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Formation of intracellular mutant Huntingtin (mHtt) aggregates is a hallmark of
Huntington’s disease (HD). The mechanisms underlying mHtt aggregation, however,
are still not fully understood. A few recent studies indicated mHtt undergoes phase
transition, bringing new clues to understand how mHtt aggregates assemble. Here in
this mini review, we will summarize these findings with a focus on the factors that affect
mHtt phase transition. We will also discuss the possible pathological roles of mHtt phase
separation in HD.
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INTRODUCTION

Huntington’s disease (HD) is a genetic neurodegenerative disease caused by expanded CAG triplet
repeats in the first exon of HTT gene (MacDonald et al., 1993). A biological hallmark of HD is the
formation of intracellular insoluble protein aggregates (inclusions) found in the brains of affected
patients (DiFiglia et al., 1997; Becher et al., 1998; Gutekunst et al., 1999). In vivo and in vitro studies
in the past two decades confirmed that these aggregates are composed of mutant Huntingtin (mHtt)
alone or together with other proteins [reviewed in Arrasate and Finkbeiner (2012) and Jimenez-
Sanchez et al. (2017)]. This is partially because the expanded CAG repeats in mutated HTT translate
to an expanded polyglutamine (polyQ) sequence in mHtt and makes it prone to misfolding and
aggregating (Scherzinger et al., 1997, 1999). Whether these aggregates found in HD patients are
toxic, benign or even protective, however, has been long debated. On the one hand, the correlation
between polyQ length, aggregation appearance and HD age-of-onset indicates potential toxicity of
mHtt aggregates (Davies et al., 1997; Ordway et al., 1997; Becher et al., 1998; Perutz and Windle,
2001). On the other hand, the formation of mHtt aggregates has also been reported to be separable
from cell death and might even be beneficial for cell survival (Saudou et al., 1998; Kim et al., 1999;
Arrasate et al., 2004).

While the debate goes on, the field’s understanding of mHtt aggregation and toxicity,
nonetheless, has been evolving as well. It is now known that mHtt proteins exist in the forms of
monomers, soluble oligomers, and insoluble polymers both in vivo and in vitro. The formation
of mHtt oligomers and polymers from monomers is polyQ length- and time-dependent, likely in
a monomer→oligomer→polymer order (Poirier et al., 2002; Iuchi et al., 2003; Takahashi et al.,
2008; Lajoie and Snapp, 2010; Legleiter et al., 2010; Olshina et al., 2010; Marcellin et al., 2012;
Kim et al., 2016). mHtt species of similar sizes can manifest conformational polymorphism. For
monomers and oligomers, mHtt species recognized by the monoclonal antibody 3B5H10 shows
higher neurotoxicity than the others (Miller et al., 2011; Peters-Libeu et al., 2012). Structural biology
indicates these 3B5H10-recognized mHtt species adopt a more compact conformation. A later
work found that they are resistant to selective autophagy and thus have a lower degradation rate
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(Fu et al., 2017). Whether this is directly linked to their compact
structure is not yet clear. Interestingly, the insoluble mHtt
polymers/aggregates also have diverse conformations. A study
using synchrotron-based infrared microspectroscopy revealed
that mHtt aggregates from adult and juvenile HD patients’
brains display three conformations (non-amyloid, amyloid
with β-sheet/unordered, and amyloid exclusively with β-sheet),
among which the amyloid with β-sheet/unordered structures
is distributed positively correlated with brain regions affected
by HD (Andre et al., 2013). Another study in immortalized
mouse striatal STHdhQ7/Q7 cells found that overexpressed
mutant huntingtin fragments can form two types of inclusions,
the tightly packed fibrillar inclusion and the loosely packed
globular inclusion, based on their morphological appearance
under super-resolution microscopy and fluorescence lifetime
imaging microscopy (FLIM)-Förster resonance energy transfer
(FRET) (Caron et al., 2014). The authors also found that these
two types of inclusions have different dynamic properties, in
that the fibrillar inclusion does not exchange protein with the
soluble phase while the globular inclusion does. Similarly, a later
study using an Htt exon1 biosensor that can distinguish protein
structures based on their accessibility to biarsenical dyes revealed
that mHtt exon1 product (mHttex1) forms disordered inclusions
early and then convert to β-sheet-rich amyloid over time
(Ramdzan et al., 2017). Taken together, accumulating evidence
indicates that mHtt forms conformationally distinct monomers,
polymers and inclusions (MacDonald et al., 1993); mHtt species
with certain conformation(s) are more toxic than the others
(DiFiglia et al., 1997); different mHtt conformations may convert
from one to another (Becher et al., 1998). The mechanism(s)
underlying their formation and possible conversion, however, is
still largely unknown.

Very recently, several studies carried out in vitro in yeast and
mammalian cells indicated that the formation of mHtt assemblies
is mediated by phase separation and phase transition (Peskett
et al., 2018; Posey et al., 2018; Aktar et al., 2019). These findings
suggested the involvement of a new mechanism in the formation
of mHtt aggregates and thus provided new clues to understand
their polymorphism in conformation and toxicity. We will
summarize these works and discuss their possible pathological
relevance in the following sections.

PHASE TRANSITION IN CELLS

The term “phase” in physics is used to describe a thermodynamic
system composed of materials with uniform physical properties.
The change from one phase to another is coined phase transition
(e.g., a transition from liquid phase to solid phase). Liquid–liquid
phase separation (LLPS) is a special kind of phase transition that
refers to the separation of a solution into two distinct co-existing
phases, whereas one is solute-enriched and the other is solute-
absent (Alberti, 2017) (also see Figure 1). Although the idea that
cytoplasm to be a mixture of liquid with suspending droplets
of different chemical properties can be tracked back to as early
as 1899 (Wilson, 1899), the intracellular phase separation was
not experimentally demonstrated until Brangwynne et al. (2009)
found that the P granule is liquid-like and formed by LLPS.

FIGURE 1 | Liquid-liquid phase separation. A schematic chart of liquid-liquid
phase separation (LLPS). In a solution composed of evenly distributed solute
molecules (the green bubbles) and solvent molecules (gray bubbles), when
LLPS occurs, the solute molecules condense to form a membraneless
liquid-like phase and leaves a surrounding region absent of the solute
molecules.

The same group also revealed that nucleoli also have liquid-like
behavior (Brangwynne et al., 2011). During the past decade, the
intracellular phase separation of more biological macromolecules
has been discovered, suggesting that phase separation might be
a common mechanism for cells to regulate essential biological
processes [reviewed in Alberti (2017), Gerlich (2017), Shin and
Brangwynne (2017), Boeynaems et al. (2018)]. In line with this
notion, aberrant phase separation is proposed to contribute to
the pathology of diseases (Hyman et al., 2014; Cable et al., 2019;
Verdile et al., 2019).

PHASE TRANSITION OF mHtt

mHtt Forms Different Phases and
Undergoes Phase Transition
A few recent studies indicate that mHtt undergoes
phase transition to form higher-ordered assemblies, both
in vitro and in cells.

Using a combination of solubility analysis, right-angle static
light scattering and transmission electron microscopy, Posey
et al. (2018) reported that purified huntingtin N-terminal
fragments (Htt-NTF) formed three phases distinguished by their
saturation concentration, size, and shape. More specifically, the
authors designated them as the M phase (consists of soluble
monomers and oligomers), the S phase (mainly consists of bigger
soluble aggregate spheres sized about 25 nm in diameter), and the
F phase (mainly consists of insoluble fibrillar aggregates). Htt-
NTF can separate into different phases when its concentration
goes above a construct-specific saturation concentration.

In another study published in 2018, Peskett et al. (2018) used
correlative light and electron microscopy (CLEM) and time-lapse
fluorescence microscopy to study the aggregation of Httex1-GFP
proteins. They observed that Httex1-GFP forms dim liquid-like
and bright solid-like assemblies, in vitro, in yeast cells as well as
in mammalian cells. More interestingly, the authors also found
that the liquid-like Httex1-GFP assemblies are formed by LLPS
and can convert into solid-like assemblies by phase transition.

Aktar et al. (2019) reported that in yeast cells, mHttex1-GFP
form bright membrane-less spherical phase-separated inclusion
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bodies (IBs) with uniform GFP intensity. However, based on the
timescale in FRAP experiments, the authors concluded that the
nature of IBs they observed are not “fully liquid” nor solid but
rather gel-like. Besides the IBs, the authors also observed clusters
of smaller inclusions (which they named cluster like inclusions
or CLIs) that are asymmetrical in shape and GFP intensity, in a
small proportion of cells. Moreover, the authors also tracked the
random movements of small mHttex1-GFP particles and propose
that their collision and coalescence lead to the development of
mHtt inclusions.

Taken together, the above-mentioned studies all indicated
that Httex1 manifest phase transition, supported by evidence
from thermo-kinetics, light scattering, quantitative fluorescent
microscopy, and electron microscopy experiments. However,
besides the common findings pointing to mHtt phase transition,
these studies used quite different methodology and focused
on different aspects of mHtt phase behavior (see Table 1 for
summary). For instance, Posey et al. (2018) studied sub-micron-
sized Htt species and factors that affect their thermo-kinetic
properties with biochemical and biophysical approaches, while
Peskett et al. (2018) and Aktar et al. (2019) observed micron-sized
Htt inclusions and their liquid- or solid-like properties mainly
with fluorescent microscopy assisted by quantitative analysis.
Considering the diverse sizes and conformations of mHtt species,
thorough works with multiple mutually supportive approaches
are needed to further explore the phase properties of mHtt
assemblies. Nonetheless, these latest studies have shed new light
to the understanding of the polymorphism of mHtt species at
different scales.

Factors Affecting mHtt Phase Transition
Diverse factors are known to affect mHtt aggregation; whether
they can also modulate mHtt phase transition was also explored
by in the studies discussed in the previous section.

Posey et al. (2018) characterized the saturation concentrations
of soluble mHtt-NTF for its S and F phases and found that
the sequence flanking the mHtt polyQ region affects the phase
boundaries. Specifically, the 17N-terminal amino acids of mHtt

(N17) lower the fibrillar-phase saturation concentration cF,
indicating N17 facilitates mHtt-NTF phase separation in vitro,
while the proline-rich region downstream of polyQ sequence
(i.e., P-rich region) increases cF, suggesting it lowers the driving
force for mHtt-NTF phase separation. The authors also studied
in depth how profilin, a small actin-binding protein, may
contribute to the modulation of mHtt-NTF phase separation.
They observed that profilin preferably binds to the soluble
monomers and oligomers of mHtt-NTF, thereby destabilize
mHtt-NTF aggregates. Moreover, computer simulation suggests
profilin interacts with mHtt-NTF through a combined effect of
specific binding with the P-rich region and auxiliary binding
with the polyQ sequence. Interestingly, mHtt-NTF with longer
polyQ (40Q vs. 30Q) showed higher affinity with profilin in
protein binding assays.

Peskett et al. (2018) also looked at polyQ length and the P-rich
region for their roles in mHtt phase transition. In both yeast and
mammalian cells, mHttex1 with different length of polyQ (25, 43,
and 97) can all form liquid-like assemblies, but a polyQ expansion
(43 and 97) is required for solid-like assemblies’ formation.
In vitro, however, even mHttex1 with 25Q can also undergo liquid
to solid transition. P-rich region assists the mHttex1 to form
assemblies in yeast, whether this is also the case in mammalian
cells is unclear. The authors also tested whether electrostatic
interactions play a role in mHtt phase separation and found
that even very high salt concentration (up to 1M) had little
effect on mHtt-25QP droplet formation in vitro. In their yeast
experiments, the authors also looked at the yeast prion [RNQ+]
and found it not required for mHttex1 phase separation.

Aktar et al. (2019) checked phase transition of mHttex1 with
different polyQ length (25Q and 72Q) as well. Consistent with
previous reports (Krobitsch and Lindquist, 2000; Meriin et al.,
2002) and Peskett et al.’s work, mHttex1-25Q did not form
inclusions. Besides, Hsp104, a yeast disaggregase, is required for
inclusion formation as reported before (Krobitsch and Lindquist,
2000; Meriin et al., 2002). Interestingly, Aktar et al. (2019) did not
see mHttex1-72Q forming any liquid-like or solid-like assemblies
in rnq11 strains.

TABLE 1 | Summary of mHtt phase behavior.

Htt fragments System Phase behavior References

mHtt-NTF-40Q In vitro Concentration dependently forms separable M phase (soluble monomer),
S phase (soluble aggregates) and F phase (insoluble fibrillar aggregates)

Posey et al., 2018

mHttex1-25Q-EGFP Budding yeast None Peskett et al., 2018

mHttex1-25QP-EGFP In vitro
Budding yeast
Mammalian cell

LLPS, liquid to solid transition
LLPS
LLPS

mHttex1-43Q-EGFP Budding yeast LLPS, liquid to solid transition

mHttex1-43QP-EGFP Budding yeast
Mammalian cell

LLPS, liquid to solid transition
LLPS, liquid to solid transition

mHttex1-97Q-EGFP Budding yeast LLPS, liquid to solid transition

mHttex1-97QP-EGFP Budding yeast
Mammalian cell

LLPS, liquid to solid transition
LLPS, liquid to solid transition

mHttex1-25QP-EGFP Budding yeast None Aktar et al., 2019

mHttex1-72QP-EGFP Budding yeast Phase separated to gel-like inclusions
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In summary, several factors can affect mHtt phase transition.
Expanded polyQ is required for mHtt phase transition in
both studies with mHttex1-GFP under fluorescent microscopy.
The effect of the flanking sequences, however, looks somewhat
controversial. The P-rich region lowers the driving force for phase
separation in vitro and facilitates profilin in suppressing mHttex1
aggregation (Posey et al., 2018), but promotes intracellular
mHttex1 phase separation in yeast (Peskett et al., 2018). One
possible explanation for this discrepancy is, compared with the
in vitro aggregation system, the intracellular milieu contains
many more mHtt-interacting proteins potentially affecting mHtt
phase separation. Profilin, Hsp104, and Rnq1 are some examples,
although the exact mechanisms by which they modulate
mHtt phase separation still requires further studies. It’s worth
mentioning that although Peskett et al. (2018) found the [RNQ+]
prion is not required for mHttex1 phase separation, Aktar et al.
(2019) reported yeast cells lacking the RNQ1 gene were unable
to form mHtt assemblies. Because these two experiments were
carried out in different yeast strains with different [RNQ+]
prion-forming properties, it is thus still unclear whether the
non-prion form of Rnq1 protein assists mHtt phase separation.

Besides the intrinsic and intracellular factors explored in the
above-mentioned studies, there are also factors that may affect
mHtt phase transition in intercellular manners. mHtt aggregates
were first reported to have prion-like properties such as templated
misfolding in vitro and intercellular propagation in co-cultured
cells [reviewed in Pearce and Kopito (2018)]. Later studies
reported that mHtt aggregates also underwent intercellular
transfer in mouse brains and contribute to HD pathology
phenotypes (Pecho-Vrieseling et al., 2014; Jeon et al., 2016).
A more recent work using a FRET-based mHtt aggregate seeding
assay indicates a strong correlation between mHtt species’
seeding activity and HD pathology progression (Ast et al., 2018).
It is thus crucial to explore whether and how an mHtt aggregate
“seed” obtained via intercellular transfer may affect the local
mHtt phase transition. In addition, recent studies in Alzheimer’s
disease (AD) cells suggest that microglia are capable of uptake
tau “seeds” but may promote their intercellular propagation via
incomplete degradation (Spanic et al., 2019). Whether similar
mechanisms also contribute to mHtt aggregation intercellularly
remain to be explored.

Htt Phase Transition and HD:
Pathological Relevance
Although the discovery of phase transition of mHtt may bring
exciting new directions in HD research, a few key questions need
to be answered to understand its pathological relevance.

First, it is crucial to know whether phase transition is a
universal mechanism underlying mHtt aggregation in all cells,
especially in neurons. Studies so far were carried out in vitro, in
yeast cells and in HEK cells. It is critical to confirm the current
findings in more relevant HD cell models such as neuronal cell
lines or iPSC-derived neurons (Geater et al., 2018). Cell-type-
specific difference of mHtt aggregation has been reported in
mice HD models (Jansen et al., 2017). Microglia from frontal
cortex and striatum have much lower frequency of nuclear mHtt

aggregation than neurons and other glia cells from the same brain
areas, despite of similar mHtt expression levels. The still unclear
mechanisms underlying the cell-type-specific mHtt aggregation
might also affect mHtt phase transition.

Second, mHtt is known to form aggregates in both the
cytoplasm and nucleus, which are of very different biomolecule
environment. Moreover, it is proposed that cytosolic and nuclear
mHtt aggregates contribute differently to toxicity (Jimenez-
Sanchez et al., 2017). It is thus necessary to compare cytosolic
and nuclear mHtt phase transition, if applicable, to understand
their physiological consequences. For example, HD is known to
manifest nucleolar dysfunction and impaired rDNA transcription
(Lee et al., 2014). Very recently, Frottin et al. found that
the nucleolar granular component (GC) also undergoes phase
separation and can serve as a membrane-less protein quality
control compartment to temporarily store denatured proteins
and prevent them from irreversible aggregation (Frottin et al.,
2019). But the capacity of the nucleolus to buffer proteinaceous
folding stress is limited. When overloaded, the GC liquid phase
will go through a transition to solid phase and subsequently
lead to nucleolar dysfunction. Whether intranuclear mHtt affect
GC phase separation, for instance, by disrupting the process
directly or by overwhelming its buffering capacity, will be a very
interesting question worth testing.

Third, according to the reports so far, the expanded polyQ is
required for mHtt to form solid-like assemblies but not for some
liquid like assemblies. In other words, wild-type Htt (wtHtt) can
also form liquid-like assemblies. Considering most HD patients
are heterozygous that expresses a mixture of wtHtt and mHtt, it is
closely relevant to study possible interactions between wtHtt and
mHtt in their phase transition. The interaction between wtHtt
and mHtt has been reported to affect disease progression and
mHtt toxicity (Ho et al., 2001; Leavitt et al., 2001; Aziz et al., 2009;
Saleh et al., 2014). Htt with wide-type polyQ length (25Q) was
also found in mHtt (103Q) aggregates (Duennwald et al., 2006).
Whether these reported interactions involve phase transition will
be another interesting question to explore.

In summary, the discovery of phase transition of mHtt
revealed a new mechanism involved in mHtt aggregation.
Understanding the pathological relevance of different mHtt
phases (e.g., the cytotoxicity of liquid phase and solid phase)
and the factors that affect their transition, such as profilin that
stabilize soluble mHtt phase and destabilize mHtt aggregates, will
be crucial in identifying potential targets to interfere mHtt phase
transition. Antagonizing the pathological mHtt phase transitions
and correcting the normal phase transition could be a new
strategy in treating the disease.

FUTURE PERSPECTIVES

It’s been almost three decades since the discovery of the causing
gene of HD and the identity of aggregates found in patients.
However, the mechanisms of mHtt aggregation and toxicity are
still not fully understood. The discovery of the phase transition of
mHtt added a new mechanism of mHtt aggregation and will help
us to have a better understanding of the underlying molecular
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events. Considering that Htt with regular polyQ length can also
go through LLPS, it is possible that de-regulated phase transition
of mHtt also contribute to the pathology of the disease.

Moreover, accumulating evidence indicate that phase
transition is used by the cell to regulate diverse intracellular
biological processes such as autophagy (Sun et al., 2018; Fujioka
et al., 2020) and protein quality control (Frottin et al., 2019;
Yasuda et al., 2020), both are compromised in HD. Can
phase transition be a new mechanism that mHtt affect normal
cellular “daily life”? In other words, is it possible that mHtt
undermine essential cellular functions via disrupting their
phase transition-mediated events? Furthermore, can the phase
transition of mHtt interfere with phase transition of other
biological macromolecules? Some hundreds of proteins were
found in mHtt aggregates (Hosp et al., 2017), could some of
them be a result of mHtt-disrupted phase transition? Given
the case that profilin affects the phase boundaries of mHtt, this
possibility looks conceivable and is certainly worth testing, at
least for mHtt-interacting proteins.

Although intracellular phase transition was confirmed not
for long, it has already been reported to be involved in
a number of diseases features protein aggregation, including
amyotrophic lateral sclerosis (ALS), frontotemporal dementia
(FTD) (Murakami et al., 2015; Patel et al., 2015; Monahan et al.,
2017), AD (Ambadipudi et al., 2017; Wegmann et al., 2018).

and HD (this review). Phase transition thus may serve as a new
targetable process for treating these diseases (Verdile et al., 2019).
However, like the case of HD discussed in this review, this can
only base on a thorough knowledge of phase separation in general
and phase transition of the specific target protein.
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