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Abstract

Background: Human early growth response-1 (EGR1) is a member of the zing-finger family of transcription factors induced
by a range of molecular and environmental stimuli including epidermal growth factor (EGF). In a recently published paper
we demonstrated that integrin/EGFR cross-talk was required for Egr1 expression through activation of the Erk1/2 and PI3K/
Akt/Forkhead pathways. EGR1 activity and stability can be influenced by many different post-translational modifications
such as acetylation, phosphorylation, ubiquitination and the recently discovered sumoylation. The aim of this work was to
assess the influence of sumoylation on EGF induced Egr1 expression and/or stability.

Methods: We modulated the expression of proteins involved in the sumoylation process in ECV304 cells by transient
transfection and evaluated Egr1 expression in response to EGF treatment at mRNA and protein levels.

Results: We demonstrated that in ECV304 cells Egr1 was transiently induced upon EGF treatment and a fraction of the
endogenous protein was sumoylated. Moreover, SUMO-1/Ubc9 over-expression stabilized EGF induced ERK1/2
phosphorylation and increased Egr1 gene transcription. Conversely, in SUMO-1/Ubc9 transfected cells, EGR1 protein levels
were strongly reduced. Data obtained from protein expression and ubiquitination analysis, in the presence of the
proteasome inhibitor MG132, suggested that upon EGF stimuli EGR1 sumoylation enhanced its turnover, increasing
ubiquitination and proteasome mediated degradation.

Conclusions: Here we demonstrate that SUMO-1 modification improving EGR1 ubiquitination is involved in the modulation
of its stability upon EGF mediated induction.
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Introduction

Human early growth response-1 (EGR1, also known as NGFI-

A, Zif268, Krox24 and Tis8) is the prototypical member of a zinc

finger transcription factors family that includes at least three other

members (EGR2, -3 and -4) [1,2]. EGR1 contains a highly

conserved DNA-binding domain which recognizes the sequence 5-

GCGKGGGCG-39, a nuclear localization signal, two activator

domains and a repressor domain [3]. EGR1 function is negatively

regulated by NAB-1 and NAB-2 through specific protein–protein

interactions via its repressor domain [4,5]. Egr1 is induced by a

range of molecular and environmental stimuli including growth

factors, cytokines, ultraviolet light, ionizing radiation, mechanical

injury and fluid biomechanical forces [6-11].

EGR1 is involved in the formation of multi-molecular

complexes that mediate transcriptional activation or repression

of target genes that are involved in the control of cell proliferation

and differentiation [12]. Up-regulation of Egr1 expression may

result in apparently contradictory activities including mitogenesis,

differentiation, tumor suppression, apoptosis, and protection from

apoptosis [13,14]. It was suggested that EGR1 exerts its activity by

modulating the expression of different genes involved in different

pathways. EGR1 regulates the insulin-like growth factor-II (IGF-

II), platelet-derived growth factor-A (PDGF-A) and platelet-

derived growth factor-B (PDGF-B) genes, which are known to

be involved in cell proliferation [15,16]; BCL-2, fibronectin, and

nuclear factor-B, which are associated with survival and cell

differentiation [17,18]; as well as p53, PTEN, and tumor necrosis

factor-alpha (TNFa) which are involved in apoptosis [19–21].

Additional relevant targets are VEGF and tissue factor, which are

associated with tumor progression, and p57/KIP2 and TGFb1,

which induce growth inhibition in a cell type– dependent manner

[22–24]. Although its induction is generally transient and greatly

dependent on the nature of the various inducers, it appears to be

sustained in a high proportion of prostate cancer cell lines and

tumors, suggesting that EGR1 stimulates tumor cell growth in

certain types of cancer [25,26]. Indeed, Egr1 over expression

promotes growth in several systems, including kidney and

endothelial cells. In contrast, in breast, lung, and brain tumors,

Egr1 is down-regulated and when re-expressed results in growth
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suppression and apoptosis [27,28]. EGR1 is also observed to be

required for differentiation and apoptosis in normal and tumor

cells; on the basis of these observations, it seems that EGR1 lies at

a convergence point and its effects depend on the signals

transduced and on the cell context.

Moreover different types of post-translational modifications

such as phosphorylation, acetylation and ubiquination have been

described to regulate the transcriptional activity and the stability of

the EGR1 protein (Fig. 1) [29,30].The acetylation of EGR1,

promotes complex formation with p300-CBP that is inhibitory for

transcriptional activity of EGR1. It seems that EGR1 acetylation

occurs under conditions of low Egr1 induction [31]. In contrast,

strong induction of Egr1 by UV irradiations or growth factor

stimuli results in a phosphorylation of the induced EGR1 protein

[32]. The nature of the post-translational modifications of EGR1

(acetylation or phosphorylation) likely plays a role in the choice of

target genes as well as in the effect of EGR1 on the transcription of

these genes. More recently, it has been described a novel Akt-Egr-

1-alternate reading frame (ARF)-PTEN axis, in which PTEN

activation in vivo requires ARF-mediated sumoylation of EGR1.

This modification is dependent on the phosphorylation of EGR1

at S350 and T309 by Akt, which promotes the interaction of

EGR1 with ARF [33]. Sumoylation is a post-translational protein

modification leading to the attachment of SUMO (Small-

Ubiquitin–like Modifier) to specific lysine residues of target

proteins, mainly nuclear proteins. The mechanisms involved in

maturation and transfer of SUMO to target substrates are very

similar to that seen for ubiquitination and other ubiquitin-like

proteins but, differently from ubiquitination, sumoylation alters a

number of different functional parameters such as: sub cellular

localization, protein partnering, DNA binding and trans-activation

functions of transcription factors [34–36]. Contrary to the long-

standing assumption that SUMO has no role in proteolytic

targeting and rather acts as an antagonist of ubiquitin in some

cases, it has recently been discovered that sumoylation itself can

function as a secondary signal mediating ubiquitin-dependent

degradation by the proteasome. Here we show that EGR1 is

conjugated to SUMO-1 in vivo in response to EGF. We also show

that sumoylation enhance EGR1 turnover, increasing its ubiqui-

tination and proteasome mediated degradation.

Results

EGF treatment induces Egr1 transient expression in
ECV304 cells

In a recently published paper we demonstrated that integrin/

EGFR cross-talk, through activation of the PI3K/Akt/Forkhead

pathway, is required for induction of Egr1 expression in ECV304

cells [37]. Here we show that in adherent cells Egr1 is transiently

induced in response to EGF with a peak of induction at 1 hour of

treatment (Fig. 2A). Experiments performed in the presence of

cycloheximide confirmed that EGR1 is newly synthesized in

response to EGF (Fig. 2B). As demonstrated by the use of the

specific inhibitors UO126 and wortmannin, both activated ERK

1/2 MAPK and PI3K/Akt signal transduction pathways, are

required for EGF induced Egr1 expression (Fig. 2C).

EGR1 is sumoylated and ubiquitinated in response to EGF
It has been recently demonstrated that EGR1 can be

sumoylated upon phosphorylation by Akt [32]. In order to verify

if EGF treatment induced EGR1 sumoylation in vivo, we treated

ECV304 cells with EGF for 60 minutes to induce Egr1 expression

and then performed immunoprecipitation experiments with

EGR1 specific antibodies. Immunoblot analysis with anti EGR1

antibodies evidenced two bands: one corresponding to the

endogenous EGR1 (80 kD) and a mild higher-molecular-weight

band (90 kD) corresponding to sumoylated EGR1 (Fig. 3A left

panel). We confirmed that the higher-molecular-weight band

corresponded to sumoylated EGR1 by immunoblot experiments

on EGR1 immunoprecipitates with an anti SUMO-1 specific

antibody (Fig. 3A right panel). We better evidenced the

sumoylated form of EGR1 adding 100 mM N-ethylmaleimide

(NEM), a specific inhibitor of SUMO proteases, to cell treated 30

minutes with EGF. Again, immunoprecipitation experiments

allowed to evidence the sumoylated form of EGR1 (Fig. 3B).

Moreover, by immunoblot analysis of EGR1 immunoprecipitates

with anti EGR1 and anti-K48 ubiquitin antibodies, we demon-

strated that upon 30 minutes of incubation with EGF, EGR1 is

prevalently sumoylated, while upon 60 minutes of treatment

EGR1 is prevalently poly-ubiquitinated (Fig. 3C). Finally, we

demonstrated that sumoylation is a dynamic process that favors

EGR1 ubiquitination, in fact, when we treated ECV304 cells for

different times with EGF in the absence or in the presence of

100 mM NEM we evidenced by immunoblot analysis that there

was a time dependent increase in the sumoylated form of EGR1

without protein degradation (Fig. 3D).

SUMO1/Ubc9 over-expression affects Egr1 expression
In order to verify the effects of sumoylation on Egr1 expression

we transiently transfected ECV304 cells with different dose of

SUMO-1 and Ubc9 expression vectors ranging from 1 to 10 mM

and after 1 hour of EGF treatment we performed Western blot

analysis. The result shown in Figure 4A evidences that EGF

induced EGR1 protein levels decreased proportionally to the

amounts of transfected vectors. Moreover, transient transfection

with an equal dose of plasmid coding for SUMO2/3 paralogs did

not alter EGR1 expression upon EGF treatment, indicating the

specificity of SUMO-1 in EGR1 modification (Fig. 4B). Instead,

transient transfection with the de-sumoylase Senp1 resulted in an

increased expression of basal and EGF induced Egr1 (Fig. 4C). No

significant variations in Egr1 expression were observed using a non

conjugable form of SUMO-1 lacking gg (data not shown). To

investigate whether sumoylation could affect EGR1 localization,

we over-expressed SUMO-1 and Ubc9 in ECV304 cells. After 30

Figure 1. Scheme of EGR1 post-translational modifications.
doi:10.1371/journal.pone.0025676.g001

Sumoylation Affects EGF Induced EGR1 Expression
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or 60 min of EGF stimuli, we lysed cells and isolated the nuclear

and the cytosolic fractions. Immunoblot analysis showed that after

60 minutes of EGF treatment, EGR1 protein levels were

consistently reduced inside the nucleus while a slight increase

was shown at 30 min in the cytoplasm of transfected cells (Fig. 4D).

SUMO1/Ubc9 over-expression induces Egr1 gene
transcription

In order to verify if the decreased EGR1 protein levels, observed

upon SUMO-1/Ubc9 transfection, were due to the modulation of

the Egr1 transcription or to an increased degradation of the

protein, we measured Egr1 mRNA levels by quantitative RT-

PCR. We transiently transfected ECV304 cells with SUMO-1 and

Ubc9 expression vectors and analyzed Egr1 mRNA levels at

different times of EGF stimuli. Surprisingly, EGF induced Egr1

Figure 2. Egr1 is transiently induced in ECV304 cells in
response to EGF treatment. (A) ECV304 cells were treated for 30,
60 and 120 minutes with 10 ng/ml EGF. Lysates were immunoblotted
with polyclonal antibody to EGR1 and, after stripping, with anti tubulin
antibody to assess equal loading. (B) ECV304 cells were treated for 60
minutes with 10 ng/ml EGF in the absence or in the presence of 20 mM
cycloheximide. Lysates were immunoblotted with polyclonal antibody
to EGR1 and, after stripping, with anti tubulin antibody to assess equal
loading. (C) ECV304 cells were treated for 60 minutes with 10 ng/ml EGF
in the absence or in the presence of UO126 or wortmannin. Lysates
were immunoblotted with polyclonal antibody to EGR1, phospho-ERK
1/2, ERK 1/2, phospho-AKT and AKT. All experiments are representative
of three independent.
doi:10.1371/journal.pone.0025676.g002

Figure 3. EGR1 induced by EGF is sumoylated and ubiquiti-
nated in vivo. (A) ECV304 cells were treated for 1 hour with 10 ng/ml
EGF to induce Egr1 expression. Lysates were immunoprecipitated with
polyclonal antibody to EGR1 and immunoblotted with anti EGR1 and,
after stripping, with anti SUMO-1 antibodies. (B) ECV304 cells were
treated 1 hour with 10 ng/ml EGF in the absence or in the presence of
100 mM NEM and lysates obtained were immunoprecipitated with a
polyclonal antibodies to EGR1 and immunoblotted with antibodies anti
EGR1. The arrows indicate bands corresponding to EGR1 and EGR1 plus
SUMO-1. (C) ECV304 cells were treated for 15, 30 or 60 minutes with
10 ng/ml EGF. Lysates were immunoprecipitated with polyclonal
antibody to EGR1 and immunoblotted with anti EGR1 and, after
stripping, with anti K48 ubiquitin antibodies. (D) ECV304 cells were
treated for different times with 10 ng/ml EGF in the absence or in the
presence of 100 mM NEM and lysates obtained were resolved by SDS-
PAGE and analyzed by Western blot with antibodies against EGR1 and
tubulin. All experiments are representative of three independent.
doi:10.1371/journal.pone.0025676.g003

Sumoylation Affects EGF Induced EGR1 Expression
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mRNA levels resulted significantly increased in transfected cells,

while the kinetic of induction remained unaltered (Fig. 5A). To

confirm these data, we transiently co-transfected ECV304 cells

with an Egr1 promoter-luciferase (Fig. 5B), renilla, SUMO-1 and

Ubc9 expression vectors. After 8 h of EGF stimulus we measured

Egr1 promoter activity by luciferase assay and results indicated

that EGF induced Egr1 promoter activity resulted increased in

SUMO-1/Ubc9 transfected cells (Fig. 5C).

SUMO-1/Ubc9 over-expression stabilize EGF induced ERK
1/2 activation

To investigate if SUMO-1 could modulate the ERK/MAPK or

the PI3K/Akt pathways, both involved in the control of Egr1

expression, we transiently transfected ECV304 cells with SUMO-1

and Ubc9 expression vectors, treated cells with EGF for different

times and performed Western blot analysis with specific antibodies

for phospho-proteins. Results revealed that in transfected cells

there was a slight decrease in EGF induced AKT phosphorylation,

while ERK 1/2 and consequently Elk1 phosphorylation resulted

increased and more stable up to 60 minutes (Fig. 6A). On the basis

of these observations, we decided to investigate if stabilization of

activated ERK 1/2 could be due to a deficit in DUSP6

phosphatase induction. We performed semi-quantitative RT-

PCR experiments in ECV304 cells transiently transfected with

SUMO-1 and Ubc9 expression vectors and analyzed Dusp6

mRNA levels at different times of EGF stimuli. As shown in

Figure 6B while in control cells Dusp6 expression increased upon

60 minutes of EGF treatment, this increase was not detectable in

transfected cells.

SUMO-1/Ubc9 over-expression enhances EGF induced
EGR1 ubiquitination and its proteasome mediated
degradation

To investigate the role of sumoylation in the control of EGR1

protein stability, we transiently transfected cells with SUMO-1/

Ubc9 expression vectors and in the presence of cycloheximide we

treated cells with EGF for different times. Immunoblot analysis

evidenced an increased degradation of EGR1 in transfected cells

(Fig. 7A). Moreover, in mock or transfected with SUMO-1/Ubc9

expression vectors cells, treated 1 hour with EGF, we performed

immunoprecipitation experiments with anti-EGR1 specific anti-

bodies in the presence of the proteasome inhibitor MG132.

Immunoblot analysis with anti-Ubiquitin antibodies evidenced

that SUMO-1 over-expression enhanced EGR1 ubiquitination

upon EGF treatment. These data confirmed that sumoylation

increases EGR1 ubiquitination probably enhancing its degrada-

tion (Fig. 7B).

In order to verify if sumoylation was involved in the proteasome

mediated EGR1 degradation we transiently transfected ECV304

cells with SUMO-1 and Ubc9 expression vectors and treated cells

with the specific proteasome inhibitor, MG132. After 30 and 60

minutes of EGF treatment in the absence or in the presence of

MG132 we performed Western blot analysis. Results show that

transfected cells expressed reduced levels of EGR1 induced by

EGF, levels that were increased upon the addiction of MG132.

These data suggest that SUMO-1 and Ubc9 promote EGR1

ubiquitination and its proteasome mediated degradation (Fig. 7C).

Discussion

EGR1 is a short-lived protein, but the mechanism that regulates

its stability has not yet been clarified. Modifications that affect

Egr1 expression or stability could significantly impact growth

factor regulated gene expression and small changes in Egr1

expression levels can have significant impact on cells survival and

proliferation of different tumor cell lines.

Figure 4. EGF induced Egr1 expression is reduced by SUMO-1
over expression. (A) ECV304 cells were transiently transfected with
different doses of SUMO-1/Ubc9 expression vectors and, after 24 hours,
treated for 1 hour with 10 ng/ml EGF. Cell lysates were subjected to
Western blot analysis with anti EGR1 and, after stripping, with anti
tubulin antibodies as loading control and anti-HA, as control of
transfection. (B) ECV304 cells were treated with 10 ng/ml of EGF for
1 hour after 24 hours of transfection with SUMO-1 or SUMO 2/3 and
Ubc9 expression vectors. Cell lysates were subjected to Western blot
analysis with anti EGR1 antibodies. Western blot with tubulin was used
as a loading control and anti-HA as control of transfection. (C) ECV304
cells were treated with 10 ng/ml of EGF for 1 hour after 24 hours of
transfection with Senp1 expression vector. Cell lysates were subjected
to Western blot analysis with anti EGR1 antibody. Western blot with
tubulin was used as a loading control and anti-Flag as control of
transfection. (D) ECV304 cells were transfected with SUMO-1-HA and
Ubc9 expression vectors; 24 hours later, cells were treated with EGF
10 ng/ml for 1 hour and processed for nuclear (N)/cytoplasmic (C)
fractionation as described in Materials and Methods. A 50-mg sample of
each fraction was resolved by SDS-PAGE and analyzed by Western
blotting with antibodies against EGR1, lamin as the nuclear marker and
tubulin as the cytoplasmic marker. All experiments are representative of
three independent.
doi:10.1371/journal.pone.0025676.g004

Sumoylation Affects EGF Induced EGR1 Expression
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Previous studies revealed that both the EGR1 DNA binding

ability and the transcriptional activity may be influenced by post-

translational modifications, such as phosphorylation, glycosylation,

and acetylation [29–30].

In addiction to these modifications, in a recently published paper

it has been described that EGR1 can be sumoylated. Authors

indicated that this post-translational modification was dependent on

the phosphorylation of EGR1 by AKT, which promoted interaction

Figure 5. Egr1 gene transcription is transiently induced by SUMO-1 over-expression. (A) ECV304 cells were transiently co-transfected with
SUMO-1 and Ubc9 expression vectors. 24 hours after transfection, cells were treated with EGF 10 ng/ml for the indicated times to induce Egr1
transcription. Total cellular RNA was extracted and subjected to RT-PCR in which 18s RNA was used as a control. (B) An Egr1-luciferase reporter
plasmid (Egr luc 1.2 plasmid) was transfected in ECV304 cells together with Ubc9 and SUMO-1 expression vectors, as indicated. A constitutively
expressing Renilla luciferase (pRL-CMV) plasmid was included as a control of transfection efficiency. Egr1 promoter trans-activation was measured by
a dual luciferase assay (lower panel). (C) Schematic representation of Egr1 promoter. All data are represented as means 6 SD of three independent
experiments.
doi:10.1371/journal.pone.0025676.g005

Sumoylation Affects EGF Induced EGR1 Expression
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Figure 6. EGF induced ERK1/2 phosphorylation is stabilized by SUMO-1 over expression. (A) ECV304 cells transiently transfected with
empty vector or SUMO-1-HA and Ubc9 expression vectors were treated for 15, 30 and 60 minutes with 10 ng/ml EGF. Cell extracts were prepared,
resolved by SDS-PAGE and immunoblotted with antibodies anti EGR1 phospho-AKT, AKT, phospho-ERK 1/2, ERK 1/2, phospho-ELK1, ELK 1. Filters
were probed with anti-tubulin antibody, to verify equal sample loading, and anti-HA antibody, as control of transfection. (B) ECV 304 cells transiently
transfected with empty vector or SUMO-1-HA and Ubc9 plasmids were treated for 30 and 60 minutes with 10 ng/ml EGF. Total RNA was extracted
and a semi-quantitative RT-PCR was performed in order to analyze Dusp6 expression; 28S was used as housekeeping gene. All experiments are
representative of three independent.
doi:10.1371/journal.pone.0025676.g006

Sumoylation Affects EGF Induced EGR1 Expression
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with ARF and modulated PTEN synthesis creating a negative

feedback regulation by PTEN on its own synthesis through PI3

kinase inhibition. Lysine 272 of EGR1 was required for EGR1

sumoylation by the Ubc9/SUMO-1/ARF system [32].

The small ubiquitin-related modifier (SUMO) is a versatile

cellular tool to modulate proteins localization and functions.

SUMO modification is a reversible process analogous to

ubiquitynation. The consecutive actions of E1, E2 and E3

enzymes catalyze the attachment of SUMO to target proteins,

while de-conjugation is promoted by SUMO specific proteases.

Contrary to the long-standing assumption that SUMO has no role

in proteolytic targeting and rather acts as an antagonist of

ubiquitin in some cases, it has recently been discovered that

sumoylation itself can function as a secondary signal mediating

ubiquitin-dependent degradation by the proteasome. The discov-

ery of a novel family of RING finger ubiquitin ligases bearing

SUMO interaction motifs implicated the ubiquitin system in the

control of SUMO modified proteins. SUMO modification as a

signal for degradation is conserved in eukaryotes and ubiquitin

ligases that specifically recognize SUMO-modified proteins have

been discovered in species ranging from yeasts to humans [36].

In the present work we describe that in ECV304 cells upon EGF

stimuli Egr1 is transiently induced and a fraction of endogenous

EGR1 is sumoylated, ubiquitinated and, therefore, degraded.

In an attempt to understand the biological relevance of the

sumoylation process on Egr1 transcription and/or translation in

response to EGF stimuli, we performed experiments in ECV304

cells transiently transfected with proteins involved in this process

i.e SUMO1, SUMO 2/3, Ubc9 and Senp1. Data obtained by RT-

PCR and luciferase assays in EGF treated ECV304 cells revealed

that over-expression of SUMO-1 resulted in a significant up-

regulation of Egr1 mRNA levels. We did not deeply characterize

the mechanism but we hypotyzed that SUMO-1 over-expression

induced an increase and stabilization in ERK 1/2 activity that in

turn activate ELK-1 mediated transcription. Moreover, our

preliminary data suggest that ERK 1/2 increased phosphorylation

could be attributable to a deficit in Dusp6 induction, probably

caused by sumoylation dependent repression of Ets-1 transcrip-

tional activity. Moreover a reduction in EGR1 protein levels could

abolish a negative feedback control on its own promoter. In fact by

chromatin IP experiments that we performed in our cell model

(data not shown) we know that upon EGF treatment EGR1 is

detached and more pELK-1 is bound to Egr1 promoter.

Moreover, it must be considered that the activity of different

transcription factors that bind Egr1 promoter, such as NCoR,

p300, CREB and ELK-1, is modulated by sumoylation.

It is well known that upon serum and EGF stimuli EGR1 localize

into the nucleus where it is involved in the regulation of gene

expression. Although sumoylation can alter intracellular localization

of target proteins, we found a general reduction but not a significant

change in EGR1 localization in cells that over-expressed SUMO-1;

in fact, in contrast with mRNA expression data, western blot

analysis showed that in ECV304 over-expressing SUMO-1 cells

EGR1 protein levels were significantly reduced. A recent study

reports, by yeast two-hybrid screening, that EGR1 binds C8

proteasome subunit and that EGR1 protein is targeted for

proteolysis by the ubiquitin-dependent proteasome pathway. In

order to verify if sumoylation is involved in the proteasome

mediated EGR1 degradation we performed Western blot analysis in

ECV304 cells in the presence of the specific proteasome inhibitor

MG-132. We observed that in SUMO-1 over-expressing cells, EGF

induced EGR1 protein levels returned to be comparable to the

controls in the presence of MG-132.

In this study, several lines of evidence support the notion that

sumoylation of EGR1 might be involved in the protein stability, into

the control of its turnover and in its proteasome-mediated degradation.

Materials and Methods

Reagents and antibodies
Polyclonal antibodies to EGR1 and ERK 1/2 were obtained

from Santa Cruz Biotechnology (Santa Cruz, CA). Monoclonal

Figure 7. SUMO-1 expression induces EGR1 ubiquitination and
proteosome mediated degradation. (A) ECV304 cells were
transiently co-transfected with SUMO-1 and Ubc9 expression vectors.
24 hours after transfection, cells were treated with EGF 10 ng/ml for the
indicated times in the presence of 20 mM cycloheximide. Cell extracts
were prepared, resolved by SDS-PAGE and immunoblotted with
antibodies anti EGR1 and tubulin for equal loading. (B) ECV304 cells
were transiently transfected with SUMO-1 and Ubc9 expression vectors
and treated for 1 hour with 10 ng/ml EGF. Lysates were immunopre-
cipitated with polyclonal antibody to EGR1, immunoblotted with anti
K48 ubiquitin and, after stripping, with anti EGR1 antibodies. (C) ECV304
cells were transfected with SUMO-1/Ubc9 expression vectors,. 24 hours
after transfection cells were pre-treated with MG132 (10 mM, lanes 4, 5
and 6) or vehicle (DMSO, lane 1, 2 and 3) for 20 minutes and, then,
treated with EGF 10 ng/ml for 30 and 60 minutes to induce Egr1 in the
presence of MG132. The protein extracts were analyzed by Western-blot
using antibodies against EGR1 or tubulin as loading control. All
experiments are representative of three independent.
doi:10.1371/journal.pone.0025676.g007

Sumoylation Affects EGF Induced EGR1 Expression
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antibodies to AKT and polyclonal antibodies to phospho-p42/p44

ERK (Thr202/Tyr204) were purchased from Upstate Biotech.

Monoclonal antibodies to SUMO-1 and Ubiquitin were pur-

chased from Zymed (San Francisco, CA). Monoclonal antibodies

to Lamin and Tubulin, anti FLAG, conjugated secondary

antibodies human, recombinant EGF, wortmannin, UO126 and

MG-132 were obtained from Sigma-Aldrich (St. Louis, MO).

Monoclonal antibody to HA epitope was purchased from Roche

Applied Science. Protein A-Sepharose, PVDF and nitrocellulose

membranes were from Amersham Biosciences (Piscataway, NJ);

ECL reagents were from Biorad. Culture media, sera and the

Lipofectamine2000 reagent were from Invitrogen (Carlsbad, CA).

Plasmids
Plasmids pHA-Sumo-1, pHA-Sumo-1-D6, and pHA-Ubc9 were

kindly provided by Dott. L. Collavin, Trieste University, Italy.

Plasmid pLUC-Egr-1,1.2 was kindly provided from Prof. G. Thiel,

Homburg University, Germany. Flag-Senp-1 and Sra-HA-Sumo-

2 plasmids were from Addgene.

Cell culture and transfection
Human ECV304 endothelial cell line was purchased from

ATCC (ATCCH CRL-1998) and grown in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% heat-inactivat-

ed fetal calf serum (FCS) and penicillin/streptomycin (100 U/ml

and 100 mg/ml, respectively) at 37uC in a 5% CO2 atmosphere.

Before treatments with EGF cells were starved over night in serum

free medium. ECV304 cells grown to 80% confluence in 100 mm

tissue culture dishes were transiently transfected by the Lipofecta-

mine2000 reagent as described by the manufacturer.

Cell lysis, immunoprecipitation and Western blotting
Cells were extracted with RIPA buffer (0.5% Triton x-100,

0.5% NP40, 150 mM NaCl, 50 mM Tris-HCl pH 7.8, 5 mM

EDTA, 0.4 mM Na3VO4, 0.1% sodium deoxycholate, 20 mM

NEM, 10 mg/ml leupeptin, 4 mg/ml pepstatin and 0.1 unit/ml

aprotinin). Cell lysates were centrifuged at 13.000 x g for 10

minutes and the supernatants were collected and assayed for

protein concentration with the Bio-Rad protein assay method

(Bio-Rad, Hercules, CA). Proteins were run on SDS-PAGE under

reducing conditions. Cell fractionation was performed according

the protocol described by Scheiber et al. [38]. For immunopre-

cipitation experiments, proteins were incubated with the appro-

priate antibody for 1 hour at 4uC as previously described [39] in

the presence of 30 ml protein A-Sepharose beads. Protein A-

Sepharose beads were then added to 3 mg of protein cell extract to

collect immunoprecipitates. The beads were washed three times

with 1 ml of Tris buffered saline, 0.5% Triton X-100 and once

with 1 ml of Tris-buffered saline, 0.5% Triton X-100, 0.1% SDS

and the immunoprecipitates were eluted by boiling the beads in

2X Laemmli sample buffer for 5 minutes. The immunoprecipitates

were resolved on 6% or 8% SDS-polyacrylamide gel and

transferred onto nitrocellulose for immunoblotting, reacted with

specific antibodies, and then detected with peroxidase-conjugated

secondary antibodies and enhanced chemiluminescence reagents.

When appropriate, the nitrocellulose membranes were stripped

according to manufacturer’s recommendations and reprobed.

Densitometric analysis was performed using the GS 250 Molecular

Imager (Bio-Rad). For ubiquitin detection, proteins were trans-

ferred on a PVDF (polyvinylidene fluoride) membrane, previously

activated by incubation in 100% methanol for 5 minutes at room

temperature. After transfer, filters were subjected to a treatment in

denaturing solution for 30 minutes at 4uC (6 M guanidium

chloride, 20 mM Tris pH 7.5, 1 mM PMSF and 5 mM b-

mercaptoethanol). After extensive washing in TBS-T buffer (TBS

Tween 0,1%), filters were blocked overnight at 4uC in 5% BSA

(dissolved in TBS-T). After blocking, filters are incubated with the

P4D1 antibody (Santa Cruz, 1:1000) or FK2 (Biomol, 1:1000)

against Ub, for 1 hour at room temperature, then with the anti-

mouse horseradish peroxidase-conjugated secondary antibody

revealed using the Enhanced Chemiluminescence method.

RNA isolation and analysis of nucleic acid level by
quantitative PCR

Total RNA was isolated by the guanidinium thyocianate method (as

described in [40]. The cDNA used as template for amplification in the

Real Time quantitative PCR was constructed by reverse transcription

reaction using SuperScript II (Invitrogen), with random hexamers as

primers, starting with equal amounts of RNA. As a PCR internal

control, 18S rRNA was simultaneously amplified using the primers: 59-

CCCACTCGG CACCTTACG-39 (forward) and 59-TTTCA-

GCCTTGCGACCATACT-39 (reverse). The primer sequences for

the Egr-1 gene were as follows: 59-CCTGCGACATCTGTGGAA-

GAA-39 (forward) and 59-CGCAAGTGGATCTTGGTATGC-39

(reverse). Quantitative Real Time PCR was performed using double

stranded DNA binding dye SYBR Green PCR Master mix (Applied

Biosystems) in an ABI GeneAmp 7000 Sequence Detection System.

Each reaction was run in triplicate and the melting curves were

constructed, using Dissociation Curves Software (Applied Biosystems)

to ensure that only a single product was amplified. As Real Time

quantitative PCR control 18S rRNA was also analyzed. Semi

quantitative competitive reverse transcription chain reaction RT-

PCR for Dusp6 was performed according published indications [41]

using as specific primers for Dusp6 59-GTTTTTCCCTGAGGC-

CATTT-39 (forward) and 59-TAGGCATCGTTCATCGACAG-39

(reverse). A ratio between the level of expression of the target gene and

that of the house-keeping gene 28S in total RNA samples was

determined. Fold induction of the target gene was calculated by

ascribing the ratio as 1 for control-treated samples. All results of RT-

PCR were analyzed from three PCR results.

Luciferase Assays
For luciferase assays, ECV304 cells in 3-cm Petri dishes were

lipofected with 400 ng of the reporter, 250 ng of Egr1 promoter

plasmid [42], and 500 or 400 ng of SUMO-1 and Ubc9. In all

samples, 40 ng of the plasmid pRL-CMV (Promega, Fitchburg,

WI) encoding Renilla luciferase were included for normalization of

transfection efficiency. After 36 hours, cells were lysed and assayed

by using the Dual Luciferase kit (Promega). Relative luciferase

activity is the ratio of firefly to Renilla luciferase activity,

normalized to the activity of the reporter alone. Expression levels

of transfected proteins were verified by immunoblotting of the

lysates normalized for transfection efficiency.
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