyzed by L-glutamine
synthetase and L-theanine synthetase, respectively [43]. The high content of theanine in
GT5 is in agreement with Lee et al., who demonstrated that green tea grown in shady
conditions presented a high theanine content [26]. No relevant differences were registered
in terms of the amino acid content among oolong teas and, in particular, between the same
oolong teas from the spring and the autumn harvest, leading to the hypothesis that the
harvest season does not seem to influence the amino acid content.
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As far as GABA is concerned (Figure 6A), it is known that GABA is produced in
response to stress, including oxygen deficiency and nitrogen treatment used to obtain this
type of tea [44]. With the exception of the GGT1 beverage, which showed a GABA content
similar to that found for non-GABA tea samples, as expected, the GABA concentration
was higher in GABA tea samples, allowing for discriminating between GABA teas and
non-GABA teas.

With regard to the glutamic acid content, the data represented in Figure 6B show
that GABA tea beverages presented the lowest amounts of glutamic acid, confirming its
conversion into GABA during the manufacturing process [45]. Moreover, apart from GT5
mentioned above, GT4, which showed a significantly lower concentration of glutamic acid
in comparison with the other green tea samples, and OTA4, which presented a higher
glutamic acid content similar to that found in green tea samples, on average, showed a
glutamic acid concentration higher than that determined for the oolong tea samples. This
result could be explained by literature data showing that leaf cell disruption during the
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tea fermentation process occurring in the preparation of oolong teas resulted in protein
degradation to form free proteinaceous amino acids, which decreased quickly as they were
metabolized to aromatic compounds [41].

In terms of glutamine (Figure 6C), GABA tea samples showed a low glutamine content,
with the exception of the GGT1 beverage, which showed a glutamine content similar to
that found for non-GABA tea samples. Probably, the low glutamine concentration found in
GABA tea samples was due to the fact that glutamic acid is used in the synthesis of GABA
and not in that of glutamine. Comparing green and oolong teas, no relevant differences
were registered, even though oolong teas presented a lower mean glutamine concentration
than green teas.

Finally, regarding the theanine content (Figure 6D), once again, the GT5 tea beverage
resulted in being the richest one. Although the green tea GT7 was also shade-grown, it
did not have a theanine content comparable with tea GT5. Comparing green and oolong
teas, no statistically significant differences were registered in the theanine content, with the
exception of GT4. This result appears to disagree with that obtained by Guo et al. in 2018,
who demonstrated that in oolong teas, the theanine content is very low due to the fact
that this compound contributes to the formation of 2, 5-dimethyl-pyrazine, a key roasted
peanutty flavor present in oolong tea [46].

3. Materials and Methods
3.1. Reagents and Materials

Tea samples were purchased from an Italian specialist tea shop (La Teiera Eclettica,
Milan, Italy). The selected teas differ in the degree of fermentation (green and oolong teas)
and in the production process (GABA teas and non-GABA teas) (Table 1). Samples GT5,
GT6, and GT7 were submitted to different light exposures: GT6 was unshaded, and GT5
and GT7 were shaded for 10 and 20 days, respectively.

EC, ECG, EGCG, and L-theanine were purchased from PhytoLab GmbH & Co. KG
(Vestenbergsgreuth, Germany). GA, (±)-catechin, caffeine, glutamic acid, glutamine,
GABA, sodium acetate, triethylamine, tetrahydrofurane, ortho-phthalaldehyde, fluorenyl-
methylchloroformate, Na2CO3, HPLC-MS-grade methanol, HPLC-grade acetonitrile, and
formic acid solution 1 M were obtained from Sigma Aldrich Chemical Company (St. Louis,
MO, USA). HPLC-grade water was obtained from an LC-PakTM Millex system (Millipore
Coorporation, Billerica, MA). D2O and TSP were purchased from Euriso-top (Saint-Aubin,
France). D2O phosphate buffer for NMR samples (400 mM, pH 7.00) was prepared using
potassium phosphate monobasic and potassium phosphate dibasic from Sigma Aldrich.

3.2. Sample Preparation for NMR analysis

Preparation of tea infusions for NMR analysis required a fine homogenization with a
mortar and pestle of dried tea leaves to obtain a better recovery of soluble minor metabolites
with respect to conventional infusions. Dried leaves from each tea sample were finely
ground to obtain a homogeneous matrix. Deuterated water (1 mL) was added to 50 mg
of each ground tea sample in a 1.5 mL Eppendorf tube. The mixture was introduced to
a water bath at 85 ◦C for 4 min, followed by cooling to room temperature and filtering
through cotton wool. The limpid solution (400 µL) and the D2O phosphate buffer (300 µL,
400 mM, pH 7.00, with a small quantity of EDTA and 1 mM of TSP as an internal standard)
were mixed and transferred to a 5 mm NMR tube.

3.3. NMR Analysis

NMR spectra were recorded at 27 ◦C on a Bruker AVANCE 600 spectrometer (Mi-
lan, Italy) operating at a proton frequency of 600.13 MHz and equipped with a Bruker
multinuclear z-gradient inverse probe head. The 1H spectra of tea samples were acquired
by co-adding 400 transients with a recycle delay of 7.1 s, using a 90◦ pulse of 13 µs and
32 K data points. The water signal was suppressed using solvent presaturation during
the relaxation delay. Data processing was carried out with Bruker TOPSPIN 3.5 software.
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An exponential function with a line broadening factor of 0.3 Hz was applied, the spectra
were manually phased, and polynomial baseline correction was applied. All selected NMR
peaks were integrated manually with the same integral limits for a given peak in all spectra.
The integrals of the selected resonances were normalized by setting the integral of TSP
resonance at 0.00 ppm to 100.

3.4. Sample Preparation for Spectrophotometric and HPLC Analyses

Tea extracts were prepared by infusion to mimic the conditions commonly used
for the preparation of tea beverages, as reported by Di Lorenzo et al. [14]. Briefly, 25 g
of each tea in 500 mL of mineral water with its composition and content is reported in
Table S4. The timing of infusion and temperature were set as suggested by the supplier
(Table 1). After infusion, the suspension was cooled at room temperature for 10 min, and
the supernatant was filtrated through a paper filter under vacuum. The extracts were
subdivided into different aliquots and freeze dried to be submitted to qualitative and
quantitative HPLC analyses.

3.5. RP-HPLC-PDA-ESI-MSn Analysis

RP-HPLC-PDA-ESI-MSn analysis was performed using a Thermo Finnigan Surveyor
Plus HPLC, equipped with a quaternary pump, a Surveyor UV−Vis diode array detec-
tor, and an LCQ Advantage Max ion trap mass spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA), connected through an ESI source. Separation was achieved on a
Zorbax Eclipse XDB-C18 column (150 mm× 4.6 mm, 5 µm), equipped with a Hypersil gold
C18 (10 mm × 2.1 mm, 5 µm) precolumn, both from Agilent (Waldbronn, Germany). The
mobile phase consisted of water acidified with 0.1% formic acid (eluent A) and methanol
(eluent B) and was eluted in a gradient as follows: from 10 to 70% B in 84 min, from
70 to 80% B in 5 min, from 80 to 100% B in 10 min, followed by a 5 min isocratic run
of 100% B. Total run time was 105 min, including column reconditioning. The flow rate
was maintained at 0.3 mL/min, and the autosampler and the column temperatures were
maintained at 4 and 25 ◦C, respectively. Tea extracts were analyzed at the concentration of
5 mg/mL in water, and 5 µL of the solution was injected into the chromatographic system.
Chromatograms were registered at 210, 254, and 280 nm; spectral data were collected
within the range of 200−800 nm for all peaks.

HPLC-ESI-MSn data were acquired under positive and negative ionization modes, us-
ing the Xcalibur software. The ion trap operated in full scan (100–2000 m/z), data-dependent
scan, and MSn modes. To obtain MS2 data, a 35% collision energy and an isolation width
of 2 m/z were applied. To optimize MS operating conditions, a preliminary experiment was
performed: 5 µg/mL caffeine (0.1% formic acid and methanol, 50:50, %v/v) and 10 µg/mL
(±)-catechin (0.1% formic acid and methanol, 50:50, %v/v) solutions were directly infused
through the ESI interface at a flow rate of 25 µL/min into the mass spectrometer. The
optimized conditions were as follows: sheath gas 60, capillary temperature 220 ◦C, spray
voltage 4.5, auxiliary gas 25 and 20, capillary voltage −47.20 V and 5 V, for the negative
and the positive ionization mode, respectively.

3.6. RP-HPLC-PDA Analysis

The quantification of caffeine and flavan-3-ols in tea samples was performed through an
RP-HPLC-PDA method developed and validated according to Marchese et al. (2014) [22] Fare
clic o toccare qui per immettere il testo., on a 1100 Agilent HPLC system (Agilent, Waldbronn,
Germany), equipped with a gradient quaternary pump and a diode array detector. The Agilent
Chemstation software was used for HPLC system control and data processing. Separation
was achieved using the experimental conditions reported above. Calibration curves were
prepared with a mixture of standards in a range of concentration between 20 and 2000 µg/mL
with five concentration levels. Each analysis was performed in triplicate (R2 = 0.997). For each
dry extract, 5 mg was weighed and solubilized in 1 mL of water. Before analysis, the samples
were filtrated on PES membrane 0.22 µm (MiniSart, Sartorius, USA).
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3.7. Determination of Glutamic acid, Glutamine, γ-Amino Butyric Acid, and Theanine

Before amino acid analysis, the tea samples were hydrolyzed with 6M HCl in glass
sterilized tubes at 120 ◦C for 24 h under nitrogen atmosphere. Ortho-phthalaldeyde (OPA)
and fluorenylmethylchloroformate (FMOC) were used in free amino acid derivatization to
obtain derivatives from primary amino acids and secondary amino acids. Derivatization
was achieved according to the Jasco autosampler program previously reported by Di
Lorenzo et al. [14]. Amino acid analysis was performed with the Jasko X-LC system
provided with a 3159AS autosampler, 3185PU Xtreme high pressure pumps, a 3080DG
degasser, a CO2060 Plus column oven compartment, and a 3020FP fluorescence detector
connected to an HP ProDesk G1 400 MT processor, Intel Core i5. Separation was carried
out with a Hypersil ODS (250 mm × 2.1 mm, 5 µm) column, and the mobile phase was
formed by 20 mM sodium acetate solution with 0.018% v/v triethylamine (TEA) and 0.3%
v/v tetrahydrofuran (THF), at pH 7.2 (eluent A), and 100 mM sodium acetate buffer with
35% methanol and 45% acetonitrile, at pH 7.2 (eluent B). The temperature of the column
was set at 45 ◦C, with injection of 1 µL and a run time of 17 min. The fluorometric detector
was set at emission λ = 456 nm – excitation λ = 342 for OPA derivatives, and emission
λ = 272 nm – excitation λ = 312 nm for FMOC derivatives. ChromNav software was used
for processing the data. GABA, glutamic acid, glutamine, and theanine were selected as
external standards. Calibration curves were prepared with six concentration levels in a
range of concentration between 80 and 2 µg/mL. Each analysis was performed in triplicate
(R2 = 0.998).

3.8. Statistical Analysis

Statistical analysis was carried out with Statistical Package for the Social Sciences
(IBM SPSS 21.0 for Windows). Results were expressed as means ± SD, and p < 0.05 was
considered statistically significant. The statistical significance of the data was assessed
through one-way ANOVA. Where significant differences were found, Tukey’s post hoc test
was used to determine the differences between the groups involved.

NMR data were submitted to the Statistica software package for Windows. PCA was
carried out. The data were pre-processed before statistical analysis; the variables were
mean-centered, and each variable was divided by its standard deviation (autoscaling).

4. Conclusions

The chemical profiles of different processed and fermented teas were interpreted based
on the results of this study. This work may improve authenticity issues of tea matrices,
and the combined targeted and untargeted analytical approach here applied serves as a
guide for a more comprehensive metabolic profiling. Indeed, the healthy properties of teas
have to be considered not only based on a single component but also on the entire chemical
profile, given that many other components may account for the healthy properties, such as
polyphenols, xanthines, and amino acids. Further studies need to be carried out on larger
tea samples to finally build a tea database.

Supplementary Materials: The following are available online. Table S1: Chromatographic behavior
(retention time, RT), UV, MS, and MS/MS data of the compounds identified in the 19 analyzed tea
samples, Table S2: Presence (+) or absence (−) of the identified secondary metabolites in the analyzed
green tea samples, Table S3: Presence (+) or absence (−) of the identified secondary metabolites in
the analyzed oolong teas, Table S4: Composition of water utilized for tea infusion, expressed as mg
of anion or cation dissolved in 1 L of water.
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Abbreviations

6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (ACQ), catechin (C), catechin gallate (CG),
epicatechin (EC), electrochemical detector (ECD), epicatechin-3-gallate (ECG), epigallocatechin (EGC),
(−)-epigallocatechin-3-gallate (EGCG), fluorometric detector (FD), 9-fluorenylmethyloxycarbonyl
chloride (FMOC-Cl), γ-amino butyric acid (GABA), gallic acid (GA), gallic acid equivalents (GAE),
gallocatechin (GC), gallocatechin-3-gallate (GCG), green tea (GT), GABA green tea (GGT), GABA
oolong tea (GOT), high-resolution mass spectrometry (HR-MS), N-acetyl-cysteine (NAC), ortho-
phthalaldehyde (OPA), oolong tea from autumn harvest (OTA), oolong tea from spring harvest
(OTS), photodiode array detector (PAD), principal component analysis (PCA), reverse-phase (RP)
HPLC, theaflavins (TFs), total polyphenol content (TPC), thearubigins (TRs), 3-(trimethylsilyl)-
propionic-2,2,3,3-d4 acid sodium salt (TSP), CD-MEKC (cyclodextrin-mediated micellar electrokinetic
chromatography), NMR (nuclear magnetic resonance).
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