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Even if a species’ phenotype does not change over evolutionary time, the underlying mechanismmay change, as distinct molecular

pathways can realize identical phenotypes. Here we use linear system theory to explore the consequences of this idea, describing

how a gene network underlying a conserved phenotype evolves, as the genetic drift of small changes to these molecular pathways

causes a population to explore the set of mechanisms with identical phenotypes. To do this, we model an organism’s internal state

as a linear system of differential equations for which the environment provides input and the phenotype is the output, in which

context there exists an exact characterization of the set of all mechanisms that give the same input-output relationship. This charac-

terization implies that selectively neutral directions in genotype space should be common and that the evolutionary exploration of

these distinct but equivalent mechanisms can lead to the reproductive incompatibility of independently evolving populations. This

evolutionary exploration, or system drift, is expected to proceed at a rate proportional to the amount of intrapopulation genetic

variation divided by the effective population size (Ne). At biologically reasonable parameter values this could lead to substantial

interpopulation incompatibility, and thus speciation, on a time scale of Ne generations. This model also naturally predicts Haldane’s

rule, thus providing a concrete explanation of why heterogametic hybrids tend to be disrupted more often than homogametes

during the early stages of speciation.
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It is an overarching goal of many biological subdisciplines to

attain a general understanding of the function and evolution

of the complex molecular machinery that translates an organ-

ism’s genome into the characteristics on which natural selec-

tion acts, the phenotype. For example, there is a growing body

of data on the evolutionary histories and molecular characteriza-

tions of particular gene regulatory networks (Davidson and Er-

win 2006; Jaeger 2011; Israel et al. 2016), as well as thought-

ful verbal and conceptual models (Weiss and Fullerton 2000;

Edelman and Gally 2001; True and Haag 2001; Pavlicev and

Wagner 2012). Mathematical models of both particular regula-

tory networks and the evolution of such systems in general can

provide guidance where intuition fails, and thus have the poten-

tial to discover general principles in the organization of biolog-

ical systems as well as provide concrete numerical predictions

(Servedio et al. 2014). There is a substantial amount of work

studying the evolution of gene regulatory networks, in frame-

works both abstract (Wagner 1994, 1996; Siegal and Bergman

2002; Bergman and Siegal 2003; Draghi and Whitlock 2015) and

empirically inspired (Mjolsness et al. 1991; Jaeger et al. 2004;

Kozlov et al. 2015; Wotton et al. 2015; Crombach et al. 2016;

Chertkova et al. 2017).

At all levels of biological organization, the problems that bi-

ological systems have evolved to solve often do not have sin-

gle solutions—systems can be structurally different yet remain

functionally equivalent (Edelman and Gally 2001). Examples can
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be found across nearly all levels of biological organization from

the level of the genetic code itself all the way up to the con-

vergent evolution of adaptive traits. In many cases, these func-

tionally equivalent structures can be explored through small, lo-

cal changes to the structure that leave the function unchanged.

For instance, there are “neutral networks” of nucleic acid se-

quences that produce the same RNA secondary structure (Grüner

et al. 1996) amino acid sequences that fold similarly (Babajide

et al. 1997), or proteins with equivalent thermodynamic stability

(Hart et al. 2014). Further examples are found in the vast space

of functionally equivalent potential regulatory sequences (Hare

et al. 2008), in the logic of transcriptional (Tsong et al. 2006;

Matsui et al. 2015; Dalal et al. 2016; Dalal and Johnson 2017;

Jiménez et al. 2017) and neural circuits (Trojanowski et al. 2014),

and in developmental systems (von Dassow et al. 2000; True and

Haag 2001).

This capacity for isofunctional yet distinct mechanisms,

sometimes called degeneracy, is a consequence of a many-to-

one mapping between a system’s structure and function, a con-

cept that has been explored in many fields beyond biology.

For instance, in many contexts mathematical models are funda-

mentally nonidentifiable and/or indistinguishable—meaning that

there can be uncertainty about an inferred model’s parameters

or even its claims about causal structure, despite access to com-

plete and perfect data (e.g., Bellman and Åström 1970; Grewal

and Glover 1976; Walter et al. 1984). Models with different pa-

rameter schemes, or even different mechanics can make equally

accurate predictions, but still not actually reflect the internal dy-

namics of the system being modeled. In control theory, where

electrical circuits and mechanical systems are often the focus, it

is understood that there can be an infinite number of “realiza-

tions,” or ways to reverse engineer the dynamics of a “black box,”

even if all possible input and output experiments are performed

(Kalman 1963; Anderson et al. 1966; Zadeh and Deoser 1976).

The inherent nonidentifiability of chemical reaction networks is

sometimes referred to as “the fundamental dogma of chemical ki-

netics” (Craciun and Pantea 2008). In computer science, this has

been framed as the relationship among processes that simulate

one another (Van der Schaft 2004). Finally, the field of inverse

problems studies those cases in which, despite the existence of a

theoretical one-to-one mapping between a model and behavior,

tiny amounts of noise make inference problems nonidentifiable

in practice (Petrov and Sizikov 2005).

It has been argued that the ability to modify structure with-

out affecting function is necessary for natural selection (Edelman

and Gally 2001), as it may function as a mechanism for biological

robustness and evolvability (reviewed in de Visser et al. 2003), or

manifest as canalization (Whitacre 2010). It may even contribute

to the formation of new species (Gavrilets 2014). Redundancy of

the genetic code, for instance, can make sequences more fault-

tolerant to mutations (Sonneborn 1965), and robustness to modi-

fication of genetic networks can allow adaptation without passing

through a fitness valley (Wagner 2008).

In this article, we use results on mathematical nonidentifi-

ability from linear system theory to study how gene regulatory

networks can be modified while retaining the same function, and

the possible implications for speciation. If system architectures

are not functionally unique, can this open up neutral evolution-

ary paths, and do species explore these paths through the process

termed developmental system drift (by True and Haag 2001)? Is

this fast enough to contribute meaningfully to speciation? To do

this, we describe results on linear dynamical systems that give

an analytical description of the set of all linear gene network ar-

chitectures that yield identical phenotypes, and use quantitative

genetics theory to estimate the speed at which system drift can

lead to reproductive incompatibility and hence speciation. In this

model, a population diffuses along the neutral ridges of a high-

dimensional space of possible system parameters, in a similar

vein as holey landscape models (Gavrilets 1997; Yamaguchi and

Iwasa 2013).

The field of population genetics has also explored the con-

sequences of the fact that there is often more than one way to do

the same thing, and observed that speciation might be the result of

changes that are themselves neutral. Indeed, Bateson (1909) first

proposed that what today we call a Bateson-Dobzhansky-Muller

incompatibility would likely arise through neutral changes. The

potential for speciation has been analyzed in models of traits un-

der stabilizing selection determined additively by alleles at many

loci (Wright 1935; Barton 1986, 1989, 2001), in related fitness

landscape models (Fraïsse et al. 2016), and for pairs of traits that

must match but whose value is unconstrained (Sved 1981). It has

also been shown that population structure can allow long-term

stable coexistence of incompatible genotypes encoding identi-

cal phenotypes (Phillips 1996). However, previous simulations of

system drift in regulatory sequences (Tulchinsky et al. 2014) and

a regulatory cascade (Porter and Johnson 2002) found rapid spe-

ciation under directional selection but only equivocal support for

speciation under models of purely neutral drift. The rate at which

hybrid incompatibility accumulates due to genetic drift creating

segregation variance between isolated populations is fairly well

understood (Slatkin and Lande 1994; Rosas et al. 2010; Chevin

et al. 2014), but model assumptions can strongly affect predic-

tions, including whether variation is due to rare or common alle-

les (Slatkin and Lande 1994), and the shape of the fitness land-

scape (Fraïsse et al. 2016). Our main aim is to provide a con-

crete framework that can make natural predictions of these model

parameters across a general class of models. Furthermore, tools

from system theory allow analytical predictions to be made for

large populations with complex phenotypes that would be inac-

cessible to population simulations.
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Results
We use a model of gene regulatory networks that describes the

temporal dynamics of a collection of n coregulating molecules—

such as transcription factors—as well as external or environmen-

tal inputs. We write κ(t ) for the vector of n molecular concentra-

tions at time t . The vector of m “inputs” determined exogenously

to the system is denoted u(t ), and the vector of � “outputs” is

denoted φ(t ). The output is merely a linear function of the inter-

nal state: φi(t ) = ∑
j Ci jκ j (t ) for some matrix C. Since φ is what

natural selection acts on, we refer to it as the phenotype (meaning

the “visible” aspects of the organism), and in contrast refer to κ as

the kryptotype, as it is “hidden” from direct selection. Although

φ may depend on all entries of κ, it is usually of lower dimen-

sion than κ, and we tend to think of it as the subset of molecules

relevant for survival. The dynamics are determined by the matrix

of regulatory coefficients, A, a time-varying vector of inputs u(t ),

and a matrix B that encodes the effect of each entry of u on the

elements of the kryptotype. The rate at which the ith concentra-

tion changes is a weighted sum of the concentrations as well as

the input:

κ̇(t ) = Aκ(t ) + Bu(t )

φ(t ) = Cκ(t ). (1)

Furthermore, we always assume that κ(0) = 0, so that the kryp-

totype measures deviations from initial concentrations. Here A

can be any n × n matrix, B any n × m, and C any � × n dimen-

sional matrix, with usually � and m less than n. We think of the

system as the triple (A, B,C), which translates (time-varying) m-

dimensional input u(t ) into the �-dimensional output φ(t ). Under

quite general assumptions on the input (e.g., |u(t )| is integrable)

we can write the phenotype as

φ(t ) =
∫ t

0
Ce(t−s)ABu(s)ds, (2)

which is a convolution of the input u(t ) with the system’s impulse

response, which we denote as h(t ) := CeAt B.

In terms of gene regulatory networks, Ai j determines how

the jth transcription factor regulates the ith transcription factor. If

Ai j > 0, then κ j upregulates κi, whereas if Ai j < 0, then κ j down-

regulates κi. The ith row of A is therefore determined by genetic

features such as the strength of j-binding sites in the promoter

of gene i, factors affecting chromatin accessibility near gene i, or

basal transcription machinery activity. The form of B determines

how the environment influences transcription factor expression

levels, and C might determine the rate of production of down-

stream enzymes.

Wagner (1994) and others have used a similar discrete-time

model (that might be written φt+1 = f (Aφt ), where f is a sig-

moid). Our choice of continuous time does not affect the points

Figure 1. (Left) Diagram of the gene network in Example 1 , and

(right) plot of the phenotype φ(t ) against time t .

we make here, but our restriction to linear systems is a stronger

assumption (see the Discussion).

To demonstrate the model, we construct a simple gene net-

work in Example 1.

Example 1 (An oscillator). For illustration, we consider an ex-

tremely simplified model of oscillating gene transcription, as for

instance is found in cell cycle control or the circadian rhythm.

There are two genes, whose transcript concentrations are given

by κ1(t ) and κ2(t ), and gene-2 upregulates gene-1, whereas gene-

1 downregulates gene-2 with equal strength. Only the dynamics

of gene-1 are consequential to the oscillator (perhaps the amount

of gene-1 activates another downstream gene network). Lastly,

both genes are equally upregulated by an exogenous signal. The

dynamics of the system are described by

κ̇1(t ) = κ2(t ) + u(t )

κ̇2(t ) = −κ1(t ) + u(t )

φ(t ) = κ1(t ).

In matrix form the system regulatory coefficients are given as,

A =
[

0 1

−1 0

]
, B =

[
1

1

]
, and C =

[
1 0

]
. If the input is an im-

pulse at time zero (a delta function), then the phenotype is equal

to the impulse response:

φ(t ) = h(t ) = sin t + cos t .

The system and its dynamics are referred to in Figure 1. We return

to the evolution of such a system below.

EQUIVALENT GENE NETWORKS

As reviewed above, some systems with identical phenotypes are

known to differ, sometimes substantially, at the molecular level;

systems with identical phenotypes do not necessarily have iden-

tical kryptotypes. How many different mechanisms perform the

same function?

Two systems are equivalent if they produce the same phe-

notype given the same input, that is, have the same input-output

relationship. We say that the systems defined by (A, B,C) and
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(Ā, B̄, C̄) are phenotypically equivalent if their impulse response

functions are the same: h(t ) = h̄(t ) for all t ≥ 0. This implies that

for any acceptable input u(t ), if (κu(t ),φu(t )) and (κ̄u(t ), φ̄u(t ))

are the solutions to equation (1) of these two systems, respec-

tively, then

φu(t ) = φ̄u(t ) for all t ≥ 0.

In other words, phenotypically equivalent systems respond iden-

tically for any input.

One way to find other systems phenotypically equivalent to

a given one is by change of coordinates: if V is an invertible ma-

trix, then the systems (A, B,C) and (VAV −1,V B,CV −1) are phe-

notypically equivalent because their impulse response functions

are equal:

h(t ) = CeAt B = CV −1VeAtV −1V B

= CV −1eVAV −1tV B = C̄eĀt B̄ = h̄(t ).
(3)

These “changes of coordinates” are not simply different ways of

looking at the same system—if each dimension of the krypto-

type corresponds to the concentration of a particular transcrip-

tion factor, changing A corresponds to changing the strengths

of regulatory interactions. We will even see below that interac-

tions may change sign. However, not all phenotypically equiva-

lent systems are of this form: systems can have identical impulse

responses without being coordinate changes of each other. In fact,

systems with identical impulse responses can involve interactions

between different numbers of molecules, and thus have krypto-

types in different dimensions altogether.

This implies that most systems have at least n2 degrees of

freedom, where recall n is the number of components of the kryp-

totype vector. This is because for an arbitrary n × n matrix Z ,

taking V to be the identity matrix plus a small perturbation in the

direction of Z above implies that moving A in the direction of

ZA − AZ while also moving B in the direction of ZB and C in the

direction of −CZ will leave the phenotype unchanged to second

order in the size of the perturbation. If the columns of B and the

rows of C are not all eigenvectors of A, then any such Z will result

in a different system.

It turns out that in general, there are more degrees of free-

dom, except if the system is minimal—meaning, informally, that

it uses the smallest possible number of components to achieve the

desired dynamics. Results in system theory show that any time-

invariant system can be realized in a particular minimal dimen-

sion (the dimension of the kryptotype, nmin), and that any two

phenotypically equivalent systems of dimension nmin are related

by a change of coordinates. As gene networks can grow or shrink

following gene duplications and deletions, these additional de-

grees of freedom can apply, in principle, to any system.

Even if the system is not minimal, results from system theory

explicitly describe the set of all phenotypically equivalent sys-

tems. We refer to N (A0, B0,C0) as the set of all systems pheno-

typically equivalent to the system defined by (A0, B0,C0):

N (A0, B0,C0) = {
(A, B,C) : CeAt B = C0eA0t B0 for t ≥ 0

}
. (4)

These systems need not have the same kryptotypic dimension n,

but must have the same input and output dimensions (� and m,

respectively).

The Kalman decomposition, which we now describe infor-

mally, elegantly characterizes this set (Kalman 1963; Kalman

et al. 1969; Anderson et al. 1966). To motivate this, first note that

the input u(t ) only directly pushes the system in certain directions

(those lying in the span of the columns of B). As a result, different

combinations of input can move the system in any direction that

lies in what is known as the reachable subspace. Analogously, we

can only observe motion of the system in certain directions (those

lying in the span of the rows of C), and so can only infer motion

in what is known as the observable subspace. The Kalman de-

composition then classifies each direction in kryptotype space as

either reachable or unreachable, and as either observable or un-

observable. Only the components that are both reachable and ob-

servable determine the system’s phenotype—that is, components

that both respond to an input and produce an observable output.

Concretely, the Kalman decomposition of a system (A, B,C)

gives a change of basis P such that the transformed system

(PAP−1, PB,CP−1) can be written in block matrix form:

PAP−1 =

⎡
⎢⎢⎢⎣

Arō Arō,ro Arō,r̄ō Arō,r̄o

0 Aro 0 Aro,r̄o

0 0 Ar̄ō Ar̄ō,r̄o

0 0 0 Ar̄o

⎤
⎥⎥⎥⎦

and

PB =

⎡
⎢⎢⎢⎣

Brō

Bro

0

0

⎤
⎥⎥⎥⎦ (CP−1)T =

⎡
⎢⎢⎢⎣

0

CT
ro

0

CT
r̄o

⎤
⎥⎥⎥⎦.

The n-dimensional system has been divided into subspaces of di-

mensions nrō + nro + nr̄ō + nr̄o = n, and so, for instance, Arō is

the nrō × nrō square matrix in the top left corner of PAP−1. The

impulse response of the system is given by

h(t ) = CroeArot Bro,

and therefore, the system is phenotypically equivalent to the min-

imal system (Aro, Bro,Cro).

This decomposition is unique up to a change of basis

that preserves the block structure. In particular, the minimal

subsystem obtained by the Kalman decomposition is unique up to
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Figure 2. (Left) A(τ), the set of all phenotype-equivalent oscillator networks. (Right) Gene-1 dynamics (blue) for both systems A(0) and

A(−2) are identical, however, A(0) gene-2 dynamics (red) differ from A(−2) (green).

a change of coordinates. This implies that there is no equivalent

system with a smaller number of kryptotypic dimensions than the

dimension of the minimal system. It is remarkable that the gene

regulatory network architecture to achieve a given input-output

map is never unique—both the change of basis used to obtain the

decomposition and, once in this form, all submatrices other than

Aro, Bro, and Cro can be changed without affecting the phenotype,

and so represent degrees of freedom.

Although the other submatrices do not affect the phenotype

through the impulse response function h(t ), they may affect indi-

vidual fitness in other ways (which we do not consider here). For

instance, the “unreachable” subspaces cannot be affected by any

of the possible variations in input produced by varying u(t ). How-

ever, if the nature of the input changed (for instance, by perturb-

ing a previously constant environmental variable), differences in

the unreachable components might lead to differences in pheno-

types and thus represent cryptic genetic variation. Similarly, “un-

observable” subspaces might represent aspects of phenotype that

are not constrained by selection, but might become important if

conditions change. Additionally, all subspaces may affect how

the system deals with noise.

Note on implementation: The reachable subspace is defined

to be the closure of span(B) under applying A (or equivalently, the

span of B, AB, A2B, . . . An−1B), and the unobservable subspace

is the largest A-invariant subspace contained in the null space of

C. The four subspaces, rō, ro, r̄ō, and r̄o are defined from these

by intersections and orthogonal complements—ro refers to the

both reachable and observable subspace, whereas r̄ō refers to the

unreachable and unobservable subspace, and similarly for r̄o and

rō.

For the remainder of the article, we interpret N as the

neutral set in the fitness landscape, along which a large popu-

lation will drift under environmental and selective stasis. This

drift need not be purely neutral—for instance, second-order

selection on robustness will push the species toward “flat-

ter” areas of genotype space (Rice 1998; Hermisson et al.

Figure 3. A possible non-minimal three-gene oscillator, pheno-

typically equivalent to A(τ), the systems in Examples 1 and 2.

2003). Even if the phenotype is constrained and remains

constant through evolutionary time, the molecular mechanism

underpinning it is not constrained and likely will not be

conserved.

Finally, note that if B and C are held constant, that is, if

the relationships between environment, kryptotype, and pheno-

type do not change—there are still usually degrees of freedom.

Example 2 gives the set of minimal systems equivalent to the

oscillator of Example 1, that all share common B and C ma-

trices, and is depicted in Figure 2. The oscillator can also be

equivalently realized by a three-gene (or larger) network, and will

have even more evolutionary degrees of freedom available, as in

Figure 3.

Example 2 (All equivalent rewirings of the oscillator). The os-

cillator of Example 1 is minimal, and so any equivalent system is

a change of coordinates by an invertible matrix V . If we further

require B and C to be invariant then we need V B = B and CV =
C. Therefore, the following one-parameter family (A(τ), B,C)
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Figure 4. A conceptual figure of the fitness consequences of hybridization: axes represent system coefficients (i.e., entries of A); the

line of optimal system coefficients is drawn in black; solid lines give phenotypic distances to the optimum. A pair of parental populations

are shown in black, along the optimum; a hypothetical population of F1s is shown in red, and the distribution of F2s is shown in purple.

The two figures differ in the genetic basis, and hence, the distribution of F2 phenotypes: (A) F2s compose all four mixed homozygotes if

variation at both traits has a simple, one-locus genetic basis in both populations; and (B) F2 show amuchwider distribution of phenotypes

if the genetic basis of variation in each population is polygenic.

describes the set of all two-gene systems phenotypically equiv-

alent to the oscillator:

A(τ) = −1

τ + 1

[
−τ −1

2τ(τ + 1) + 1 τ

]
for τ �= −1.

The resulting set of systems are depicted in Figure 2.

Sexual reproduction and recombination
Parents with phenotypically equivalent yet differently wired gene

networks may produce offspring with dramatically different phe-

notypes. If the phenotypes are significantly divergent then the off-

spring may be inviable or otherwise dysfunctional, despite both

parents being well adapted. If this is consistent for the entire pop-

ulation, we would consider them to be separate species, in accord

with the biological species concept (Mayr 2000).

First, we must specify how sexual reproduction acts on

these systems. Suppose that each of a diploid organism’s two

genomes encodes a set of system coefficients with the same

kryptotype dimension. We assume that a diploid which has in-

herited systems (A′, B′,C′) and (A′′, B′′,C′′) from its two par-

ents has phenotype determined by the system that averages these

two, ((A′ + A′′)/2, (B′ + B′′)/2, (C′ + C′′)/2). In general, how

parental systems are recombined and inherited depends on the

genetic architecture of the segregating variation. For the purposes

of examples in this article (Example 3 and Figure 5), we take

the simplest assumption that each system coefficient is encoded

by a nonrecombining locus, and that these loci are unlinked. For

instance, if one genome’s coefficients are written with Greek and

the other with Latin, a possible oscillator gamete might be pro-

duced as follows: [ α

γ

β

δ
] × [ a

c
b
d ] → [ α

c
b
δ
].

Each genome an organism inherits is generated by meiosis,

in which both of its diploid parents recombine their two genomes,

and so an F1 offspring carries one system copy from each parent,

and an F2 is an offspring of two independently formed F1s. If the

parents are from distinct populations, these are simply first- and

second-generation hybrids, respectively.

Exactly how the coefficients (i.e., entries of A, B and C) of a

haploid system inherited by an offspring from a diploid parent are

determined by the parent’s two systems depends on the genetic

basis of any variation in the coefficients. Thanks to the random-

ness of meiotic segregation, the result is random to the extent that

each parent is heterozygous for alleles that affect the coefficients.

As the ith row of A summarizes how each gene regulates gene

i, and hence is determined by the promoter region of gene i, the

elements of a row of A tend to be inherited together, which will

create covariance between entries of the same row. It is, however,

a quite general observation that the variation seen among recom-

binant systems is proportional to the difference between the two

parental systems.

Offspring formed from two phenotypically identical systems

do not necessarily exhibit the same phenotype as both of its

parents—in other words N , the set of all systems phenotypi-

cally equivalent to a given one, is not, in general, closed under

averaging or recombination. If sexual recombination among
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Figure 5. (Left) Phenotypes of F1 hybrids between a homozygous A(0) parent and, top to bottom, homozygous A( 1
100 ), A(

1
10 ), and A( 12 )

parents, where A(ε) is defined in Example 2 ; parental coefficients differ by around 0.5%, 5%, and 25%, respectively. Parental phenotypes

(sin t + cos t) are shown in solid black, and hybrid phenotypes in blue. (Right) Phenotypes of all 34 = 81 possible F2 hybrids between the

same set of parents, with parental phenotype again in black. F2 hybrids, many of which show complete breakdown, are shown in shades

of blue and gray.

Figure 6. Mean hybrid phenotypic distance from optimum com-

putedwith equation (5), using ρ(t ) = exp(−t/4π) for F1 (black) and

F2 (blue) hybrids between A(0) and A(ε) parent oscillators. Genetic

distance is computed as (
∑

i j (Ai j (0) − Ai j (ε))2)1/2.

systems drawn from N yields systems with divergent pheno-

types, populations containing significant diversity in N can carry

genetic load, and isolated populations may fail to produce hybrids

with viable phenotypes.

HYBRID INCOMPATIBILITY

Two parents with the optimal phenotype can produce offspring

whose phenotype is suboptimal if the parents have different

underlying systems. Hybrid phenotypic breakdown, as a function

of genetic distance between phenotypically equivalent parental

oscillators (described in Example 2) is illustrated in Example 3.

How quickly do hybrid phenotypes break down as genetic

distance between parents increases? We will quantify how far a

system’s phenotype is from optimal using a weighted difference

between impulse response functions. Suppose that ρ(t ) is a

nonnegative weighting function, h0(t ) is the optimal impulse

response function and define the “distance to optimum” of

another impulse response function to be

D(h) =
(∫ ∞

0
ρ(t )‖h(t ) − h0(t )‖2dt

)1/2

. (5)

In practice, we take ρ(t ) = exp(−t/4π), so that fitness is deter-

mined by the dynamics of the system over a few multiples of

2π, but not longer. Consider reproduction between a parent with

system (A, B,C) and another displaced by distance ε in the direc-

tion (X,Y, Z ), that is, having system (A + εX, B + εY,C + εZ ).
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We assume both are “perfectly adapted” systems, that is, having

impulse response function h0(t ), and their offspring has impulse

response function hε (t ). A Taylor expansion of D(hε ) in ε is ex-

plicitly worked out in Appendix A, and shows that the phenotype

of an F1 hybrid between these two is at distance proportional to

ε2 from optimal, whereas F2 hybrids are at distance proportional

to ε. This is because an F1 hybrid has one copy of each parental

system, and therefore lies directly between the parental systems

(see Figure 4)—the parents both lie in N , which is the valley de-

fined by D, and so their midpoint only differs from optimal due

to curvature of N . In contrast, an F2 hybrid may be homozygous

for one parental type in some coefficients and homozygous for

the other parental type in others; this means that each coefficient

of an F2 may be equal to either one of the parents, or interme-

diate between the two; this means that possible F2 systems may

be as far from the optimal set, N , as the distance between the

parents. The precise rate at which the phenotype of a hybrid di-

verges depends on the geometry of the optimal set N relative to

segregating genetic variation.

Example 3 (Hybrid incompatibility: misregulation due to sys-

tem drift). Offspring of two equivalent systems from Example 2

can easily fail to oscillate. For instance, the F1 offspring be-

tween homozygous parents at τ = 0 and τ = −2 has phenotype

φF1 (t ) = et , rather than φ(t ) = sin t + cos t . However, the coeffi-

cients of these two parental systems differ substantially, probably

more than would be observed between diverging populations. In

Figure 5, we compare the phenotypes for F1 and F2 hybrids be-

tween more similar parents, and see increasingly divergent phe-

notypes as the difference between the parental systems increases.

(In this example, the coefficients of A(ε) differ from those of A(0)

by an average factor of 1 + ε/2; such small differences could

plausibly be caused by changes to promoter sequences.) This di-

vergence is quantified in Figure 6, which shows that mean dis-

tance to optimum phenotype of the F1 and F2 hybrid offspring

between A(0) and A(ε) increases with ε2 and ε, respectively.

Haldane’s rule
This model naturally predicts Haldane’s rule, the observation that

if only one hybrid sex is sterile or inviable it is likely the het-

erogametic sex (e.g., the male in XY sex determination systems)

(Haldane 1922; Orr 1997). For example, consider an XY species

with a two-gene network where the first gene resides on an auto-

some and the second gene on the X chromosome. A male whose

pair of haplotypes is ([ A1

·
A2

· )], [ A1

X1

A2

X2
]) has phenotype deter-

mined by A = [ A1

X1

A2

X2
], if dosage compensation upregulates het-

erogametes by a factor of two relative to homogametes (as with

Drosophila), whereas a female homozygous for the haplotype

[ Ā1

X̄1

Ā2

X̄2
], has phenotype determined by A = [ Ā1

X̄1

Ā2

X̄2
]. An F1 male

offspring of these two will have its phenotype determined by

[ (A1+Ā1 )/2
X̄1

(A2+Ā2 )/2
X̄2

]. If both genes resided on the autosomes, this

system would only be possible in an F2 cross. More generally,

the contribution of sex chromosomes to the system coefficients

of F1 males are effectively equivalent to those of purely autoso-

mal F2 hybrids, which are less fit on average than F1s (see Fig-

ure 6). Note, however, that the presence of genetic variation on

sex chromosomes does not alone guarantee Haldane’s rule: un-

der this model, Haldane’s rule will only occur when there is suf-

ficient genetic distance separating parentals and when the nature

of genetic variation produces F2 hybrid breakdown.

THE SPEED OF SPECIATION

We have shown that system drift can lead to speciation in princi-

ple, but is it rapid enough to be an important factor in practice?

In other words, after what period of time would we expect the fit-

ness of hybrids between two allopatric populations to be substan-

tially lower than the parentals? Selection—on pleiotropic traits

or on robustness—may actively push even a strongly constrained

system along neutral directions, but even the calculations under

purely neutral drift are informative. The population mean of an

unconstrained quantitative trait with additive genetic variance VG

in a population with effective size Ne will move in t generations

a random amount whose variance is tVG/Ne (Lande 1976). The

mean difference between two such populations has twice the vari-

ance. Although this mean difference is along neutral directions,

we would in many cases expect the range of variation among

F2s in all directions to be of the same order as the differences

between the populations, as depicted in Figure 4. This suggests

that, naively, two such populations that have been separated for

t generations will produce F2 offspring that differ from optimal

by an amount proportional to
√

tVG/Ne. As we assume they are

at a local fitness optimum, without much loss of generality we

can assume that fitness is locally quadratic, and so F2 fitness de-

cays linearly in time: proportionally to tVG/Ne—fastest in small,

diverse populations, This predicts that we need only wait some

multiple of Ne generations until substantial incompatibility has

been accumulated.

It is useful to think in more detail about the assumptions in

the rough argument above. The key aspect is how population dif-

ferences in neutral directions (along the fitness ridge) translate to

segregation variance in F2s in selectively constrained directions.

To move the system (the A matrix) a given distance generally

involves moving many individual interaction coefficients (the en-

tries Ai j). The movements must be coordinated, for the population

to stay near the fitness ridge. However, mixing elements between

systems that have made independent sets of coordinated changes

to remain on the fitness ridge is unlikely to produce a set of coor-

dinated changes; and the resulting system could move away from

the ridge in almost any direction.
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GENETIC VARIATION IN EMPIRICAL REGULATORY

SYSTEMS

What is known about the key quantity above, the amount of her-

itable variation in real regulatory networks? The coefficient Ai j

from the system (1) measures how much the rate of net produc-

tion of i changes per change in concentration of j. It is generally

thought that regulatory sequence change contributes much more

to inter- and intraspecific variation than does coding sequence

change affecting molecular structure (Schmidt et al. 2010). In the

context of transcription factor networks, this may be affected not

only by the binding strength of molecule j to the promoter region

of gene i but also the effects of other transcription factors (e.g.,

cooperativity) and local chromatin accessibility (Stefflova et al.

2013). For this reason, the mutational target size for variation in

Ai j may be much larger than the dozens of base pairs typically

implicated in the handful of binding sites for transcription fac-

tor j of a typical promoter region, and single variants may affect

many entries of N simultaneously.

Variation in binding site occupancy may overestimate vari-

ation in A because it does not capture buffering effects (if, for

instance, only one site of many needs to be occupied for tran-

scription to begin), and variation in expression level measures

changes in steady-state concentration (our κi) rather than the rate

of change. Nonetheless, these measures likely give us an idea of

the scale of variability. It has been shown that between human

individuals, there is differential occupancy in 7.5% of binding

sites of a transcription factor (p65) (Kasowski et al. 2010). It

has also been inferred that cis-regulatory variation accounts for

around 2–6% of expression variation in human blood derived pri-

mary cells (Verlaan et al. 2009), and that human population vari-

ation explained about 3% of expression variation (Lappalainen

et al. 2013). Allele-specific expression is indicative of standing

genetic cis-regulatory variation; allele-specific expression in 7.2–

8.5% of transcripts of a flycatcher species has been observed

(Wang et al. 2017), as well as allele-specific expression in 23.4%

of genes studied in a baboon species (Tung et al. 2015). Taken

together, this suggests that variation in the entries of A may be

on the order of at least a few percent between individuals of a

population—doubtless varying substantially between species and

between genes.

Discussion
In this article, we use tools from linear system theory and quan-

titative genetics to study the evolution of a mechanistic model of

the genotype-phenotype map, in which the phenotype is subject

to stabilizing selection. In so doing, we provide an explicit model

of phenogenetic drift (Weiss and Fullerton 2000) and develop-

mental system drift (True and Haag 2001). In this context, the

Kalman decomposition (Kalman 1963) gives an analytical de-

scription of all phenotypically equivalent gene networks. This

description shows that the space of functionally equivalent net-

work architectures increases with the square of a network’s size,

and that this space increases further if networks grow larger than

absolutely necessary, that is, use more interacting components

than the most efficient potential architectures. In this framework,

even minimal gene network architectures, efficient architectures

that contain only the requisite number of interacting parts, are

not structurally unique with respect to function. Functionally

equivalent architectures are often related by continuous param-

eter changes, suggesting that equivalent networks might be muta-

tionally connected, and that there exist axes of genetic variation

unconstrained by natural selection. The independent movement

of separated populations along these axes by genetic drift can lead

to a significant reduction in hybrid viability, and thus precipitate

speciation, at a speed dependent on the effective population size

and the amount of genetic variation. In this model, at biologically

reasonable parameter values, system drift is a significant—and

possibly rapid—driver of speciation. This may be surprising be-

cause hybrid inviability appears as a consequence of recombin-

ing different, yet functionally equivalent, mechanisms, and be-

cause species are often defined by their unique adaptations or

morphologies.

Consistent with empirical observation of hybrid breakdown,

we see that the fitnesses of F2 hybrids drop at a much faster

rate than those of F1s. Another natural consequence of the model

is Haldane’s rule, that if only one F1 hybrid sex is inviable or

sterile it is likely to be the heterogametic sex. This occurs be-

cause if the genes underlying a regulatory network are distributed

among both autosomes and the sex chromosome, then heteroga-

metic F1s show variation (and fitnesses) similar to that seen in

F2 hybrids. This observation appears to be similar to the ex-

treme hybrid phenotypes produced by transgressive segregation

(Rieseberg et al. 1999), which can manifest in F1s when only

one (dominant) parental allele is expressed at heterozygous loci;

this was observed in hybrid gene expression patterns, and in-

creased as a function of parental genetic distance (Stelkens and

Seehausen 2009).

Is there evidence that this is actually occurring? System drift

and network rewiring has been inferred across the tree of life

(Wotton et al. 2015; Crombach et al. 2016; Dalal and Johnson

2017; Johnson 2017; Ali et al. 2019), and there is often signif-

icant regulatory variation segregating within populations. Tran-

scription in hybrids between closely related species with con-

served transcriptional patterns can also be divergent (Michalak

and Noor 2004; Haerty and Singh 2006; Maheshwari and Bar-

bash 2012; Coolon et al. 2014; Mack and Nachman 2016), and

hybrid incompatibilities have been attributed to cryptic molecu-

lar divergence underlying conserved body plans (Gavin-Smyth

and Matute 2013). Furthermore, in cryptic species complexes
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(e.g., sun skinks; Barley et al. 2013), genetically distinct species

may be nearly morphologically indistinguishable.

THE ORIGIN OF SPECIES NOT BY MEANS OF

NATURAL SELECTION?

As classically formulated, the Dobzhansky-Muller model of hy-

brid incompatibility is agnostic to the relative importance of

neutral versus selected genetic substitutions (Coyne and Orr

1998), and plausible mechanisms have been proposed whereby

Dobzhansky-Muller incompatibilities could originate under neu-

tral genetic drift (Lynch and Force 2000) or stabilizing selec-

tion (Fierst and Hansen 2010). The same holds for the “pathway

model” (Lindtke and Buerkle 2015), which is closer to the sit-

uation here. However, previous authors have argued that neutral

processes are likely too slow to be a significant driver of specia-

tion (Nei et al. 1983; Seehausen et al. 2014). This has led some

to conclude that hybrid incompatibility is typically a byproduct

of positive selection (Orr et al. 2004; Schluter 2009) or a con-

sequence of genetic conflict (Presgraves 2010; Crespi and Nosil

2013), two processes that typically act much more rapidly than

genetic drift. Supporting this view, experimental approaches de-

signed to study the effect of drift on speciation through induced

population bottlenecks found no reproductive isolation in the ma-

jority of tested pairs (Fry 2009; White et al. 2020). However, our

calculations suggest that even under strictly neutral processes, hy-

brid fitness breaks down as a function of genetic distance rapidly

enough to play a substantial role in species formation across the

tree of life. This is consistent with broad patterns such as the

relationship between molecular divergence and genetic isolation

seen by Roux et al. (2016), and the clocklike speciation rates ob-

served by Hedges et al. (2015). More recently, Sánchez-Ramírez

et al. (2021) observed widespread transcriptional misregulation

in Drosophila hybrids, which might be due to the action of sys-

tem drift.

Although the phrase “system drift” as we use it implies

neutral changes, it does not mean that these changes are induced

purely by neutral genetic drift. Selection could dramatically

accelerate speciation by the same process by genetic draft (Gille-

spie 2000) or pleiotropic selection. For instance, Mani and Clarke

(1990) showed that populations developed incompatibilities as

they independently evolved toward the same quantitative trait

optimum, as different alleles fix in different populations. Fluctu-

ating selection has similarly been shown to accelerate speciation

in some models (Barton 2001; Bell 2010). Under our model,

populations evolving toward different optimal phenotypes will

always produce less fit hybrids, as the hybrid phenotypes will be

displaced from both parental optima, and so maladapted to both

parental environments. This suggests that fluctuating selection—

if not synchronized between populations—should diminish

hybrid fitnesses. In the case where fluctuations are synchronized,

due to the size of the neutral system space, populations may ar-

rive at different system organizations when returning to previous

phenotypes at a rate faster than by drift alone.

These explanations are not mutually exclusive. All of these

forces—adaptive shifts, conflict and network drift—are plausi-

ble drivers of speciation, and may even interact. Many of our

observations carry over to models of directional selection—for

instance, rapid drift along the set of equivalent systems could

be driven by adaptation in a different, pleiotropically coupled

system. Or, reinforcement due to local adaptation might pro-

vide a selective pressure that speeds up system drift. Further-

more, although the fitness consequences of incompatibility in

any one given network may be small, the cumulative impact of

system drift across the many different networks an organism re-

lies on may be substantial. It remains to be seen how the relative

strengths of these forces compare.

THE DIMENSIONALITY OF TRAIT SPACE

We have focused on examples of single traits (where the pheno-

type is one-dimensional), but phenotypes under selection are of-

ten high-dimensional, and variation in different traits often share

a genetic basis. However, we still expect many degrees of free-

dom as long as there are components of the system not directly

and individually constrained by selection (i.e., a kryptotype).

Even in networks where the phenotype and kryptotype are of the

same dimension, system theory shows us that there will always

be available degrees of freedom as specific system realizations

are only unique up to a change of coordinates. Some phenotypes,

however, require kryptotypic dimensions to be larger than that of

the phenotype. For instance, many systems have minimal realiza-

tions (e.g., the oscillator in Example 2) where the dimension of

the kryptotype is larger than that of the phenotype, implying that

for these phenotypic dynamics to be realized, the kryptotype di-

mension has to be larger than the dimension of the phenotype.

Even if components of the system’s internal state are directly

subject to selection and the mode of action of the environment

on the internal state is constrained (so, the input and output ma-

trices B and C are fixed) then one could still perturb A as de-

scribed above by ZA − AZ if ZB and CZ are both zero, imply-

ing a number of degrees of freedom that still grows with n2 for

fixed � and m. Generically, the number of degrees of freedom is

n(n − � − m), so that in a system of n components, if even one

component is not directly constrained, this leads to n degrees of

freedom. Whatever the true “dimensionality” of phenotype space

of a typical organism, there are undoubtedly aspects of its under-

lying molecular machinery that are not directly constrained, sug-

gesting large numbers of degrees of freedom. Note that pleiotropy

does not directly affect this argument at all—indeed, many phe-

notypically equivalent changes will lead to denser A matrices and

hence more pleiotropy. However, more pleiotropic genes may be
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more strongly constrained, making it more difficult for systems

to make the required compensatory changes for system drift.

Phenotypically equivalent system evolution is probably not

only driven by neutral genetic drift. For one thing, movement

along the set of equivalent networks is not expected to be com-

pletely neutral, since second-order selection pushes populations

toward “flatter” regions of the fitness landscape in which a pop-

ulation centered on the optimal set has lower genetic load (as

described in different contexts by Rice 1998; Nimwegen et al.

1999). If this bias toward more robust networks is strong enough,

it may even prevent drift, but it is unclear how strong this ef-

fect would be in practice. Our results, on the other hand, do not

rely on the flatness of the fitness surface around the phenotyp-

ically equivalent set, but rather on the curvature of the equiva-

lent set itself. So long as the phenotypically equivalent set is not

closed under sexual recombination, opportunities for incompati-

bility remain. However, the speed at which system drift can gen-

erate incompatibilities might diminish if selection for robustness

is strong enough to constrain a population to a small section of

system space, although the strength of such effects in practice

are not known. Likewise, as the speed of system drift relies on

segregating genetic variation, any constraints on such variation,

possibly due to epistasis, genetic architecture (Hermisson et al.

2003), adaptive inertia (Baatz and Wagner 1997; Álvarez-Castro

et al. 2009), or weak gene flow could plausibly slow it down.

More work on specific systems, likely coupled with simulations,

will be necessary to identify the biologically relevant parame-

ter regimes.

GEOMETRIC MODELS

The model we work with describes a continuum of possible sys-

tems, parameterized by continuous coefficient matrices. The ar-

guments we make (e.g., Figure 4) are often geometric in nature,

and so it would be interesting to ask whether Fisher’s geomet-

ric model might provide more quantitative, generalizable predic-

tions, as in, for instance, Fraïsse et al. (2016) and Simon et al.

(2017). Martin (2014) argued that such an approximation would

be often fruitful. In the other direction, it is also natural to ask

about the distribution of effect sizes of segregating mutations in a

population evolving under this model with a realistic de novo ef-

fect size distribution, as well as what the distribution of fitness ef-

fects would be (both within and between populations). These are

questions that might be best answered by simulation, and could

provide much additional information—for instance, are alleles

typically dominant in their effects on either system coefficients

or fitness?

NONLINEARITY AND MODEL ASSUMPTIONS

Of course, real regulatory networks are not linear dynamical sys-

tems. Most notably, physiological limits put upper bounds on ex-

pression levels, implying saturating response curves. It remains

to be seen how well our results carry over into real systems, but

the fact that most nonlinear systems can be locally approximated

by a linear one suggests our qualitative results may hold more

generally. Furthermore, nonidentifiability (which implies the ex-

istence of neutral directions) is often found in practice in mod-

erately complex models of biological systems (e.g., Gutenkunst

et al. 2007; Piazza et al. 2008; Jiménez et al. 2017).

Finally, despite our model’s precise separation of phenotype

and kryptotype, this relationship in nature may be far more com-

plicated as aspects of the kryptotype may be less “hidden” than

we currently assume, and the neutral network changes we de-

scribe here may only be nearly neutral. For instance, attributes

excluded from the phenotype as modeled here ignore the poten-

tial energy costs associated with excessively large (nonminimal)

kryptotypes, as well as the relationship between a specific net-

work architecture and robustness to mutational, transcriptional,

or environmental noise. More precise modeling will require bet-

ter mechanistic understanding not only of biological systems but

also the nature of selective pressures and genetic variation in

these systems.

AUTHOR CONTRIBUTIONS
The study was designed, carried out, and written up by JS and PR.

ACKNOWLEDGMENTS
We would like to thank Sergey Nuzhdin, Stevan Arnold, Michael Turelli,
Patrick Phillips, Erik Lundgren, and Hossein Asgharian for valuable
discussion. We would also like to thank Nick Barton, Sarah Signor,
Todd Parsons, and Joachim Hermisson for very helpful comments on the
manuscript. Work on this project was supported by funds from the Sloan
Foundation and the NSF (under DBI-1262645) to P. L. Ralph.

DATA ARCHIVING
Code for the oscillator examples is archived at https://doi.org/10.5281/
zenodo.5510701 .

LITERATURE CITED
Ali, S., S. A. Signor, K. Kozlov, and S. V. Nuzhdin. 2019. Novel approach

to quantitative spatial gene expression uncovers genetic stochasticity in
the developing Drosophila eye. Evol. Dev. 21:157–171.

Álvarez-Castro, J. M., M. Kopp, and J. Hermisson. 2009. Effects of epista-
sis and the evolution of genetic architecture: exact results for a 2-locus
model. Theor. Popul. Biol. 75:109–122.

Anderson, B., R. Newcomb, R. Kalman, and D. Youla. 1966. Equivalence of
linear time-invariant dynamical systems. J. Franklin Inst. 281:371–378.

Baatz, M., and G. Wagner. 1997. Adaptive inertia caused by hidden
pleiotropic effects. Theor. Popul. Biol. 51:49–66.

Babajide, A., I. L. Hofacker, M. J. Sippl, and P. F. Stadler. 1997. Neutral
networks in protein space: a computational study based on knowledge-
based potentials of mean force. Fold. Des. 2:261–269.

Barley, A. J., J. White, A. C. Diesmos, and R. M. Brown. 2013. The challenge
of species delimitation at the extremes: diversification without morpho-
logical change in Philippine sun skinks. Evolution 67:3556–3572.

246 EVOLUTION FEBRUARY 2022

https://doi.org/10.5281/zenodo.5510701
https://doi.org/10.5281/zenodo.5510701


SYSTEM DRIFT AND SPECIATION

H Barton, N. 1986. The maintenance of polygenic variation through a balance
between mutation and stabilizing selection. Genet. Res. 47:209–216.

———. 1989. The divergence of a polygenic system subject to stabilizing
selection, mutation and drift. Genet. Res. 54:59–78.

———. 2001. The role of hybridization in evolution. Mol. Ecol. 10:551–568.
Bateson, W. 1909. Heredity and variation in modern lights. Cambridge Univ.

Press, Cambridge.
Bell, G. 2010. Fluctuating selection: the perpetual renewal of adaptation in

variable environments. Philos. Trans. R. Soc. B 365:87–97.
Bellman, R. E., and K. J. Åström. 1970. On structural identifiability. Math.

Biosci. 7:329–339.
Bergman, A., and M. L. Siegal. 2003. Evolutionary capacitance as a general

feature of complex gene networks. Nature 424:549–552.
Chertkova, A. A., J. S. Schiffman, S. V. Nuzhdin, K. N. Kozlov, M.

G. Samsonova, and V. V. Gursky. 2017. In silico evolution of the
Drosophila gap gene regulatory sequence under elevated mutational
pressure. BMC Evol. Biol. 17:4. https://doi.org/10.1186/s12862-016-
0866-y.

Chevin, L.-M., G. Decorzent, and T. Lenormand. 2014. Niche dimensionality
and the genetics of ecological speciation. Evolution 68:1244–1256.

Coolon, J. D., C. J. McManus, K. R. Stevenson, B. R. Graveley, and
P. J. Wittkopp. 2014. Tempo and mode of regulatory evolution in
Drosophila. Genome Res. 24:797–808.

Coyne, J. A., and H. A. Orr. 1998. The evolutionary genetics of speciation.
Philos. Trans. R. Soc. Lond. B 353:287–305.

Craciun, G., and C. Pantea. 2008. Identifiability of chemical reaction net-
works. J. Math. Chem. 44:244–259.

Crespi, B., and P. Nosil. 2013. Conflictual speciation: species formation via
genomic conflict. Trends Ecol. Evol. 28:48–57.

Crombach, A., K. R. Wotton, E. Jiménez-Guri, and J. Jaeger. 2016. Gap gene
regulatory dynamics evolve along a genotype network. Mol. Biol. Evol.
33:1293–1307.

Dalal, C. K., and A. D. Johnson. 2017. How transcription circuits explore
alternative architectures while maintaining overall circuit output. Genes
Dev. 31:1397–1405.

Dalal, C. K., I. A. Zuleta, K. F. Mitchell, D. R. Andes, H. El-Samad, and A.
D. Johnson. 2016. Transcriptional rewiring over evolutionary timescales
changes quantitative and qualitative properties of gene expression. eLife
5:e18981.

Davidson, E. H., and D. H. Erwin. 2006. Gene regulatory networks and the
evolution of animal body plans. Science 311:796–800.

de Visser, J. A. G. M., J. Hermisson, G. P. Wagner, L. A. Meyers, H. Bagheri-
Chaichian, J. L. Blanchard, L. Chao, J. M. Cheverud, S. F. Elena, W.
Fontana, et al. 2003. Perspective: evolution and detection of genetic ro-
bustness. Evolution 57:1959–1972.

Draghi, J., and M. Whitlock. 2015. Robustness to noise in gene expres-
sion evolves despite epistatic constraints in a model of gene networks.
Evolution 69:2345–2358.

Edelman, G. M., and J. A. Gally. 2001. Degeneracy and complexity in bio-
logical systems. Proc. Natl. Acad. Sci. U.S.A. 98:13763–13768.

Fierst, J. L., and T. F. Hansen. 2010. Genetic architecture and postzygotic re-
productive isolation: evolution of Bateson–Dobzhansky–Muller incom-
patibilities in a polygenic model. Evolution 64:675–693.

Fraïsse, C., P. A. Gunnarsson, D. Roze, N. Bierne, and J. J. Welch. 2016.
The genetics of speciation: insights from Fisher’s geometric model.
Evolution 70:1450–1464.

Fry, J. D. 2009. Laboratory experiments on speciation. Pp. 631–656 in T. J.
Garland and R. Michael, eds. Concepts, methods, and applications of
selection experiments. Univ. of California Press, Berkeley, CA.

Gavin-Smyth, J., and D. R. Matute. 2013. Embryonic lethality leads to hybrid
male inviability in hybrids between Drosophila melanogaster and D.
santomea. Ecol. Evol. 3:1580–1589.

Gavrilets, S. 1997. Evolution and speciation on holey adaptive landscapes.
Trends Ecol. Evol. 12:307–312.

———. 2014. Models of speciation: where are we now? J. Hered. 105:743–
755.

H Gillespie, J. 2000. Genetic drift in an infinite population: the pseudohitch-
hiking model. Genetics 155:909–919.

Grewal, M., and K. Glover. 1976. Identifiability of linear and nonlinear dy-
namical systems. IEEE Trans. Autom. Control 21:833–837.

Grüner, W., R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L. Hofacker,
P. F. Stadler, and P. Schuster. 1996. Analysis of RNA sequence structure
maps by exhaustive enumeration I. Neutral networks. Monatsh. Chem.
127:355–374.

Gutenkunst, R. N., J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, and
J. P. Sethna. 2007. Universally sloppy parameter sensitivities in systems
biology models. PLoS Comput. Biol. 3:e189.

Haerty, W., and R. S. Singh. 2006. Gene regulation divergence is a major con-
tributor to the evolution of Dobzhansky–Muller incompatibilities be-
tween species of Drosophila. Mol. Biol. Evol. 23:1707–1714.

Haldane, J. 1922. Sex ratio and unisexual sterility in hybrid animals. J. Genet.
12:101–109.

Hare, E. E., B. K. Peterson, V. N. Iyer, R. Meier, and M. B. Eisen. 2008. Sep-
sid even-skipped enhancers are functionally conserved in Drosophila
despite lack of sequence conservation. PLoS Genet. 4:e1000106.

Hart, K. M., M. J. Harms, B. H. Schmidt, C. Elya, J. W. Thornton, and
S. Marqusee. 2014. Thermodynamic system drift in protein evolution.
PLoS Biol. 12:e1001994.

Hedges, S. B., J. Marin, M. Suleski, M. Paymer, and S. Kumar. 2015. Tree
of life reveals clock-like speciation and diversification. Mol. Biol. Evol.
32:835–845.

Hermisson, J., T. F. Hansen, and G. P. Wagner. 2003. Epistasis in polygenic
traits and the evolution of genetic architecture under stabilizing selec-
tion. Am. Nat. 161:708–734.

Israel, J. W., M. L. Martik, M. Byrne, E. C. Raff, R. A. Raff, D. R. McClay,
and G. A. Wray. 2016. Comparative developmental transcriptomics re-
veals rewiring of a highly conserved gene regulatory network during
a major life history switch in the sea urchin genus Heliocidaris. PLoS
Biol. 14:e1002391.

Jaeger, J., 2011. The gap gene network. Cell. Mol. Life Sci. 68:243–274.
Jaeger, J., S. Surkova, M. Blagov, H. Janssens, D. Kosman, K. N. Kozlov, E.

Myasnikova, C. E. Vanario-Alonso, M. Samsonova, D. H. Sharp, et al.
2004. Dynamic control of positional information in the early Drosophila

embryo. Nature 430:368–371.
Jiménez, A., J. Cotterell, A. Munteanu, and J. Sharpe, 2017. A spectrum of

modularity in multi-functional gene circuits. Mol. Syst. Biol. 13:925.
D Johnson, A. 2017. The rewiring of transcription circuits in evolution. Curr.

Opin. Genet. Dev. 47:121–127.
E Kalman, R. 1963. Mathematical description of linear dynamical systems. J.

SIAM Control 1:152–192.
Kalman, R. E., P. L. Falb, and M. A. Arbib. 1969. Topics in mathematical

system theory. McGraw-Hill, New York.
Kasowski, M., F. Grubert, C. Heffelfinger, M. Hariharan, A. Asabere, S.

M. Waszak, L. Habegger, J. Rozowsky, M. Shi, A. E. Urban, et al.
2010. Variation in transcription factor binding among humans. Science
328:232–235.

Kozlov, K., V. V. Gursky, I. V. Kulakovskiy, A. Dymova, and M. Samsonova.
2015. Analysis of functional importance of binding sites in the
Drosophila gap gene network model. BMC Genomics 16:S7.

EVOLUTION FEBRUARY 2022 247

https://doi.org/10.1186/s12862-016-0866-y
https://doi.org/10.1186/s12862-016-0866-y


J. S . SCHIFFMAN AND P. L. RALPH

Lande, R., 1976. Natural selection and random genetic drift in phenotypic
evolution. Evolution 30:314–334.

Lappalainen, T., M. Sammeth, M. R. Friedländer, P. A. ’tHoen, J. Monlong,
M. A. Rivas, M. Gonzalez-Porta, N. Kurbatova, T. Griebel, P. G.
Ferreira, et al. 2013. Transcriptome and genome sequencing uncovers
functional variation in humans. Nature 501:506–511.

Lindtke, D., and C. A. Buerkle. 2015. The genetic architecture of hybrid in-
compatibilities and their effect on barriers to introgression in secondary
contact. Evolution 69:1987–2004.

Lynch, M., and A. G. Force. 2000. The origin of interspecific genomic in-
compatibility via gene duplication. Am. Nat. 156:590–605.

Mack, K. L., and M. W. Nachman. 2016. Gene regulation and speciation.
Trends Genet. 33:68–80.

Maheshwari, S., and D. A. Barbash. 2012. Cis-by-trans regulatory divergence
causes the asymmetric lethal effects of an ancestral hybrid incompati-
bility gene. PLoS Genet. 8:e1002597.

Mani, G., and B. C. Clarke. 1990. Mutational order: a major stochastic pro-
cess in evolution. Proc. R. Soc. Lond. B 240:29–37.

Martin, G. 2014. Fisher’s geometrical model emerges as a property of com-
plex integrated phenotypic networks. Genetics 197:237–255.

Matsui, T., R. Linder, J. Phan, F. Seidl, and I. M. Ehrenreich. 2015. Regula-
tory rewiring in a cross causes extensive genetic heterogeneity. Genetics
201:769–777.

Mayr, E. 2000. The biological species concept. Pp. 17–29 in Q. D. Wheeler
and R. Meier, eds. Species concepts and phylogenetic theory: a debate.
Columbia Univ. Press, New York.

Michalak, P., and M. A. Noor. 2004. Association of misexpression with steril-
ity in hybrids of Drosophila simulans and D. mauritiana. J. Mol. Evol.
59:277–282.

Mjolsness, E., D. H. Sharp, and J. Reinitz. 1991. A connectionist model of
development. J. Theor. Biol. 152:429–453.

Nei, M., T. Maruyama, and C.-I. Wu. 1983. Models of evolution of reproduc-
tive isolation. Genetics 103:557–579.

Nimwegen, E. V., J. P. Crutchfield, and M. Huynen. 1999. Neutral evolution
of mutational robustness. Proc. Natl. Acad. Sci. U.S.A. 96:9716–9720.

A Orr, H. 1997. Haldane’s rule. Annu. Rev. Ecol. Syst. 28:195–218.
Orr, H. A., J. P. Masly, and D. C. Presgraves. 2004. Speciation genes. Curr.

Opin. Genet. Dev. 14:675–679.
Pavlicev, M., and G. P. Wagner. 2012. A model of developmental evolution:

selection, pleiotropy and compensation. Trends Ecol. Evol. 27:316–
322.

Petrov, Y., and V. Sizikov. 2005. Well-posed, ill-posed, and intermediate
problems with applications. Vol. 49. Walter de Gruyter, Berlin.

C Phillips, P. 1996. Maintenance of polygenic variation via a migration–
selection balance under uniform selection. Evolution 50:1334–
1339.

Piazza, M., X.-J. Feng, J. D. Rabinowitz, and H. Rabitz. 2008. Diverse
metabolic model parameters generate similar methionine cycle dynam-
ics. J. Theor. Biol. 251:628–639.

Porter, A. H., and N. A. Johnson. 2002. Speciation despite gene flow when
developmental pathways evolve. Evolution 56:2103–2111.

C Presgraves, D. 2010. The molecular evolutionary basis of species forma-
tion. Nat. Rev. Genet. 11:175–180.

H Rice, S.. 1998. The evolution of canalization and the breaking of von Baer’s
laws: modeling the evolution of development with epistasis. Evolution
52:647–656.

Rieseberg, L. H., M. A. Archer, and R. K. Wayne. 1999. Transgressive segre-
gation, adaptation and speciation. Heredity 83:363–372.

Rosas, U., N. H. Barton, L. Copsey, P. Barbier de Reuille, and E. Coen. 2010.
Cryptic variation between species and the basis of hybrid performance.
PLOS Biol. 8:1–12.

Roux, C., C. Fraisse, J. Romiguier, Y. Anciaux, N. Galtier, and N. Bierne.
2016. Shedding light on the grey zone of speciation along a continuum
of genomic divergence. PLoS Biol. 14:e2000234.

Sánchez-Ramírez, S., J. G. Weiss, C. G. Thomas, and A. D. Cutter. 2021.
Widespread misregulation of inter-species hybrid transcriptomes due
to sex-specific and sex-chromosome regulatory evolution. PLoS Genet.
17:e1009409.

Schluter, D. 2009. Evidence for ecological speciation and its alternative.
Science 323:737–741.

Schmidt, D., M. D. Wilson, B. Ballester, P. C. Schwalie, G. D. Brown,
A. Marshall, C. Kutter, S. Watt, C. P. Martinez-Jimenez, S. Mackay,
I. Talianidis, P. Flicek, and D. T. Odom. 2010. Five-vertebrate ChIP-
seq reveals the evolutionary dynamics of transcription factor binding.
Science 328:1036–1040.

Seehausen, O., R. K. Butlin, I. Keller, C. E. Wagner, J. W. Boughman, P. A.
Hohenlohe, C. L. Peichel, G.-P. Saetre, C. Bank, Å. Brännström, et al.
2014. Genomics and the origin of species. Nat. Rev. Genet. 15:176–192.

Servedio, M. R., Y. Brandvain, S. Dhole, C. L. Fitzpatrick, E. E. Goldberg,
C. A. Stern, J. Van Cleve, and D. J. Yeh. 2014. Not just a theory—
the utility of mathematical models in evolutionary biology. PLoS Biol.
12:e1002017.

Siegal, M. L., and A. Bergman. 2002. Waddington’s canalization revisited:
developmental stability and evolution. Proc. Natl. Acad. Sci. U.S.A.
99:10528–10532.

Simon, A., N. Bierne, and J. J. Welch. 2017. Coadapted genomes and selec-
tion on hybrids: Fisher’s geometric model explains a variety of empiri-
cal patterns. Evol. Lett. 2:472–498.

Slatkin, M., and R. Lande. 1994. Segregation variance after hybridization of
isolated populations. Genet. Res. 64:51–56.

Sonneborn, T. 1965. Degeneracy of the genetic code: extent, nature, and ge-
netic implications. Pp. 377–397 in Evolving genes and proteins. Else-
vier, Amsterdam.

Stefflova, K., D. Thybert, M. D. Wilson, I. Streeter, J. Aleksic, P. Karagianni,
A. Brazma, D. J. Adams, I. Talianidis, J. C. Marioni, P. Flicek, and D.
T. Odom. 2013. Cooperativity and rapid evolution of cobound transcrip-
tion factors in closely related mammals. Cell 154:530–540.

Stelkens, R., and O. Seehausen. 2009. Genetic distance between species pre-
dicts novel trait expression in their hybrids. Evolution: International
Journal of Organic Evolution 63:884–897.

A Sved, J.. 1981. A two-sex polygenic model for the evolution of premating
isolation. II. Computer simulation of experimental selection procedures.
Genetics 97:217–235.

Trojanowski, N. F., O. Padovan-Merhar, D. M. Raizen, and C. Fang-Yen.
2014. Neural and genetic degeneracy underlies Caenorhabditis elegans

feeding behavior. J. Neurophysiol. 112:951–961.
True, J. R., and E. S. Haag. 2001. Developmental system drift and flexibility

in evolutionary trajectories. Evol. Dev. 3:109–119.
Tsong, A. E., B. B. Tuch, H. Li, and A. D. Johnson. 2006. Evolution of al-

ternative transcriptional circuits with identical logic. Nature 443:415–
420.

Tulchinsky, A. Y., N. A. Johnson, W. B. Watt, and A. H. Porter. 2014. Hy-
brid incompatibility arises in a sequence-based bioenergetic model of
transcription factor binding. Genetics 198:1155–1166.

Tung, J., X. Zhou, S. C. Alberts, M. Stephens, and Y. Gilad. 2015. The genetic
architecture of gene expression levels in wild baboons. eLife 4:e04729.

Van der Schaft, A. 2004. Equivalence of dynamical systems by bisimulation.
IEEE Trans. Autom. Control 49:2160–2172.

Verlaan, D. J., B. Ge, E. Grundberg, R. Hoberman, K. C. Lam, V. Koka, J.
Dias, S. Gurd, N. W. Martin, H. Mallmin, et al. 2009. Targeted screening
of cis-regulatory variation in human haplotypes. Genome Res. 19:118–
127.

248 EVOLUTION FEBRUARY 2022



SYSTEM DRIFT AND SPECIATION

von, Dassow, G., E. Meir, E. M. Munro, and G. M. Odell. 2000. The segment
polarity network is a robust developmental module. Nature 406:188–
192.

Wagner, A. 1994. Evolution of gene networks by gene duplications: a mathe-
matical model and its implications on genome organization. Proc. Natl.
Acad. Sci. U.S.A. 91:4387–4391.

———. 1996. Does evolutionary plasticity evolve? Evolution 50:1008–1023.
———. 2008. Robustness and evolvability: a paradox resolved. Proc. R. Soc.

B 275:91–100.
Walter, E., Y. Lecourtier, and J. Happel. 1984. On the structural output dis-

tinguishability of parametric models, and its relations with structural
identifiability. IEEE Trans. Autom. Control 29:56–57.

Wang, M., S. Uebbing, and H. Ellegren. 2017. Bayesian inference of allele-
specific gene expression indicates abundant cis-regulatory variation in
natural flycatcher populations. Genome Biol. Evol. 9:1266–1279.

Weiss, K. M., and S. M. Fullerton. 2000. Phenogenetic drift and the evolution
of genotype–phenotype relationships. Theor. Popul. Biol. 57:187–195.

M Whitacre, J.. 2010. Degeneracy: a link between evolvability, robustness
and complexity in biological systems. Theor. Biol. Med. Modell. 7:6.

White, N. J., R. R. Snook, and I. Eyres. 2020. The past and future of experi-
mental speciation. Trends Ecol. Evol. 35:10–21.

Wotton, K. R., E. Jiménez-Guri, A. Crombach, H. Janssens, A. Alcaine-Colet,
S. Lemke, U. Schmidt-Ott, and J. Jaeger. 2015. Quantitative system drift
compensates for altered maternal inputs to the gap gene network of the
scuttle fly Megaselia abdita. eLife 4:e04785.

Wright, S. 1935. Evolution in populations in approximate equilibrium. J.
Genet. 30:257.

Yamaguchi, R., and Y. Iwasa. 2013. First passage time to allopatric speciation.
Interface Focus 3:20130026.

Zadeh, L. A., and C. A. Deoser. 1976. Linear system theory. Robert E. Krieger
Publishing Company, Huntington, NY.

Associate Editor: C. Bank
Handling Editor: T. Chapman

Appendix: Local Expansion of the
Fitness Surface

The fitness of a system depends on the difference between

the system’s impulse response and the optimal impulse response,

measured as a weighted sum of the distance between the impulse

response from optimal. With ρ(t ) ≥ 0 a weighting function on

[0,∞), and h0(t ) = C0etA0 B0 a representative of the optimal set,

the distance is equation (5):

D(h) =
(∫ ∞

0
ρ(t )‖h(t ) − h0(t )‖2dt

)1/2

. (A1)

To see how this is affected by small changes to the system, first

note that if ‖ · ‖ρ is the L2(ρ) norm,

‖g‖2
ρ :=

∫ ∞

0
ρ(t )‖g(t )‖2dt, (A2)

then the distance to optimum of a perturbed system, h(t ) =
h0(t ) + εg(t ), is

D(h0 + εg) = ε‖g‖ρ. (A3)

Now consider the perturbed systems (A(ε), B(ε),C(ε)) =
(A(0), B(0),C(0)) + ε(U,V,W ), and let hε (t ) = C(ε)eA(ε)t B(ε).

If two populations with systems (A(0), B(0),C(0)) and

(A(ε), B(ε),C(ε)) interbreed, then the mean resulting system is

(A(ε/2), B(ε/2),C(ε/2)), but with greater variance in the F2 than

the F1 offspring (see Figure 4). Indeed, if the difference between

(say) A(0)i j and A(ε)i j is due to n fixed differences with abso-

lute additive effect size ε/
√

n each, then the standard deviation

of Ai j among the F1 offspring is still equal to that within each

parent population, as each locus is heterozygous. However, if loci

are unlinked then an F2 offspring is homozygous with probabil-

ity 1/2, and takes either homozygote with equal probability, so

the variance of the contribution of each locus is ε/4
√

n, and so

the standard deviation across F2 offspring is ε/4 plus a contri-

bution for within-population genetic variance. (This many differ-

ences of this size would be expected if the difference was due to

drift, for instance.) This implies that the impulse response, h(t ),

of an F2 will also differ from optimum by something of order ε.

However, because the displacement between the populations lies

along a ridge, the F1 offspring are closer: the Taylor expansions

for h about both 0 and ε are

hε/2(t ) = h0(t ) + ε

2
∂εh0(t ) + ε2

8
∂2
ε h0(t ) + O(ε3) (A4)

and = hε (t ) − ε

2
∂εhε (t ) + ε2

8
∂2
ε hε (t ) + O(ε3). (A5)

As hε (t ) = h0(t ) by assumption, and ∂εhε (t ) = ∂εh0(t ) +
ε∂2

ε h0(t ) + O(ε2), combining these expressions we get that

hε/2(t ) = h0(t ) − ε2

8
∂2
ε h0(t ) + O(ε3). (A6)

In other words, if the parental populations are both optimal but

differ by ε, then the F1 offspring differ from optimal by something

of order ε2, but the F2 by something of order ε.

Of course, when moving away from the ridge, the fitness

landscape is flatter in some directions than others, and how much

so depends on the details. For completeness, we describe here

how to compute the sensitivity of distance to optimum with re-

spect to each of A, B and C. Changing notation slightly, let us

rewrite the squared distance to optimum of a system (A, B,C):

D(A, B,C)2 :=
∫ ∞

0
ρ(t )|hA(t ) − h0(t )|2dt

=
∫ ∞

0
ρ(t )

∣∣CeAt B − C0eA0t B0

∣∣2
dt

=
∫ ∞

0
ρ(t )tr

{(
CeAt B − C0eA0t B0

)T

(
CeAt B − C0eA0t B0

)}
dt

=
∫ ∞

0
ρ(t )tr

{(
CeAt B − C0eA0t B0

)
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(
CeAt B − C0eA0t B0

)T
}

dt, (A7)

where trX denotes the trace of a square matrix X . How does this

change as we perturb about (A0, B0,C0)? First we differentiate

with respect to A, keeping B = B0 and C = C0 fixed. As

d

du
e(A+uZ )t

∣∣∣∣
u=0

=
∫ t

0
eAsZeA(t−s)ds, (A8)

we have that

d

du
D(A + uZ, B0,C0)2|u=0 = 2

∫ ∞

0
ρ(t )tr

{
C0

(∫ t

0
eAsZeA(t−s)ds

)

B0BT
0

(
eAt − eA0t

)T
CT

0

}
dt

= 2
∫ ∞

0
ρ(t )tr

{
C0

(∫ t

0
eAsZeA(t−s)ds

)

B0(hA(t ) − h0(t ))T
}

dt (A9)

and, by differentiating this and supposing that A is on the optimal

set, that is, hA(t ) = h0(t ), (so without loss of generality, A = A0):

HA,A(Y, Z ) := 1

2

d

du

d

dv
D(A0 + uY + vZ, B0,C0)2

∣∣∣∣
u=v=0

=
∫ ∞

0
ρ(t )tr

{
C0

(∫ t

0
eA0sYeA0(t−s)ds

)

B0BT
0

(∫ t

0
eA0sZeA0(t−s)ds

)T

CT
0

}
dt . (A10)

The function H will define a quadratic form. To illustrate

the use of this, suppose that B and C are fixed. By defining �i j

to be the matrix with a 1 in the (i, j)th slot and 0 elsewhere, the

coefficients of the quadratic form are

Hi j,k�(A) := H(�i j,�k�). (A11)

We could use this to get the quadratic approximation to D

near the optimal set. To do so, it would be nice to have a way

to compute the inner integral above. Suppose that we diagonalize

A = U�U −1. Then∫ t

0
eAsZeA(t−s)ds =

∫ t

0
Ue�sU −1ZUe�(t−s)U −1ds. (A12)

Now, note that

∫ t

0
esλi e(t−s)λ j ds =

⎧⎪⎨
⎪⎩

etλi − etλ j

λi − λ j
if i �= j

tetλi if i = j.
(A13)

Therefore, defining

Xi j (t, Z ) =

⎧⎪⎨
⎪⎩

(U −1ZU )i j
etλi − etλ j

λi − λ j
if i �= j

(U −1ZU )iitetλi if i = j,
(A14)

moving the U and U −1 outside the integral and integrating we get

that ∫ t

0
eAsZeA(t−s)ds = UX (t, Z )U −1. (A15)

This implies that

D(A0 + εZ )2 ≈ 1

2
ε2

∫ ∞

0
ρ(t )tr{CUX (t, Z )U −1BBT (U −1)T

X (t, Z )T U T CT }dt . (A16)

To compute the n2 × n2 matrix H , we see that if Z = �k�,

then

X k�
i j (t ) =

⎧⎪⎨
⎪⎩

(U −1)·kU�·
etλi − etλ j

λi − λ j
if i �= j

(U −1)·kU�·tetλi if i = j,
(A17)

where Uk· is the kth row of U , and so

Hi j,k�(A) =
∫ ∞

0
ρ(t )tr{CUX i j (t )U −1BBT (U −1)T

X k�(t )T U T CT }dt . (A18)

This implies that

D(A0 + εZ )2 ≈ 1

2
ε2

∑
i jk�

Hi j,k�(A0)Zi jZk�. (A19)

More generally, B and C may also change. To extend this we

need the remaining second derivatives of D2. First, in B:

HB,B(Y, Z ) := 1

2

d

du

d

dv
D(A0, B0 + uY + vZ,C0)|u=v=0

= 1

2

∫ ∞

0
ρ(t )tr

{
C0etA0

d

du

d

dv
(uY + vZ )(uY + vZ )T

|u=v=0etAT
0 CT

0

}
dt

= 1

2

∫ ∞

0
ρ(t )tr

{
C0etA0 (Y ZT + ZY T )etAT

0 CT
0

}
dt .(A20)

Next, in C:

HB,B(Y, Z ) := 1

2

d

du

d

dv
D(A0, B0,C0 + uY + vZ )|u=v=0

= 1

2

∫ ∞

0
ρ(t )tr

{
B0etAT

0
d

du

d

dv
(uY + vZ )T

(uY + vZ )|u=v=0etA0 B0
}

dt

= 1

2

∫ ∞

0
ρ(t )tr

{
B0etAT

0 (Y ZT + ZY T )

etA0 B0
}

dt . (A21)

Now, the mixed derivatives in B and C:

HB,C (Y, Z ) := 1

2

d

du

d

dv
D(A0, B0 + uY,C0 + vZ )|u=v=0
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=
∫ ∞

0
ρ(t )tr

{
YetAT

0 CT
0 ZetA0 B0

}
dt . (A22)

In A and B

HA,B(Y, Z ) := 1

2

d

du

d

dv
D(A0 + uY, B0 + vZ,C0)|u=v=0

=
∫ ∞

0
ρ(t )tr

{
C0

(∫ t

0
esA0Ye(t−s)A0 ds

)

B0ZT etA0C0
}

dt, (A23)

and finally in A and C:

HA,C (Y, Z ) := 1

2

d

du

d

dv
D(A0 + uY, B0,C0 + vZ )|u=v=0

=
∫ ∞

0
ρ(t )tr

{
C0

(∫ t

0
esA0Ye(t−s)A0 ds

)

B0B0etA0 Z
}

dt . (A24)

Together, numerical computation of these expressions, along

with estimates of genetic covariance within a population, allow

precise predictions of evolutionary dynamics of a particular sys-

tem. The approximation should be good as long as the second-

order Taylor approximation holds.
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