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Fungal communities perform essential functions in biogeochemical cycles. However,

knowledge of fungal community structural changes in river ecosystems is still very

limited. In the present study, we combined culture-dependent and culture-independent

methods to investigate fungal distribution and diversity in sediment on a regional scale

in the Songhua River catchment, located in North-East Asia. A total of 147 samples

over the whole river catchment were analyzed. The results showed that compared

to the mainstream, the tributaries have a higher fungal community organization and

culturable fungal concentration, but possess lower community dynamics as assessed

by denaturing gradient gel electrophoresis (DGGE). Furthermore, phylogenetic analysis

of DGGE bands showed that Ascomycota and Basidiomycota were the predominant

community in the Songhua River catchment. Redundancy analysis revealed that

longitude was the primary factor determining the variation of fungal community structure,

and fungal biomass was mainly related to the total nutrient content. Our findings provide

new insights into the characteristics of fungal community distribution in a temperate

zone river at a regional scale, and demonstrate that fungal dispersal is restricted by

geographical barriers in a whole river catchment.

Keywords: fungal diversity, biogeography, river catchment, DGGE, redundancy analysis (RDA)

Introduction

Sediment and their attached microbes make a substantial contribution to the biogeochemical pro-
cesses of river ecosystems (Rastogi et al., 2011; Sanchez-Andrea et al., 2011), such as nutrient
transformations, energy flow, food web and self-purification (Gerbersdorf et al., 2011). Due to
their valuable services in the ecosystem, changes in fungal assemblages could provide insight into
the physicochemical assessment of river water quality and ecosystem health (Amaral-Zettler et al.,
2008; Liu et al., 2011). Therefore, it is important to elucidate the mechanisms linking commu-
nity diversity and processes over time and space in response to different environmental conditions
(Hazard et al., 2013). Recently, studies aimed at understanding the dynamics of fungal commu-
nities were conducted, with the major goal being to acquire knowledge about what controls the
distribution and abundance of the microbial community and how these communities change in
response to their environmental gradients (Tiedje et al., 1999; Logue et al., 2011; Read et al., 2011).
Consequently, the driving factors of microbial community, which maintain biodiversity on the
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earth, have mainly been discussed in terms of contemporary dis-
turbances (environmental heterogeneity) and historical contin-
gencies (geographical distance) (Green and Bohannan, 2006; Ge
et al., 2008; Vanormelingen et al., 2008; Schauer et al., 2010; Lind-
strom and Langenheder, 2012; Hazard et al., 2013; Wu et al.,
2013).

To date, wide controversies exist about whether fungi dis-
play a biogeographic distribution signature and which are the
main factors that shape the community (Van der Gucht et al.,
2007; Patterson, 2009; Bissett et al., 2010). It was reported that
local environmental variations are mainly driving the changes in
microbial community composition and are more distinctive than
the temporal ones (Kolukirik et al., 2011). Similarly, Olsen and
co-workers also showed that eukaryotic community structure
was more highly correlated with environmental factors than geo-
graphical distance around the South Shetland Islands, Antarctica
(Olsen et al., 2013). However, it was also reported that pure spa-
tial effects clearly overcame those of environmental effects, with
the former explaining the much greater variation in species rich-
ness and community composition (Heino et al., 2010). Micro-
bial communities were considered to exhibit non-random spatial
biogeographic patterns and are even scale-dependent (Yergeau
et al., 2010; Wang et al., 2013). Wu and co-workers observed
that fungal diversity variation was mainly affected by historical
geographic distance (i.e., location, including altitude) at a large
regional scale (1000–4000 km), and contemporary environmen-
tal conditions (total potassium and total nitrogen) could explain
the variation in fungal diversity on a small local scale (<1000 km)
(Wu et al., 2013). Similarly it was concluded that arbuscular myc-
orrhizal fungi (AMF) community composition is significantly
changed with the geographical distance at the regional scale
(250 km), while environmental heterogeneity was the major fac-
tor in determining turnover of AMF taxa at the landscape scale
(van der Gast et al., 2011). Hence, further investigation is needed
to resolve such controversies.

As previously reported, spatial turnover in the composition
of biological communities is governed by ecological drift, selec-
tion and dispersal (Stegen et al., 2013). When comparing the
differences between contemporary environmental variables and
historical geographical distance, the precondition is that the geo-
graphic sampling sites should be stochastic, homogeneous or at
least spatially correlated so as to eliminate the "noise" brought
by non-random and deterministic influences of the research area
(Valentin-Vargas et al., 2012; Wang et al., 2013). However, most
of the previous studies have ignored this potential and criti-
cal problem. In the study reported here, we sought to resolve
the above problem by setting up a series of successive loca-
tions on a catchment scale in a temperate zone river, which
flows through mountains and plains and covers many types of
landscape, including headstream, hills, forest, agricultural and
industrial land and metropolis. Secondly, as the Songhua River
is formed from a merger of two sub-mainstreams which have
their sources in different regional areas and from different direc-
tions, it meets the demands of both geographic homogeneity and
variance.

The aim of the current study was: (1) to elucidate the biogeo-
graphic distribution of fungal concentration and diversity in the

sediment of Songhua River catchment; (2) to identify the unique
species in the Songhua River catchment; and (3) to analyse the
impact of sediment environmental variables and geographical
distance on the fungal community.

Materials and Methods

Study Sites
The Songhua River is an important international wetland
located in North-east Asia. All sampling and pretreatment
of samples follow the China National Standards for Scien-
tific Sampling (Ministry of Environmental Protection of China,
2009). The sediment samples were collected by a special sam-
pling device which was manufactured by an environmental
monitoring station in Harbin, Heilongjiang Province. Samples
(a mixture of sediment from the upper 20 cm) were homog-
enized at sampling sites in clean glass containers. Samples
were taken every 20 km along the mainstream and 40 km
along the tributaries over the whole Songhua River Catch-
ment (Figure 1). Sampling points were numbered and ref-
erenced using a global positioning system. A total of 147
samples were collected from June to August in 2010 before
the rainy season. All samples were immediately sealed and
stored at 4◦C in 50ml pre-cleaned centrifuge tubes during
transportation.

FIGURE 1 | Sampling site distribution map. Two hundred forty-five

sampling sites were set, as the sand and gravel in the river bottom zone, and

147 sediment samples were collected in the Songhua River catchment.

Sampling was conducted from June to August in 2010. R1, the mainstreams

of Songhua River; R2, the Nen River; R3, the second Songhua River; R4, the

Mudan River.
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FIGURE 2 | Contour of fungal biodiversity in the sediment among the Songhua River catchment. The map shows the fungal distribution of abundance and

diversity information. (A) fungal community organization, (B) fungal dynamics, (C) fungal concentration, (D) Shannon Weaver index.

Heterotrophic Plate Counts
Enumeration and isolation of fungi was performed by the
dilution plate method. Measurement of concentration of cul-
tivable fungi employed potato dextrose agar (PDA) medium
amended with chloromycetin (50µg/ml) and streptomycin sul-
fate (50µg/ml) to inhibit growth of bacteria and actinomyces.
2.00 g sediment was suspended in 18ml sterile physiological
saline, giving a 1:10 dilution; two successive dilutions (1:100
and 1:1000) were prepared to select a proper dilution gra-
dient. 100µL of suspension were spread on 90-mm-diameter
plates containing PDA medium. Each suspension has three
replicates. Plates were incubated at 28◦C and recorded every
24 h until the highest number of colonies was reached after
plating.

PCR-Denaturing Gradient Gel Electrophoresis
Analysis
A freeze-thaw/phenol-chloroform extracting approach was
applied to extract genomic DNA from sediment and 50µl DNA
solution was obtained from each sample. Then, the genomic
DNA was purified by the E.Z.N.A.™MicroElute DNA Clean-up
Kit (Omega, USA). Nested PCR with primers sets ITS1-F/ITS4
(Gardes and Bruns, 1993) and ITS2/ITS1F-GC (White et al.,
1990) was used to amplify fungal ITS? region. A 40 base GC
clamp (5′-CGC CCG CCG CGC GCG GCG GGC GGG GCG
GGG GCA CGG GGG G-3′) was attached to the 5′ end of the

ITS1-F primer to stabilize the melting behavior of the DNA
fragments during DGGE analysis (Sheffield et al., 1989). The
first round of PCRs were carried out on an touchdown cycler
using 25µl reaction volumes containing: 1µl DNA template,
0.25µl 10µM of each primers, 12.5µl 2 × Go Taq R© Master
Mix(Promega, USA) and 11µl nuclease-free water. PCR cycle
was programed as follows: 94◦C for 4min followed by 10 cycles
of 94◦C for 1min, lowering the annealing temperature from 65◦C
to 55◦C at 1◦C steps for each cycle for 1min, 72◦C for 1min,
and finally 25 cycles of 94◦C for 1min, 55◦C for 1min, 72◦C for
1min, and followed by finally extension at 72◦C for 7min. The
second PCRs were carried out on a touchdown cycler using 50µl
reaction volumes containing: 1µl first PCR production, 0.5µl
10µMof each primer, 25µl 2×Go Taq R© Master Mix (Promega,
USA) and 23µl nuclease-free water. Cycling parameters were the
same as the first round of PCR. All amplification products were
electrophoresed in agarose gel 1.2% (w/v), stained with EB and
visualized under UV light.

Denaturing gradient gel electrophoresis analysis was carried
out using the Dcode™ universal mutation detection system (Bio-
Rad, USA). Electrophoresis was performed on 8% polyacry-
lamide gels (acrylamide:bisacrylamide, 37.5:1) with a 15–45%
denaturant agent vertical gradient (100% denaturants defined as
7M urea and 40% (v/v) formamide. 20µl PCR product mixed
with 5µl blue/orange loading dye (Promega, USA) was loaded
onto the gels and the electrophoresis were run at 140V and 60◦C
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for 4 h in 7 L of 1 × TAE buffer (40mM Tris, 20mM acetic
acid, 50mM EDTA [pH 8.0]). The gels were stained for 30min
with 0.5µg/ml EB and visualized with UV light using Molecular
Imager™ Gel Dox XR+ (Bio-Rad, USA).

Images of DGGE fingerprints were employed to quantify
community structure using the Quantity One 4.31 software
(Bio-RAD, USA) andGelcompar II 6.5 (AppliedMaths, Belgium)
according to the manual of the provider, which detects bands
and quantifies relative concentration of DNA. The DGGE pattern
analysis was done using a previously reported protocol (Mar-
zorati et al., 2008). The percentage change values for different
adjacent sites were calculated based on the percent of similarity
matrix values and was defined as the dynamics (Fromin et al.,
2002; Pereira et al., 2010).

Excising and Sequencing Interest DGGE Bands
Individual DGGE bands were excised, re-suspended in 20µl ster-
ile TE buffer, and stored at 4◦C overnight. An aliquot of super-
natant was used as DNA template for PCR re-amplification as
described above, and electrophoresed withDGGE. Band excision,
PCR, and DGGE were repeated until a single band was present.
For sequencing, PCR products generated fromDGGE bands were
amplified with primers ITS2 and ITS-1f (without the GC clamp).
The sequences obtained were compared with Genbank database
by using BLAST.

Statistic Analysis
Fungal distribution of abundance and diversity were drawn by
Origin 8.0 software. A multivariate redundancy analysis (RDA)
was performed by Canoco software (Canoco for Windows ver-
sion 4.5, Microcomputer Power, Ithaca, USA) to illustrate the
confounding changes among fungal abundance, communities
structure and environmental factors (the content of organic mat-
ter, total phosphorus, quickly available phosphorus, total nitro-
gen, ammonia nitrogen, nitrate nitrogen, redox potential, pH,
and samples location, including longitude, latitude and altitude).
The diversity values of fungi were centered and standardized in
the redundancy analysis, and environmental factors were also
standardized as variables before performing RDA analysis. Mean-
while, the Monte Carlo test was used to examine the significance
of analysis. A generalized linear model (GLM) and generalized
additive model (GAM) was performed in a stepwise manner to
predict the multiple response of fungal community to each vari-
able factor, and the visualization formula was given in terms
of linear, quadratic and cubic degree of GLM, and F statistics
were conducted to test the significance of both GLM and GAM.
ANOVAs analysis was used to assess the significance of differ-
ences in measured or calculated parameters. ANOVA analysis
was performed using R statistical software (http://www.r-project.
org/).

Results

Fungal Community Diversity Distribution
Character at Catchment Scale
The contour of fungal community organization (Co), dynamic
(Dy), diversity indices, including Shannon-Weaver index (HI),

Simpson index (DI), Richness index (RI), and Evenness index
(EI) and concentration (Cf) was drawn to illustrate the fun-
gal geographic distribution in the sediment among the Songhua
River catchment (Figure 2). Here, the community dynamics (Dy)
is interpreted as the number of species that come to significant
dominance and the community organization (Co) is defined as
the functionality of the community to organize in an adequate

FIGURE 3 | Influence of the import from tributaries on the mainstream.

(A) fungal community organization, (B) fungal dynamics, (C) fungal

concentration. Different letters in the same boxplot meant significant difference

at 0.01 level (capital) and 0.05 level (lowercase) respectively.

Frontiers in Microbiology | www.frontiersin.org 4 April 2015 | Volume 6 | Article 329

http://www.r-project.org/
http://www.r-project.org/
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Liu et al. Fungal diversity in freshwater sediment

FIGURE 4 | Internal correlation of community organization to (A) fungal concentration, (B) Shannon Weaver index, (C) richness index and dynamics to

(D) fungal concentration, (E) Shannon Weaver index, (F) richness index among the fungal diversity.

distribution of dominant microorganisms and resilient ones,
conditions that should assure the potentiality of counteracting
the effects of a sudden perturbation exposure (Marzorati et al.,
2008; Read et al., 2011). The sediment has significantly lower
Cf in the river source region (headwater areas of R2 and R3)
(p < 0.001). Compared to the mainstream, the tributaries have
higher fungal community organization (Co) (p < 0.001) and cul-
turable fungal concentration (Cf) (p < 0.001), but possess lower
dynamics (p = 0.014). There is no significant difference in the
Shannon-Weaver and richness index (data not shown) within the
catchment.

A total of 16 estuaries were specifically analyzed to estimate
the impact of the import from tributaries on the fungal com-
munity of the mainstream (Figure 3). The results show that the
import of up-tributaries increased the concentration of fungi in
the mainstream. Compared to the mainstream, the up-tributaries
have a high fungal community organization (Co) (p = 0.005).
Although no significant differences in dynamics values between
mainstream to up-mainstream and mainstream to up-tributaries
(p > 0.05) were observed, mainstream to up-tributaries have
more dynamic variance (p = 0.033).

In the present study, an interesting observation is that
microbial community structure has an intrinsic correlation

to community organization and dynamics in river ecosystem.
Specifically, fungal community organization (Co) is positively
correlated with the fungal concentration (p = 0.019) and neg-
atively correlated with fungal Shannon-Weaver diversity (p <

0.001). There was a decreasing trend in terms of fungal richness
(p = 0.0774) (Figure 4). The fungal dynamic (Dy) is negatively
correlated with the fungal concentration (p = 0.0321), Shannon-
Weaver diversity (p < 0.001) and richness (p < 0.001) in the
Songhua river sediment.

Phylogenetic Analysis of Fungal Community
DGGE profiles from all fungi in Songhua River sediment revealed
an obvious shift in fungal communities. Fifty eight bands were
excised and further sequenced from the mainstream, including
the common bands from all sample locations and the unique
predominant bands from each sampling site. All entries are avail-
able from the European Nucleotide Archive (http://www.ebi.ac.
uk/ena/data/view/LM655253-LM655310). The distance analysis
was performed to provide more information and phylogenetic
placement of these sequences (Figure 5). Partial bands showed
the highest similarity, and FASTA analysis revealed those bands
most closely related to the known species, whereas remaining one
band sequences were not satisfactorily matched with any fungal
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FIGURE 5 | Phylogenetic analysis of fungal ITS1-DNA sequences by means of the neighbor-joining method using genetic distances defined by

Maximum Composite Likelihood. The bar represents 10% sequence divergence. Numbers at the nodes represent bootstrap values 1000.

sequences in the GenBank database and remained unknown.
Meanwhile, the OUT proportion in each lane was calculated by
quantitative analysis of the DGGE profile (Supplementary Mate-
rial). Overall, the most dominant fungal genus was Ascomycota,
followed by Basidiomycota and early diverging fungal lineages.

In addition, 12 bands (20.69% of total bands) correspond to
uncultured fungus (Figure 5).

The distribution of fungi showed a clear regional pattern. The
sequence and phylogenetic analysis revealed each region within
the catchment has its own individual common predominating
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FIGURE 6 | Redundancy analysis (RDA) ordination biplot of sediment

fungal abundance, biodiversity (blue arrows) and their respective

physicochemical properties (red arrows) in the Songhua River

catchment. Co, community organization; Cf, fungal concentration; DI,

Simpson index; Dy, community dynamic; EI, Evenness index; HI,

Shannon-Weaver index; RI, Richness index; OM, organic matter; TP, total

phosphorus, QAP, quickly available phosphorus; TN, total nitrogen; AON,

ammonia nitrogen; NON, nitrate nitrogen; Eh, redox potential; LO, longitude;

LA, latitude; AL, altitude; and pH.

species. Specifically, Mrakia was the common species in the
mainstream of R1,Myxotrichaceae and Podospora were common
species in mainstream of R2, and Simplicillium sp. and Mrakia

sp. were common species in R4. However, the common pre-
dominant species in R3 and R4 were uncultured fungus and are
still unknown. For instance, the proportion of uncultured fungus
(band N51-1) reached 32.5% of the total fungi found in the N51
site (R3).

Redundancy and Response Model Analysis
The multivariate ordination technique is commonly used to
interpret variation in the field of ecology, as it offers the greatest
opportunity to combine statistical analysis of community pro-
files with various variables (Fromin et al., 2002). In the present
study, redundancy analysis (RDA) was conducted to explain the
changes in fungal community structure using environmental fac-
tors (Figure 6), where the first axis and second axis of RDA
explained 85.93 and 6.78% of the variance, respectively. Accord-
ing to RDA, longitude was the most important factor to affect
the fungal community changes, accounting for 19.82% com-
munity variation (p = 0.002), followed by total phosphorus
(11.01%,), organic matter (11.01%,), quickly available phospho-
rus (11.01%,), total nitrogen (11.01%,), redox potential (8.81%,),
ammonia nitrogen (8.81%,), altitude (8.81%,), nitrate nitrogen
(6.61%,) and latitude (2.20%,). RDA analysis revealed that the
variation of fungal community in the Songhua River catchment

area was first interpreted by longitude, which implies that the
variation is probably linked to the main direction of river flow,
due to the flow direction being consistent with the longitudinally
geographical gradients within the catchment area. The variation
was then elucidated by nutrients (organic matter, total phospho-
rus, total nitrogen, quickly available phosphorus), where each
parameter has the same weight of contribution to the variance of
the fungal community (SupplementaryMaterial). The results also
reveal that the type of nitrogen elements exerts different degrees
of effects on the fungal structure (Supplementary Material).

Two response models, the generalized linear model (GLM)
and generalized additive model (GAM), were applied to reveal
detailed information for the multiple response of the fungal com-
munity to each variable factor. Fungal community organization,
dynamic and concentration are well summarized via the visu-
alization formula (Figure 7). The response model had a good
fit to the fungal community structure, and demonstrated that
fungal community was significant affected by geographical dis-
tance, including longitude, latitude and altitude. Co, Dy, and Cf
decreased along the main direction of river flow (longitude: west
to east) (Figure 7). In the low latitude area, the river sediment
fungi has high Co and Cf, but low Dy. The fungal community
possesses the highest Co and Cf at an altitude of ca. 230m, though
the fungal community becomes more dynamic with increasing
altitude (Figure 7). The response model also revealed a close
correlation between fungal community and various nutrients in
river sediment, which indicates that the types of nutrient ele-
ments either restrict or promote fungal growth. Co was sig-
nificantly correlated to the nitrate nitrogen, ammonia nitrogen,
quickly available phosphorus and total P (Figure 7). Cf was sig-
nificantly linked to organic matter, total N, and ammonia nitro-
gen (Figure 7). Eh and pH have a quadratic effect among Co, Dy,
and Cf.

Discussion

The question of whether microbes disperse globally remains con-
troversial. In this study, the fungal community structure, compo-
sition and their response to extrinsic factors were investigated in
the sediment of the whole Songhua River catchment at the suc-
cession and regional scale using both culture independent and
dependent techniques. The distribution contour map and mul-
tivariate ordination was used to illustrate the biogeographical
characteristics of the fungal community.

Geographical Patterns in Fungal Community
It was proposed that geographical barriers rarely restricted the
dispersal of microbial eukaryotic abundance (Finlay, 2002), and
physical characteristics of the habitats inordinately extend effects
on surrounding communities and ecosystem function (Navel
et al., 2012). However, the contours of the fungal community
structure in study here, including the fungal community orga-
nization (Co), dynamic (Dy), and concentration (Cf), displayed
a distinct geographical pattern between mainstream and tribu-
taries (Figure 2). The headwater has a lower fungal concentration
and, after flowing though the source region, the fungal concen-
tration downstream was increased in the Songhua River. This
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FIGURE 7 | Multiple fungal diversity index response curves to the environmental variable and geographic distance.
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phenomenon could be explained by the fact that nutrient concen-
tration gradually increases from upstream to downstream due to
nutrient transfer from terrestrial to aquatic systems via the pro-
cesses of surface runoff, erosion and leaching (Peterson et al.,
2001; Harner et al., 2004). The tributaries have greater fungal
biomass (Cf) and more uneven distribution of fungal species
abundance (Co). This is consistent with the theory that smaller
streams (i.e., tributaries) have more effective nutrient transport
and retention processes than big rivers (mainstream) (Peterson
et al., 2001). The tributaries of the Songhua river derive from
mountain forests, where vegetation has an indirect influence on
the distribution, activity, and metabolic physiology of sediment
microbial communities (Oliveira et al., 2010). After various trib-
utaries merge into the mainstream, the fungal sediment habi-
tat becomes more complex, and multiple factors could jointly
control the composition and activity of the microbial commu-
nity (Agnelli et al., 2004). Thus, many species become dominant,
which leads to rapid changing and increasing dynamics of fungal
community in the mainstream. As shown in Figure 3, the fun-
gal community in the mainstream was more dynamic than in the
tributaries. It has been reported that microbial diversity gradu-
ally changes from upstream to downstream along the Changjiang
River (Sekiguchi et al., 2002). In the present study, when rivers
flow through plains and residential areas, Cf and Co decreased in
the downstream (Figure 2), which also reflects the great effect of
land use and human activity on the fungal community (Sun et al.,
2011; Gelorini et al., 2012).

In the study reported here, the intrinsic correlation of micro-
bial community structure (see Figure 4) infers that stability of
the fungal community (Co and Dy) does not necessarily imply
a high fungal diversity (HI and RI), while microbial commu-
nity functionality depends on the flexibility of the community
structure, namely the ability of minority community members to
become dominant in a short period under a sudden perturbation
in conditions (Fernandez et al., 2000). The reason could be that
a functional structural redundancy exists in the microbial com-
munity in nature (Bell et al., 2005). Similarly it was reported that
medium values of Co (synonyms for Fo) were linked to high rich-
ness in the ammonia-oxidizing bacterial community (Wittebolle
et al., 2009).

Phylogenetic Analysis
A clear and complex shift in DGGE pattern was found over
the whole Songhua River catchment (Supplementary Material).
Besides the common dominant fungi, almost each sampling
point was found to have its individually predominant species,
which also explains that fungal distribution was restricted by geo-
graphical locations. These common and uniquely predominant
fungi possess special functions based on the local environmen-
tal ecosystem. Fungi can potentially indicate the degree of pol-
lution stress. It has been reported that fermentative species are
predominant populations in polluted water, and the abundance
of yeasts is associated with the water quality in aquatic ecosys-
tems (Medeiros et al., 2008). Dynowska’s work showed that yeast-
like fungi, such as Candida sp., Rbodotorula sp., Cryptococcus
sp., and Tricbosporon sp., can be considered as bio-indicators of
the progress in the process of eutrophication and accumulation

of organic and inorganic pollutants (Dynowska, 1997). In the
current study, the genus Candida (class of Saccharomycetes) is
mainly represented in the river downstream of urban areas in
R2 and R4 (Supplementary Material), which suggests that the
river probably undergoes eutrophication in those areas due to
anthropic activities. Our study reveals that numerous strains of
genera Mrakia/Mrakiella and Guehomycesare (class of Tremel-
lomycetes) are commonly predominant in R1 and R4 (Supple-
mentary Material). Those fungi have previously been found in
cold habitat regions and possess psychrophilic characteristics
(Branda et al., 2010; Krishnan et al., 2011), possessing the strong
ability to utilize nutrient and growth at low and even sub-zero
temperatures (Thomas-Hall et al., 2010). The presence of Tremel-
lomycetes confirms the local climate. The sampling location of
the current study, the Songhua river catchment, is at the inter-
section between the temperate and cold-temperate zones and
belongs to the terrestrial seasonal wind climate with an aver-
age annual temperature approximately between −1◦C and 5◦C
(Sun et al., 2011). This peculiar low temperature climate condi-
tion may promote the formation and dominance of these cold-
adapted yeast. Meanwhile, in the river catchment, we found a
unique predominance of Aspergillus and Penicillium (class of
Trichocomaceae), which could product beta-glucans, mycotox-
ins and surface proteins and increase the potential risk of health
lesions (Houbraken and Samson, 2011). Furthermore, these gen-
era can tolerate extreme environmental stress, e.g., low water
availability and high temperatures (90◦C), and can be recovered
under appropriate conditions (McGee et al., 2006), which could
enhance their ability to survive under various environmental
conditions in the Songhua River. Based on the above discussion,
the fungal community composition in the sediment of Songhua
River was affected by the local climate (temperature) conditions
and water eco-function in the catchment area.

Impact of Extrinsic Factors on Fungal
Communities
Although previous studies have shown that microbial diversity
was mainly influenced by historical geographical distance, and
that physical barriers have significant contributions to the fungal
distribution (van der Gast et al., 2011; Wu et al., 2013). How-
ever, since those results were obtained from jumping sampling
sites (distance between sampling sites is very large), one could
not eliminate the "noise" brought about by the geographical gap
in locations. In the current study, the conclusion was drawn from
analysis of a large succession of sampling sites at medium scale
(1000 km), which imbues the fungal community with geographic
homogeneous and variance properties, and therefore it can avoid
the gap noise. Here, our study confirms the theory for the first
time on a continuous sampling scheme.

It was proposed that the microbial community exhibits a hor-
izontal spatial distribution pattern that is correlated with latitude
or climate gradient (Ge et al., 2008), which is based on a limited
number of locations. In the current study, the changes in fungal
community were independent of the latitudinal flow direction,
and were different from community changes over longitude as
fungal community variance was consistent with the longitudi-
nal flow direction. Although the Songhua River is formed from a
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merger of two sub-mainstreams (R2 and R3 see in Figure 2) and
the two sub-mainstreams have opposite latitudinal flow direc-
tions, our results demonstrated at the regional scale that the fun-
gal community Co and Cf were significantly positively correlated
with latitude (Figure 7). In other words, there was a high fun-
gal concentration and Co in the high latitudinal region where
temperature was relatively lower, which indicates that some fungi
(e.g., Tremellomycetes mention above) are more adapted to sur-
vival in cold areas. Staddon and colleagues have reported that
microbial functional diversity in soil was negatively correlated to
latitude (Staddon et al., 1998). A similar correlation was observed
in the present study. The response model displayed that the fun-
gal community dynamics were positively corelated with the alti-
tude, and there was an optimal altitude (ca. 230m) for the fungal
community habitat (Figure 7), at which fungi have the highest
biomass (Cf) and community organization (Co). Wu and co-
workers have also found that fungal community changed with
altitude in the Changjiang River wetlands (Wu et al., 2013). Such
trends could be the result of uplift of altitude, which affects the
development of drainage systems then in turn greatly influences
the biogeography of microbial assemblages (Qi et al., 2007).

In addition, the response model also revealed that differ-
ent nutrient elements have different effects in terms of Co, Dy,
and Cf. The results showed that organic matter (OM) and total
nitrogen (TN) only affected fungal biomass (Cf), while nitrate
nitrogen (NON), total phosphorus (TP), and quickly available
phosphorus (QAP) only had an impact on fungal community
structure (Co/Dy) (Figure 7). In contrast, ammonia nitrogen
(AON), Eh, and pH have influenced both fungal biomass and
community structure. It has been reported that nutrient elements
(e.g., C and N) greatly impact microbial biomass and commu-
nity structures in soil (Van Horn et al., 2013; Yu et al., 2013), and
formation of nitrogen (total nitrogen, ammonium nitrogen and
nitrate nitrogen) has an opposite effect on bacterial abundance in
lake sediment (Song et al., 2010). In the current study, we demon-
strated that the fungal biomass is mainly related to the total nutri-
ent content (OM and TN), while the community structure and

composition depends on the available formation of elements in
the river sediment. Moreover, the results showed that phospho-
rus has a negative effect on the fungal community organization,
which suggests that phosphorus would limit the distribution of
predominant fungi in sediment.

In summary, although the river system is self-connected and
geographically variable, our data showed that the fungal commu-
nity has clear geographical patterns in the Songhua River catch-
ment. Compared to the mainstream, the tributaries have a high
fungal community organization and culturable fungal concentra-
tion, but possess lower community dynamics. The phylogenetic
analysis of DGGE bands showed that ascomycota and basidiomy-
cota were the predominant communities in the Songhua River
catchment. Moreover, the variation of fungal community struc-
ture was primarily dependent on longitude and fungal biomass
was mainly related to the total nutrient content, while commu-
nity structure and composition were affected by the available
formation of elements in the river sediment. The results should
contribute toward a greater understanding of fungal community

distribution in a temperate zone river wetland on a catchment
scale.
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