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Abstract: Computational drug design is increasingly becom-
ing important with new and unforeseen diseases like COVID-
19. In this study, we present a new computational de novo
drug design and repurposing method and applied it to find
plausible drug candidates for the receptor binding domain
(RBD) of SARS-CoV-2 (COVID-19). Our study comprises three
steps: atom-by-atom generation of new molecules around a
receptor, structural similarity mapping to existing approved
and investigational drugs, and validation of their binding
strengths to the viral spike proteins based on rigorous all-

atom, explicit-water well-tempered metadynamics free en-
ergy calculations. By choosing the receptor binding domain
of the viral spike protein, we showed that some of our new
molecules and some of the repurposable drugs have stronger
binding to RBD than hACE2. To validate our approach, we
also calculated the free energy of hACE2 and RBD, and found
it to be in an excellent agreement with experiments. These
pool of drugs will allow strategic repurposing against COVID-
19 for a particular prevailing conditions.

Introduction

SARS-CoV-2, the cause of the COVID-19 pandemic, is a positive
strand RNA beta-coronavirus with large sequence similarities to
the SARS-CoV and BatCoV RATG13 RNA viruses.[1] Despite being
known from at least early 2019 to as far back as 2006 as found
in a report by Tang et al.,[1] the virus, seemingly incurable and
unstoppable, has grown to an enormous scale all across the
world.
Therefore, it is essential to find a cure for the virus.

Coronavirus is encapsulated by a membrane full of trimeric
spike proteins. This spike protein interacts with the peptidase
domain (PD) of the human angiotensin-converting enzyme 2
(hACE2),[2] and hence has been alluded to as a potential target
to design preventive and curative therapeutics.[3] Alternate
common targets for viruses are the Main protease (MPro) and
the Non-Structured Proteins (NSPs). For SARS-CoV-2 (Cov2), the
high resolution crystal structure of CL3 protease, also known as
MPro, was resolved recently.[4]

However, simulation studies have indicated that the
enzymatic active site of MPro is highly flexible making it less

prone to be inhibited by common viral protease inhibitors.[6]

Zhou et al.[7] mapped protein-protein interaction in a network
for proteins involved in Cov2 and came up with many other
targets to be used for drug repurposing.
The detailed structural elucidation of Cov2 and hACE2

(hACE2) interface by Shang et al.[8] shows that the spike
protein’s RBD region remains to be the most important target
for drug design for Cov2. The study identifies residues
responsible for the interaction and tagged it as receptor
binding motif (RBM). RBM is a part of a binding domain called
RBD, which again is a part of the S1 region of the spike protein,
whose entire structure was solved recently by Wrapp et al.[5]

This protein is composed of three subunits. Each of these
subunits contains a receptor binding domain (RBD). In two of
the subunits, the RBD is in the so-called ‘down’ configuration
and in one it is in the ‘up’ configuration. However, the exact
structure of the RBD complexed to hACE2 and the interactions
involved in the site were redetermined very recently by Yan
et al. by X-ray diffraction.[9]

Although the spike protein is trimeric[5] and exists in both
open and closed forms,[10] it is the RBD of the monomer that is
responsible for cellular recognition. Its movement is also
independent of the rest of the protein.[11] Figure 1a shows the
structure of the spike protein, where RBD is in the ‘up’
configuration, in contact with hACE2. Figure 1b shows the RBD
separately to highlight the interaction hotspot, i. e., RBM[8] that
serves as the hotspot for a potential inhibitor of interaction
between the spike protein and hACE2 peptidase domain.
The recent havoc created by the virus resulted in an

upsurge of studies towards a remedy.[12] Most of the computa-
tional studies employed massive-docking of the existing
molecules, sometimes with an implicit solvent-based MM-PBSA
free energy calculations.[13]
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Although docking is a quick method to sieve plausible
candidates for binding, it often fails to ascertain the correct
binding constant due to lack of water, ions, and entropic effects
resulting from the fluctuations of proteins, ligands and water
molecules.[14] Often docking studies provide a wide range of
possible lead molecules, making it difficult to choose the best
from them. Despite these pitfalls, docking remains a quick
method for finding possible repurposable drugs.[15] The most
reliable and accurate approach to estimate the binding
constant, computationally, is to calculate it from an all-atom,
explicit water simulation.[16] To the best of our knowledge, no
attempt has been made to find out the binding constants of
any of the ligands through such rigorous methods for any of

the target proteins for COVID-19. It has been, however, recently
attempted for pseudokinase domain of the JAK2 protein.[17]

The competitive inhibition by the drug will work if the RBD
binds to the drug stronger than it does to hACE2. Therefore,
estimating the binding constant accurately is essential. Using
surface plasmon resonance experiments, Shang et al. reported a
value of 44.2 nM (� 10.2 kcal/mol at 300 K) binding affinity for
the HIS-tagged RBD by covalently immobilizing the protein to
the sample substrate.[8] However, noncovalent association
methods, which underestimates the Kd, provide a lower value of
2.9 nM[10] and 1.2 nM.[10] The Kd measured by Wrapp et al. using
biolayer inferometry is 34.6 nM.[5] The above values when
converted to free energy at 300 K temperature yield a range
between � 10.3 and � 12.3 kcal/mol. We will show later that our
computational estimate of the above is very close to the above
experimental result.
Therefore, our primary aim for this study is to use a reliable

computational method to find a molecule that can bind to the
hotspot of RBD with binding free energy lower than � 10.3 kcal/
mol. For that, we have developed a de novo molecule
generation program, called ‘DeNovo’, that creates molecules
atom-by-atom in the protein’s hotspot (a defined structural
region of a biomolecule) to optimize the interaction energy
between the two. The idea of such a de novo generation stems
from the fact that the chemical space is infinite[18] and there are
molecules in our chemical space that would strongly bind to
any given receptor, if only we can find them. Although the
program is quite general and can grow molecules for any
hotspot, we apply it for the first time here to grow inhibitors for
the RBD by targeting the RBM region (Figure 1b). Our approach
will be particularly helpful for creating inhibitors where existing
drugs have already started facing resistance and a completely
new design for a drug is essential.[19] The current problem of
COVID-19, however, demands a different solution, where we
need to provide molecules worthy of immediate clinical trials.
Hence, from the several de novo molecules we generated,

we selected the top 35 and using them we found analogous
drugs from the DrugBank[20] that could be repurposed for
COVID-19 using a similarity-based mapping. We have validated
our approach by performing the computationally rigorous all-
atom, explicit water well-tempered metadynamics[21] free en-
ergy calculations for all these molecules and show that 9
molecules (4 de novo and 5 repurposed drugs) have free energy
of binding to the RBD lower than � 10.3 (the cut-off set above),
implying their highly promising potential to inhibit the viral
attack on human protein. As the benchmark, we calculated the
free energy of binding between RBD-hACE2 which is in good
agreement with experiments. Also, performing rigorous well-
tempered metadynamics simulations with multiple coordinates
helped us identify the binding mechanism of all these
molecules.
Therefore, our study provides a new, viable, and successful

approach for finding novel and repurposed drugs for COVID-19.
Our approach is general, and it has the potential to be used for
any other receptor-mediated drug design as well.

Figure 1. Molecule generation in the RBM. (a) The trimeric structure of the
S1 region of the spike protein obtained from the protein data bank with ID
6VSB;[5] RBD is shown in red and the hACE2 shown in green. The arrow
indicates the target for a new inhibitor design. (b) The magnified version of
the modelled RBD (in red) with the RBM (hotspot) shown as a mesh surface
in cyan. (c) Distribution of interaction energies with RBD for 13516 DeNovo
generated molecules. The mean and standard deviations of the fitted
Gaussian distribution is � 27.0 kcal/mol and 11.5 kcal/mol, respectively. The
cut-off (redline) is set at three standard deviations lower than the mean, i. e.,
at � 61.5 kcal/mol, the accepted range.
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Results and Discussion

A. Generation of specific binders for a receptor

Our DeNovo program (see Method) is schematically shown in
Figure S1 of the supporting information (SI). Using configura-
tional bias Monte Carlo (CBMC) approach, schematically shown
in Figure S2 of SI, we generated 13516 molecules having 10 to
50 heavy atoms to cover a broad spectrum of molecular
scaffolds. The distribution of interaction energy between the
molecule and the RBD is shown in Figure 1c. We have chosen
~0.3% of the molecules by selecting those that have interaction
energy less than a cut-off value of � 61.5 kcal/mol (Figure 1c),
set at three standard deviations lower than the mean energy
� 27 kcal/mol.
Thus, we gathered 35 molecules (see Figure S3 of SI). The

names of the molecules are chosen based on an internal criteria
of numbering. At this point, we have a set of good molecules to
work with. However, our molecule generation had a few
caveats: (1) our hotspot was rigid, (2) there were no water
molecules (the screening effect of solvent in the energy
calculation of the DeNovo method was accounted for by using
dielectric constant of 25.0), (3) and the entropy contributions
could not be taken into account.
Therefore, to calculate the exact binding free energy, to the

extent that a classical force field can provide, we have subjected
the aforementioned molecules to a state-of-the art rigorous
well-tempered[21] version of metadynamics[22] simulation as
described later.

B. Route to repurposing

As we will see later, the DeNovo generated molecules are, from
a computational point-of-view, indeed strong binders and some
of which could be candidate drugs. However, synthesis and
toxicology study for these molecules may take much longer.
Relying on the quality of binding of our de novo molecules ( as
shown later via free energy calculations) and building on the
concept of similar molecules having similar chemistry,[23] we
looked for similar molecules in the DrugBank[20] using Tanimoto
(or Jaccard)[24] similarity search which uses bitwise fragment
comparison to accurately match structures based on chemical
fragments.[25] This similarity algorithm generally preserves
relative positions of functional groups. We have chosen drugs
for each of our 35 molecules with the Tanimoto coefficient �
0.4, following the recommendation of Baldi et al. who showed
that a Tanimoto score of 0.4 is significant for a database of over
10,000 molecules.[26] This similarity search led to several drug
molecules for each of the 35 de novo molecules, listed in
Table S1 with their similarity score in brackets. After removing
the irrelevant drugs (shown in red) (see the full list and
explanation in SI), we ended up with 123 unique drugs. Given
the difficulty and time required to perform free energy
calculations for all these molecules, we docked all these drugs
to the same hotspot (Figure S4 of SI), using docking score
purely as a sieving criterion, and selected molecules with a

docking score < � 8.0 kcal/mol. This narrowed down our list to
20 potentially repurposable drugs. Figure S5 of SI shows the
chemical structures of the chosen drug molecules and their
docking scores are given in Table S2. As docking score is
empirical and varies between different softwares, we carried
out the free energy simulations of these drug molecules with
well-tempered[21] metadynamics method, as well.
Note that, several other molecules in the DrugBank data-

base could have had docking scores meeting our cut-offs had
we not applied the similarity criteria to narrow down the
chemical space of molecules similar to the ones generated by
our DeNovo program. Docking, therefore, helps us to narrow
down the number of free energy calculations by removing the
potentially weak binders.
To capture the relationships between the de novo and drug

molecules, we plot the similarity matrix of all the 55 molecules
in Figure 2. This matrix is obtained by measuring similarity-
based clustering of each pair of molecules. This matrix provides
valuable information on the structural diversity of molecules
that have led to favorable properties. We find that there are
two separate clusters, one dominated by repurposed drugs and
the other dominated by de novo molecules.
We note that the molecular similarity reflects on the

similarity in binding free energy as well. The best-binding de
novo molecules (as scored based on DeNovo’s interaction
energy) are in themselves quite similar, as are the best-binding
repurposed drugs among themselves. This is particularly
noticeable once the molecules have been mapped to their free
energies. Even though it may seem at the first glance that the
cross-similarity is less, there are marked, and sporadically
distributed regions of cross-similarity observed between the de
novo molecules and repurposed drugs, which can be attributed
to appreciable similarities in their maximal common substruc-
tures.
The left panel of Figure 2 shows the structures of some of

the best molecules along with their free energy (see discussion
below). It is reassuring that we obtained several molecules,
both from our de novo generation and repurposing strategy,
that are comparable or stronger in binding to RBD than hACE2.

C. Free Energy Surfaces of Protein-Protein and Protein-Drug
Complexes: An induced fit Mechanism

Free energy calculation with an all-atom explicit water system is
by far the most accurate, albeit expensive, estimate of binding
among various computational methods.[16] Metadynamics is an
extremely popular state-of-the-art method to calculate free
energy surface for complex systems[27] and it has been shown to
reproduce experimental observations closely.[28] Recently, at-
tempts to estimate free energy of binding was done for the
protease, albeit with an approximate method called MM/
PBSA,[29] which takes water as a continuum, thus leading to an
inaccurate estimation of entropy, and furthermore due to the
lack of accurate entropy estimation, it is also not ideally suited
for providing mechanistic insights. All-atom with explicit water
free energy calculation not only estimates the free energy more
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accurately, it also captures the mechanism of the binding. In
this study, we have performed the free energy calculations for
the huge list of 55 ligand molecules (35 are de novo and 20 are
known drug molecules). To the best of our knowledge, this
study is the first to perform the free energy calculations for the
spike protein’s interaction with hACE2 and other ligands.
Before calculating the free energy for all the 55 drugs

molecules, we validated our approach by calculating the free
energy surface for RBD and hACE2 for comparison. Starting
with the available crystal structure of the spike protein and
hACE2 (PDB id 6VSB[5]), we first selected only the RBD region,
modelled the loop region (see method), solvated the system
with water and physiological concentrations of ions and
performed multiple, long (~230 ns) well-tempered metadynam-
ics simulations against multiple collective variables such as
DISTVEC (displacement along a body-fixed vector) (Figure S6 of
SI) and native contact (Figure S7 SI) to study the binding free
energy surface of these two proteins. While native contact helps
to untangle the interactions between two proteins, DISTVEC is a
vectorial displacement coordinate that helps move the proteins
apart. These coordinates were used successfully in our previous
studies of drug intercalation[28a,30] and protein-protein
interactions.[31]

Figure 3 shows the free energy surface of RBD and hACE2,
which verifies the crystal structure configuration as the global
free energy minimum. A few snapshots of the configuration of
both proteins are shown along the unbinding pathway which
depicts that the major reason for stability is due to direct
protein-protein interaction. As soon as the proteins detach

Figure 2. Select drug molecules and similarity heatmap. (left) Two of the best DeNovo generated molecules(bottom) and two repurposed drug molecules(top)
with their calculated binding free energies (in brackets underneath each molecule). (right): the heat map of the Tanimoto similarity amongst the chosen list of
de novo and repurposed drug molecules. The hierarchical diagram also depicts the similarity between different molecules. Two clusters of de novo molecules
and drugs are clearly visible. However, cross similarities are also present.

Figure 3. Free Energy of hACE2-RBD. binding Free energy surface of RBD
(brown) binding to hACE2 (green) against two collective variables, native
contact (Nc) and DISTVEC (Å). The structures along the path of dissociation
are shown along the free energy bar diagram.
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themselves, the free energy increases. The proteins thus move
apart from each other, as reflected in the consequent increase
in DISTVEC and a significant decrease in the number of native
contacts. From this free energy surface, we estimate the binding
free energy to be � 13.3 kcal/mol, which is in close agreement
with the experimental results. A second metadynamics simu-
lation of the same system yielded free energy estimate of
� 12.7 kcal/mol making the average � 13.0 kcal/mol.
Using the same set of collective variables and starting with

either the docked configuration for repurposable drug mole-
cules or the DeNovo generated configurations for the novel
molecules, we performed metadynamics simulations for all the
55 molecules and calculated their free energy surfaces.

Figure S8 to S11 in SI show the two-dimensional free energy
surfaces (FES) of binding of all the molecules. In Figure 4, we
show the FES of three top de novo molecules and 3 top drugs.
A representative structure of the most stable configuration
obtained from the metadynamics simulation is shown either
above or below the FES of the respective molecule. Figure 4
shows that the molecules are nicely packed inside the hotspot
region.
Since each molecule behaves differently, it is not possible to

find a unifying trend in their binding mechanism. However,
most of the strong binding molecules have a narrow free
energy profile along the native contact. Once the contacts (the
short distance between the ligand and the protein) are broken,

Figure 4. Free energy surfaces (FES) of three best de novo molecules and three best repurposed drug molecules. The chemical structure and name of each
molecule are shown in the inset. The free energy bar used to plot FES is shown in the inset of 37_42. The structures of the free energy minimum of each
molecule, made using chimera,[32] are shown above/below the corresponding FES. The protein is drawn in surface representation while the drug is shown with
both stick and surface (with 80% transparency). Note the deep cavity formed by each of these molecules in the protein.
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the separation between the ligand and protein quickly
increases.
We summarize the results from our metadynamics simu-

lations of all the systems (55 molecules and hACE2) in Figure 5.
The details of the system size and the runtime are given in
Table S3 of SI. The free energies of the molecules are shown as
vertical bar, where the RBD-hACE2 free energy values (exper-
imental and computational) are shown as horizontal bars. We
provided error estimates for the free energy for the hACE2 and
some of the strong binding drug molecules by performing
multiple free energy calculations. Different experimental techni-
ques provide different estimates for the strength of hACE2
binding to the spike protein, as represented by the grey bar in
Figure 5. However, the lower limit of the interaction is
� 12.3 kcal/mol which is close to our calculated value of
� 13.0 kcal/mol. The vertical bars show the binding free energy
of 35 de novo molecules and 20 repurposed drug molecules.
We can see that at least 9 molecules touch or cross the
experimental bar indicating that RBD would bind to these
molecules comparably or stronger than hACE2. Three molecules
(47_68, danoprevir and solithromycin) supersede even the
lowest estimate of binding strength of hACE2 with RBD.
Figure 4 shows that the strong binding molecules create a

cavity within the protein. To understand this better, we
investigated the flexible loop (residues 445 to 468) around the
hotspot region. We have introduced an angle q (see Figure S12
of SI) that categorizes the configuration of the loop near the
hotspot into three distinct conformations – closed, open, and
semi-open. We calculated the distribution of q from the
metadynamics simulations for all the systems including the free
protein and hACE2 bound states. We plot the distribution for
some of the most stable ligands, free protein, and hACE2-bound
protein in Figure 6. This distribution peaks at high value (155°)
in the hACE2-bound RBD configuration, attributed to the open
configuration. The distribution is around 80° in the free state,
characterized here as the semi-open state while the distribution

for the most stable ligand bound RBD is around 60°. The loop
configurations for the other ligand-bound states lie between
the two extremes of 55° and 155° (between hACE2 and
danoprevir bound states). The q value for all the other ligand-
bound states are shown in Figure S13 of SI.
The above distribution indicates that binding of RBD to

hACE2 in contrast to the ligands discussed here generates very
different protein configurations. Therefore, we hypothesize that
upon binding of these ligands, the RBD configuration will be
different, and it will not be able to interact with the hACE2
effectively, potentially achieving the competitive inhibition.

Conclusions and Outlook

The approach to find COVID-19 therapeutics in this study relies
on receptor-based atom-by-atom drug generation and similarity
mapping to existing drugs for repurposing. We applied our
method to the receptor binding domain of the spike protein
and came up with 35 de novo molecules. From the similarity
mapping, we obtained another 20 repurposable drug mole-
cules. We validated our approach with state-of-the art
enhanced sampling method – well-tempered metadynamics
that not only provides with a comparable free energy estimate
to that of experiments, it also unearths the mechanism of
binding. To show the accuracy of our method, we calculated
the free energy of RBD and hACE2 (� 13 kcal/mol), which agreed

Figure 5. Free energy calculations. Free energy of binding for all the 35 de
novo molecules and 20 repurposed drugs to the RBD calculated using all-
atom, explicit water, well-tempered metadynamics simulations. The horizon-
tal grey bar indicates the experimental range of free energy of binding of
RBD and hACE2. The orange bar is the free energy estimate from multiple
metadynamics simulations of RBD and hACE2. Error bars, obtained using
multiple metadynamics simulations, are shown for some of the strong
binding molecules. Note that, with the RBD, many molecules bind
comparably or stronger than hACE2.

Figure 6. Mechanism of binding hints at competitive inhibition. Distribution
of loop configuration in terms of the angle between the red and green
vectors (see Figure S11 of SI) from the metadynamics simulation. The top
panel shows three categories of loop configurations: open, semi open, and
closed states. Representative images of the most stable ligand-bound states
are shown where the structures are arranged from open to closed
configurations in clockwise fashion. Note that, while free protein belongs to
the semi open configuration, the hACE2-bound and danoprevir (and 47_68)-
bound RBD lie in the two extremes – open and closed states, respectively.
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well with experimental value � 12.3 kcal/mol. The same protocol
was applied to all the 55 molecules (each with more than
100 ns of simulations) to obtain their free energy of binding to
RBD. Out of these, we obtained 21 molecules with free energy
less than � 9 kcal/mol, indicating the success of our approach.
Moreover, at least four de novo molecules and five repurposed
drug molecules bind to RBD at comparable or higher strength
than the hACE2. This implies that these molecules could in
principle inhibit the interaction of the RBD with hACE2 and
prevent the viral attack on the human cell.

Methods

DeNovo: The atom-by-atom synthesis of a strong binder

Here we describe our algorithm of de novo atom-by-atom
construction of molecules in the hotspot of a receptor. The
algorithm is based on the fact that any molecule can be
represented as a graph where nodes are atoms and the bonds are
edges. The first evidence of graph representation of the molecules
dates back to 1867 by Kekule. Recently, a graph-based algorithm
was used to create 166 billion molecules in vacuum from only 17
atoms[33] of C, N, O, S, and halogens, which reinforces the fact that
the chemical space is infinite and therefore it is possible to get
multiple strong binders for each hotspot.

We, however, grow the molecules in the protein hotspot from the
similar set of atoms (C, N, O, S, etc.). The classical nonbonding
interaction energy (both van der Waals and electrostatic) between
the drug and the hotspot is calculated using CHARMM27[34] force
field at each stage and the generation proceeds following an
algorithm similar to that of the configuration bias Monte Carlo
(CBMC)[35] (see Figure S1 and S2 and corresponding discussion in
SI). Prior to molecular generation, the incomplete residues were
completed using xleap of AMBERTools[36] and the missing residues
of the protein were modelled by Modeller 9.21.[37] We targeted a
prefixed atom number for the molecule and tried to improve the
interaction of the molecule using CBMC criteria. This way, we
obtained molecules having between 10 to 50 heavy atoms. Unlike
in CBMC, our molecule is made of many different atoms. We used
geometric criteria (equilibrium distance and angles) for the
formation of rings. Finally, when a molecule reaches the desired
number of atoms, we use CBMC criteria to accept it with reference
to the previously generated molecule. We repeat this protocol
several times until we have the required number of molecules. The
program is fully CPU-parallelized and runs efficiently over several
cores (here we used 48 cores for our molecule generation).

Similarity Measurement

We have chosen all de novo generated molecules that interact with
the protein with energy lower than our cut-off � 61.5 kcal/mol (see
Figure 2). Subsequently, we performed a similarity search using the
DrugBank[20] search engine employing Tanimoto algorithm.[38] All
approved and investigational drug molecules with similarity above
0.4, a cutoff based on the studies of Baldi et al.,[26] were considered.
Table S1 of SI lists all the drug molecules for each of the 35 de
novo molecules that match the criterion.

Docking of the matched drugs

Based on the similarity measurement, we came up with a list of 123
unique drug molecules from our 35 de novo molecules. We then

docked these drug molecules to the hotspot using AutoDock Vina
version 1.1.2.[39] A box centered around SER443 is created with
dimensions 36.7 Å×26.1 Å×40.9 Å and default vina parameters.
The docking setup is shown pictorially in Figure S4 of SI. The
docking scores for all these molecules are shown in bracket in
Table S1. The drug molecules with docking score less than
� 8.0 kcal/mol were considered for free energy calculations.

Force Field Generation

All drug molecules were optimized using HF (Hartree Fock) theory
with 6–31G* basis set using Gaussian 09 software.[40] Thereafter,
antechamber[41] was used for the RESP charge calculation and
generation of force field for the molecules. The topology and
coordinates were then converted into the GROMACS format by
using a python script acpype.py (available at https://github.com/t-/
acpype).

System Setup for Simulation

The starting structure of the SARS-CoV-2 spike glycoprotein (PDB
ID: 6VSB) was obtained from the Protein Data Bank. Modeller 9.21[37]

was used for modeling the missing residues, which predicted five
three-dimensional structural forms using chain A of protein as the
template. The best possible structure was predicted considering the
DOPE (Discrete Optimized Protein Energy) score.[42] All of the
simulations were performed using molecular dynamics software
GROMACS 2019.6.[43] For the study of the protein-ligand complex,
we only considered the RBD region of the protein (residues 302 to
506) and topology was prepared using AMBER99SB force field.[44]

Each complex system was solvated by ~23000 TIP3P[45] water
molecules in a box of dimensions 70×70×180 Å3. The physiological
concentration (150 mM) of Na+ and Cl� ions along with extra Cl�

ion were used to neutralize the system.

Equilibration and Simulation

Initially each system was energy minimized using steepest descent
method[46] for 10000 steps, followed by heating it to 300 K in 200 ps
using Berendsen thermostat and barostat[47] with coupling constant
of 0.6 ps. Restraints of 25 kcal/mol/Å2 were applied on heavy atoms
during the heating process. Thereafter, equilibration was carried
out for 2 ns at constant temperature (300 K) and pressure (1 bar)
without any restraints using same thermostat and barostat with
coupling constants of 0.2 ps each. The last 100 ps of NPT simulation
was used to calculate the average volume the same, which was
used in the final 5 ns unrestrained NVT equilibration using the
Nosé-Hoover thermostat[48] with coupling constant of 0.2 ps. During
the simulation, LINCS algorithm[49] was used to constrain all the
bonds and Particle Mesh Ewald (PME) method[50] was used for
electrostatics. The distance cut-offs for the van der Waals (vdW) and
electrostatic long-range interaction was kept at 10 Å. The time step
for each simulation was taken to be 2 fs.

Free energy calculation using Metadynamics

The equilibrated ligand-bound protein structure was initially
simulated for 5 ns. If the ligand was found to be bound after 5 ns
simulation, we subjected the system to free energy calculation. To
calculate the binding free energy of drugs, well-tempered
metadynamics[21] simulations were performed after equilibration
using DISTVEC and native contacts as collective variables (see SI for
full description). We performed long (~100 ns) metadynamics
simulation with a hill height of 0.2 kJ/mol, a bias factor of 10, and a
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hills deposition rate of 2 ps. Gaussian widths for DISTVEC and native
contacts were taken to be 0.6 Å and 5, respectively. An upper wall
restraint was applied at 45° on the angle between two vectors bb
and ~d, as shown in Figure S6 of SI. For free-energy calculations,
PLUMED 2.6[51] was used along with GROMACS. The system size and
run lengths of all the systems are provided in the Table S3 of SI.

Supporting Information

DeNovo algorithmic flow charts, schematic CBMC profile, image
containing all the selected de novo molecules, table showing list of
similar drugs, image showing docking region, table of docking
scores for selected drugs, table for docking variations, image of all
the selected drug molecules, definition and picture of the collective
variables used, table showing system size and other information for
all the systems, and free energy surfaces of binding to RBD for all
the 55 molecules.
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