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Abstract
Regulated  Na+ transport in the distal nephron is of fundamental importance to fluid and electrolyte homeostasis. Further upstream,  Na+ 
is the principal driver of secondary active transport of numerous organic and inorganic solutes. In the distal nephron,  Na+ continues 
to play a central role in controlling the body levels and concentrations of a more select group of ions, including  K+,  Ca++,  Mg++,  Cl−, 
and  HCO3

−, as well as water. Also, of paramount importance are transport mechanisms aimed at controlling the total level of  Na+ 
itself in the body, as well as its concentrations in intracellular and extracellular compartments. Over the last several decades, the trans-
porters involved in moving  Na+ in the distal nephron, and directly or indirectly coupling its movement to that of other ions have been 
identified, and their interrelationships brought into focus. Just as importantly, the signaling systems and their components—kinases, 
ubiquitin ligases, phosphatases, transcription factors, and others—have also been identified and many of their actions elucidated. This 
review will touch on selected aspects of ion transport regulation, and its impact on fluid and electrolyte homeostasis. A particular 
focus will be on emerging evidence for site-specific regulation of the epithelial sodium channel (ENaC) and its role in both  Na+ and 
 K+ homeostasis. In this context, the critical regulatory roles of aldosterone, the mineralocorticoid receptor (MR), and the kinases 
SGK1 and mTORC2 will be highlighted. This includes a discussion of the newly established concept that local  K+ concentrations are 
involved in the reciprocal regulation of  Na+-Cl− cotransporter (NCC) and ENaC activity to adjust renal  K+ secretion to dietary intake.

Keywords Na+-Cl− cotransporter (NCC) · Epithelial sodium channel (ENaC) · Renal outer medullary  K+ channel 
(ROMK) · Aldosterone · Mineralocorticoid receptor (MR) · 11ß-hydroxysteroid dehydrogenase type 2 (11ßHSD2) · 
Serum and glucocorticoid-regulated kinase 1 (SGK1); mTOR complex 2 (mTORC2) · With no lysine · Kinase 1 and 4 
(WNK1 and WNK4) · Aldosterone-sensitive distal nephron (ASDN) · Early distal convoluted tubule (DCT1) · Late distal 
convoluted tubule (DCT2) · Connecting tubule (CNT) · Cortical collecting duct (CCD)

Introduction

Sodium is central to human biology in large measure due to 
its essential roles in establishing electrochemical gradients 
across the plasma membrane of virtually all cells, and in 

controlling the absorption, distribution, and excretion of 
water and a multitude of electrolytes and organic solutes. 
Consequently, sodium ion  (Na+) transport is tightly regu-
lated at all points of compartment separation. This review 
will focus on  Na+ transport in the cortical distal nephron, 
comprising the distal convoluted tubule (DCT), connecting 
tubule (CNT), and cortical collecting duct (CCD), shown 
schematically in Fig. 1. Here, transepithelial ion transport 
and water reabsorption are fine tuned to adapt to changes 
in electrolyte concentrations and the overall fluid and elec-
trolyte content of the body. In this context,  Na+ transport in 
the distal nephron not only plays a central role in determin-
ing the body’s overall  Na+ content therefore blood pres-
sure, but it also critically impacts the excretion of other 
ions and is central to regulating extracellular fluid (ECF) 
electrolyte concentrations. This additional regulatory role 
of distal tubular  Na+ transport is strikingly displayed in the 
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control of ECF  K+ concentration  [K+]. It is well known 
that  Na+ mishandling can cause both hyperkalemia and 
hypokalemia, and their reciprocal effects on each other’s 
transport are increasingly recognized [62, 68, 97, 161]. 
Other articles in this collection will go into detail regarding 
the transport and regulation of  K+ [95], and blood pres-
sure [173]. Here, we will particularly focus on two  Na+ 
transport mediators and their regulatory interplay: in the 
DCT, the electroneutral  Na+-Cl− cotransporter (NCC) and 
in the aldosterone-sensitive distal nephron (ASDN), the 
epithelial  Na+ channel (ENaC) (Fig. 1). We will primarily 

address key aspects of their regulation, with special atten-
tion to the steroid hormone, aldosterone, and local effects 
of peritubular  K+. In addition to their roles in controlling 
overall body  Na+ content, and hence extracellular fluid 
volume and blood pressure, the relative activities of these 
two apical membrane mediators of  Na+ entry play key 
roles in establishing luminal conditions that favor or dis-
favor  K+ secretion. Water transport, which is central to all 
aspects of fluid and electrolyte homeostasis [41], will not 
be addressed here.

Fig. 1  Segment-specific sodium transport mechanisms in the distal 
nephron. a Schematic representation of a single nephron highlight-
ing different segments of the distal nephron, i.e., the distal convoluted 
tubule with its early (DCT1) and late (DCT2) portion, the connect-
ing tubule (CNT), the cortical collecting duct (CCD), and the outer 
medullary collecting duct (OMCD). b Tubule epithelial cell mod-
els illustrating segment-specific apical sodium uptake mechanisms. 
Basolateral sodium extrusion in exchange for potassium  (3Na+/2  K+) 
is accomplished by the basolateral  Na+-K+-ATPase in all cell types. 
A defining feature of both DCT1 and DCT2 is the apical  Na+-Cl− 
cotransporter (NCC); DCT2, but not DCT1, also expresses the epi-
thelial sodium channel (ENaC). ENaC is the sole apical sodium 
uptake mechanism in CNT and CCD principal cells. In addition to 
playing a decisive role in fine tuning renal sodium absorption, ENaC 

also generates the electrical driving force necessary for  K+ secretion 
meditated primarily by the apical renal outer medullary  K+ channel 
(ROMK). In the late CNT and entire CCD (CNT/CCD), aldosterone 
(A) is the key hormonal activator of ENaC through the mineralocorti-
coid receptor (MR) which is protected from glucocorticoid action by 
11ß-hydroxysteroid dehydrogenase type 2 (11βHSD2). In the DCT2 
and early CNT (DCT2/CNT), MR appears to have constitutive activ-
ity, possibly due to low levels of 11βHSD2, allowing glucocorticoids 
(G) to activate the receptor. This provides a potential explanation for 
the aldosterone-independent but MR-dependent ENaC activity in the 
latter region, which is probably important for  Na+ homeostasis and 
blood pressure control, as well as aldosterone-independent  K+ secre-
tion
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Aldosterone regulation of  Na+ transport 
in the distal nephron

Aldosterone is the key hormonal factor regulating  Na+ trans-
port in the distal nephron, and for coupling  Na+ reabsorp-
tion with  K+ secretion. Aldosterone was discovered as “the 
mineralocorticoid” factor in beef adrenal extracts as assessed 
by a bio-assay based on the effect of corticosteroid fractions 
on the urinary  Na+/K+ ratio in adrenalectomized rats [165]. 
Thus, from the very inception of aldosterone research, its 
role in concomitantly controlling both  Na+ and  K+ trans-
port was its defining characteristic. Decades of endocrine 
signaling, ion transport, and electrolyte research have led 
to a cohesive picture of aldosterone action and pathophysi-
ologic roles, which have been elaborated in other reviews 
[82, 86, 138], including in this collection [173]. For the pre-
sent discussion of  Na+ transport, we will emphasize direct 
and indirect effects on ENaC and NCC.

Although preceded by a latent period, the initial effects 
of aldosterone are quite rapid for a genomic mechanism 
[174]: changes in  Na+/K+ ratio occur within 30–60’ in dogs 
injected with aldosterone into their renal artery [52], and 
in 1–2 h in cultured cells [12, 51, 63]. These effects are 
mediated by the mineralocorticoid receptor (MR), which 
directly regulates transcription of a large group of genes 
that impact  Na+ transport. These include SGK1, αENaC 
itself, Dot1, FKBP5, and GILZ [31, 88, 100, 119, 154, 162, 
172, 196]. ENaC is highly expressed in the apical mem-
brane of principal cells (PCs) of the ASDN and mediates 
 Na+ entry from lumen to cell. The electrochemical gradient 
that drives apical  Na+ entry and ultimately  Na+ transloca-
tion is established by the basolateral Na, K-ATPase, the 
activity of which must be coordinated with that of ENaC 
[40]. Although the ASDN re-absorbs less than 10% of the 
filtered  Na+ load, it is critical for modulating the amount 
of  Na+ that appears in the urine in response to changes in 
intake [84, 92, 112].

It is important to note that although aldosterone acts 
almost exclusively through MR, MR is not similarly exclu-
sive in its response: The major glucocorticoids (cortisol in 
primates, corticosterone in rodents) bind with high affinity 
and potently activate MR [80, 147]. MR is guarded from 
glucocorticoid activation in some tissues by the enzyme 
11ß-hydroxysteroid dehydrogenase type 2 (11ßHSD2), 
which converts both cortisol and corticosterone, but not 
aldosterone, to steroids with very little affinity for MR or 
glucocorticoid receptor (GR) [50]. 11ßHSD2 is highly 
expressed in some—but not all—parts of the distal nephron, 
which has been recently found to be of significance for 
aldosterone-independent control of ion transport and in 
particular regulation of  K+ homeostasis [90, 104, 106, 171, 
185], as is further expanded below.

The epithelial sodium channel 
in the aldosterone‑sensitive distal nephron

The ASDN consists of the second part of the distal con-
voluted tubule (DCT2), the connecting tubule (CNT), and 
the collecting duct (CD) with its various portions, i.e., the 
cortical collecting duct (CCD) and outer and inner medul-
lary collecting duct (MCD). In the absence of aldosterone, 
MCD ENaC activity is much lower than in that of cortical 
ASDN, but it is markedly stimulated by aldosterone, despite 
having slightly lower MR expression than CNT and CCD 
[45, 170]. In the ASDN, ENaC and the renal outer medullary 
 K+ channel (ROMK; also known as Kir1.1 or KCNJ1) are 
rate-limiting steps for transepithelial sodium absorption and 
potassium secretion, respectively [137, 180]. Both channels 
are localized in the apical cell membrane of principal cells 
in the CNT and CD and in principal-like cells in the DCT2 
[38, 85, 105, 192]. ENaC belongs to the ENaC/DEG fam-
ily of ion channels, and comprehensive recent reviews exist 
about its physiology and pathophysiology, its structure and 
function, and its highly complex regulation [77, 102, 144]. 
As addressed in more detail in another contribution to this 
issue [95], additional apical potassium channels may con-
tribute to potassium secretion under certain physiological 
conditions, e.g., the small conductance calcium-activated 
potassium channel 3 (SK3) [15] and Maxi-K (BK) chan-
nels [124], but ROMK is thought to be the major potas-
sium secretory pathway [180]. In the present context, it is 
important to note the critical role that ENaC plays in con-
trolling the driving force for  K+ secretion. The functional 
importance of ENaC in this context, and in controlling vol-
ume and blood pressure, is highlighted by gain-of-function 
mutations of the channel causing Liddle syndrome, and 
loss-of-function mutations causing pseudohypoaldosteron-
ism (PHA-1) [139]. PHA-I-inducing loss-of-function muta-
tions of ENaC are characterized by renal salt wasting and 
hyperkalemia [141]. In contrast, Liddle syndrome is a severe 
form of salt-sensitive arterial hypertension associated with 
hypokalemia [141]. The hypokalemia seen in Liddle syn-
drome and hyperkalemia seen in PHA-I are strong remind-
ers of the importance of ENaC in  K+ excretion [139]. Lid-
dle syndrome is rare [21, 83] but provides molecular proof 
that an inappropriate increase in ENaC activity results in 
hypertension. Thus, subtle disturbances of ENaC regulation 
resulting in increased ENaC activity are likely to contribute 
to the pathophysiology of essential hypertension, particu-
larly in a subset of patients with salt-sensitive hyperten-
sion [61, 102]. Indeed, many drugs used to treat essential 
hypertension ultimately decrease renal ENaC activity, either 
indirectly by reducing the activity of the renin–angioten-
sin–aldosterone system (RAAS) or more directly by inhib-
iting the mineralocorticoid receptor (MR) or the channel 
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itself. MR antagonists, like spironolactone, finerenone [131], 
and eplerenone, and ENaC inhibitors, like amiloride and tri-
amterene, have a blood pressure lowering effect [145], par-
ticularly in patients with resistant hypertension [181, 182]. 
The majority of mutations causing Liddle syndrome disrupt 
PY motifs localized in the C termini of the β- or γ-subunit 
of ENaC [140]. These PY motifs serve as binding sites for 
the ubiquitin ligase, NEDD4-2, a NEDD4 (neural precursor 
cell–expressed developmentally downregulated protein 4) 
family member [34, 158]. Binding at these sites facilitates 
NEDD4-2-mediated channel ubiquitination with subsequent 
channel retrieval and proteasomal degradation [143]. Muta-
tions in the PY motifs disrupt the physiological NEDD4-2/
ENaC interaction. This results in an increase in the number 
of channels at the cell surface, which is thought to be the 
main mechanism by which Liddle syndrome mutations cause 
a gain-of-function effect [75]. In addition, these mutations 
have been reported to reduce  Na+ feedback inhibition [76] 
and to increase the channel’s responsiveness to aldosterone 
[10, 16, 33]. The underlying mechanism for this enhanced 
aldosterone sensitivity is unclear but may involve increased 
trafficking of ENaC to the cell membrane. Moreover, muta-
tions affecting the PY motif of β-ENaC have been reported 
to increase channel open probability [5] possibly due to 
enhanced proteolytic channel activation [78]. The latter 
mechanism is a unique feature of ENaC [142] and involves 
cleavage at specific sites in its α- and γ-subunit, resulting in 
the release of inhibitory tracts. However, the complex mech-
anisms contributing to proteolytic ENaC activation are still 
not fully understood, and physiologically relevant proteases 
remain to be identified [4, 77].

Prostasin (PRSS8) was the first membrane-anchored ser-
ine protease demonstrated to activate ENaC in coexpression 
experiments and was therefore named channel activating 
protease 1 (CAP1). However, it remains an open question 
whether PRSS8 contributes to proteolytic ENaC regulation 
in the kidney in vivo [37, 39]. Recently, transmembrane ser-
ine protease 2 (TMPRSS2 or epitheliasin), which is highly 
expressed in several epithelial tissues including renal distal 
tubule, has been identified as a likely candidate to contribute 
to proteolytic ENaC activation [163]. Inappropriate proteo-
lytic ENaC activation by urinary plasmin may contribute to 
sodium retention and edema formation in nephrotic syndrome 
[19, 30, 116, 164], but the pathophysiological role of plasmin 
remains a matter of debate [18, 66], and additional aberrantly 
filtered urinary proteases are likely to be involved [2, 8, 9, 65].

Interestingly, several gain-of-function mutations have 
been identified also in the extracellular regions of ENaC 
subunits [28, 77, 130]. They are thought to cause Liddle 
syndrome in affected patients [149], but may also contribute 
to the pathophysiology of atypical cystic fibrosis without 
mutations in CFTR [128, 129]. These mutations primarily 
affect channel gating resulting in increased channel open 

probability. Thus, ENaC regulation is highly complex, and 
channel activity may be affected at different levels under 
pathophysiological conditions [144]. Recently, the first cryo-
EM structures of ENaC became available [108, 109]. These 
structural data open up exciting new horizons to study ENaC 
function at the molecular level [77, 195].

Consequences of ENaC activation and functional 
interdependence of sodium absorption 
and potassium secretion in the ASDN

Increased ENaC-mediated  Na+ absorption depolarizes the 
apical membrane which enhances the driving force for 
 K+ secretion via ROMK and BK channels [179]. Impor-
tantly, this electrogenic  Na+ transport is augmented by 
 Na+ delivery, which is enhanced by inhibition of upstream 
transporters; sodium-chloride cotransporter (NCC) and 
Na–K-2Cl cotransporter 2 (NKCC2) have received the 
bulk of recent attention [62, 67], but data support a role 
for sodium-hydrogen exchanger 3 (NHE3), as well [191]. 
One central mechanism for enhancing distal  Na+ delivery 
is inhibition of the thiazide-sensitive NCC through a WNK 
(with no lysine kinase)/SPAK (SPS1-related proline/alanine-
rich kinase)–dependent mechanism [, 26, 166]. The result-
ing increase in distal sodium delivery—in the presence of 
adequate active ENaC—stimulates the driving force for 
ROMK-mediated potassium secretion. Importantly, however, 
increased  Na+ delivery due to NCC inhibition in-and-of-
itself does not stimulate  K+ secretion. In particular, Hunter 
et al. showed that acute NCC inhibition using hydrocholor-
thiazide does not trigger a kaliuresis [70], and Ayasse et al. 
found that the effect of furosemide to induce a kaliuresis 
depends on ENaC expression [11]. In contrast,  K+ adminis-
tration rapidly stimulates ENaC activity concomitantly with 
NCC inhibition, even prior to a significant rise in aldos-
terone, an effect which is only partially inhibited by MR 
blockade with eplerenone [161]. Interestingly, cell culture 
experiments strongly support the idea that these effects of 
 K+ on ENaC activity are direct and mediated at least in part 
by cell autonomous activation of the mTORC2-SGK1 sign-
aling module in PCs [161]. Another potential contributing 
factor is that increased tubular flow is believed to directly 
activate ENaC through effects on open probability [101], as 
well as apical BK channels possibly via TRPV4 (transient 
receptor potential vanilloid 4 cation channel)–mediated cal-
cium inflow [180]. Clearly, a high-K+ diet increases ROMK 
activity, which plays an important role in long-term stimu-
lation of potassium secretion [177]. An increase in apical 
potassium conductance not only enhances potassium secre-
tion but also favors ENaC-mediated sodium absorption due 
to the hyperpolarization of the apical membrane potential, 
thus highlighting the complex functional interdependence 
of ENaC and ROMK in the ASDN.
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A conundrum is raised by the importance of aldosterone 
in responding to both volume depletion and hyperkalemia: 
How does the ASDN “know” to respond to aldosterone with 
an increase in NaCl reabsorption vs. increased  K+ secre-
tion? Several—non mutually exclusive—theories have been 
proposed for this “aldosterone paradox,” which remains not 
fully understood [7, 136]. Regulation of upstream electro-
neutral  Na+ reabsorption may contribute to the regulation of 
electrogenic  Na+ reabsorption [97]; however, it is not suf-
ficient [70], and other factors must obtain. Numerous hor-
monal and local factors that regulate ENaC and ROMK may 
be implicated [54, 84, 137, 180]. Angiotensin II is a logical 
candidate for shifting toward NaCl reabsorption since it rises 
in response to volume depletion or lowered blood pressure. 
Two mechanisms warrant note: (1) Angiotensin II–induced 
dephosphorylation of MR in its hormone binding domain 
(MR/S843) in intercalated cells [157]. When phosphoryl-
ated at this residue, MR cannot bind aldosterone; hence, 
the dephosphorylation is permissive for MR activation. 
 Cl− absorption through intercalated cells is activated and 
together with ENaC activation in principal cells increases 
NaCl reabsorption. Hyperkalemia has the opposite effect, 
leading to phosphorylation of MR/S843, and inactivation of 
intercalated cell MR. (2) Angiotensin II–induced modula-
tion of WNK4-kelch-like 3 signaling favors NCC activation 
[24].  K+ has the opposite effect. WNK kinase regulation of 
NCC is discussed further below. As discussed below,  K+ 
itself also has direct effects mediated by mTORC2 possibly 
in collaboration with WNK1 and/or WNK4, which alter the 
net consequences of aldosterone signaling.

The aldosterone‑MR‑SGK1 signaling module 
regulates ENaC

SGK1 (serum and glucocorticoid-regulated kinase 1) was 
first identified as a glucocorticoid-regulated gene in a breast 
cancer cell line. Its role in mediating effects of aldosterone, 
however, was recognized later when it was independently 
cloned from collecting duct cell lines as an aldosterone-reg-
ulated gene, and shown to regulate ENaC [31, 103]. SGK1 
gene transcription is rapidly stimulated by corticosteroids 
(aldosterone or cortisol/corticosterone), responding in less 
than 15’ in cultured cells and within 30’ in animals [17, 
23, 31, 103], with protein levels rising shortly thereafter. A 
variety of mechanisms and targets for SGK1 have been sug-
gested, some of which play direct roles in regulating electro-
lyte homeostasis [196], others of which likely act indirectly. 
For example, ENaC retrieval from the plasma membrane and 
degradation are regulated, at least in part by SGK1 phos-
phorylation and inhibition of the ubiquitin ligase, Nedd4-2 
[34, 159]. This led to the concept that aldosterone increases 
ENaC surface expression through diminished ubiquitination 

and inhibited internalization, which is well supported by data 
from expression systems. However, data have been mixed in 
in vivo experiments [44, 133]. Although the mechanism is 
less well understood, SGK1 also stimulates trafficking to 
the membrane [3, 118, 127]. Additionally, a smaller but 
more rapid effect is elicited by direct phosphorylation of 
the channel’s α-subunit to increase its open probability [35, 
169]. Recent evidence suggests that phosphorylation of this 
stimulatory site in the C-terminus of α-ENaC may not neces-
sarily be accomplished by SGK1 itself but may be mediated 
by the dual-specificity tyrosine phosphorylated and regu-
lated kinase 2 (DYRK2) [36]. Moreover, phosphorylation 
of this site may prime a highly conserved preceding serine 
residue to be phosphorylated by glycogen synthase kinase 3 
β (GSK3β), resulting in channel inhibition which may limit 
the initial stimulatory effect and serve as feedback inhibition. 
Interestingly, SGK1 is known to inactivate GSK3β. Thus, 
SGK1 induced by aldosterone may activate ENaC also in 
part by inactivation of GSK3β [148].

SGK1 regulation of a variety of channels and transporters 
other than ENaC has been suggested with varying degrees 
of certainty, including TRPV5, ROMK, KCNE1/KCNQ1, 
ClC-Kb, NHE3, NKCC2, NCC, and SGLT1, and the  Na+/
K+-ATPase as reviewed in ref. [81]. In the present context, 
it is notable that recent evidence strongly supports the con-
clusion that effects of aldosterone and SGK1 on NCC are 
indirect and due to ENaC-dependent lowering of plasma 
 [K+], which stimulates NCC [32, 79, 166].

It is also important to note that MR-regulated genes other 
than SGK1 are clearly physiologically critical, as witnessed 
by the dramatic differences between loss of MR vs. SGK1 
function in animal studies [13, 14, 132, 186]. The full spec-
trum of such genes remains unknown. In particular, SGK2 
and 3, close relatives of SGK1 with similar substrate speci-
ficity, are not aldosterone regulated, and findings regarding 
their effects on tubule ion transporters and channels have 
been mixed [43, 64, 114, 115].

mTORC2‑dependent activation of SGK1

One of the most striking features of SGK1 is that it is under 
dual regulation: its expression level by direct aldosterone/
MR-stimulation of gene transcription (Fig. 2), and its activity 
through mTORC2-dependent phosphorylation of its C-termi-
nal hydrophobic motif (HM) [53, 89]. HM phosphorylation 
was originally identified for SGK1’s cousins, Akt and PKC 
[74, 152], and subsequently for SGK1 [53], and its role in 
ENaC regulation was demonstrated in cultured cells [89] and 
in vivo [56]. mTORC2 is a multi-protein complex comprising 
the serine-threonine kinase mTOR and three accessory pro-
teins—mLST8, Rictor, and mSin1—which control multiple 
aspects of substrate specificity [49]. Interestingly, both insulin 
and angiotensin II stimulate mTORC2-dependent activation 
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of SGK1 and ENaC [57], which may play a role in the patho-
genesis of salt-sensitive hypertension found in type 2 diabe-
tes and the metabolic syndrome [82]. However, the central 
physiological role of mTORC2 appears to be regulation of  K+ 

secretion. Initial in vivo support for this came with characteri-
zation of renal tubule–specific Rictor knockout mice, which 
have low levels of phosphorylated SGK1, elevated aldosterone, 
and decreased ROMK but normal ENaC activity on a normal 
 Na+/normal  K+ diet [60]. Interestingly, the mice tolerate  Na+ 
restriction well, however exhibit striking hyperkalemia with 
severe natriuresis and decreased GFR on a prolonged high-K+ 
diet. Hyperkalemia became lethal when animals were treated 
with the ENaC inhibitor triamterene suggesting a more pro-
found defect in ROMK than in ENaC [60]. It is notable that in 
contrast with Rictor KO mice [60], either acute treatment of 
mice with an mTOR inhibitor [56] or mTOR gene deletion [27] 
markedly reduces ENaC activity. Although these apparently 
conflicting findings require additional study to reconcile, they 
are consistent with the possibility that in vivo mTORC1 and 
mTORC2 are both able to stimulate ENaC (via SGK1), while 
only mTORC2 regulates ROMK. It should be reiterated that 
mTOR has substrates other than SGK1—for example, PKC, 
Akt, 4EBP, or p70-S6-kinase which might be implicated in 
ENaC and ROMK regulation. Notably, PKC has been shown 
to phosphorylate and inhibit ROMK [194].

More recently, Sørensen et al. found that acute effects of a  K+ 
load on  K+ excretion (during the first 4 h following a KCl load 
by gavage) depend on ENaC activation and are largely aldoster-
one and MR-independent [161]. In cultured collecting duct cells, 
elevated  [K+] stimulated ENaC by activating mTORC2 through 
a mechanism requiring basolateral Kir4.1/5.1  K+ channels. No 
change in aldosterone was required. The authors concluded 
that an acute  K+ load stimulates ENaC activity directly in PCs 
through the mTORC2/SGK1 signaling module, and this effect 
is integrated with that of aldosterone by SGK1 [161]. Interest-
ingly, WNK1 was essential for maximal SGK1 phosphorylation 
and was proposed to mediate the  K+ effect, possibly by binding 
 Cl−, as has been described in the regulation of NCC in DCT cells 
[168] (discussed further below). Furthermore, although princi-
pal cells do not support transcellular  Cl− transport, basolateral 
 Cl− channels have been detected [111, 151], and provide a poten-
tial mechanism for  K+-induced changes in membrane potential 
to cause changes in intracellular  [Cl−]. Additional support for 
the idea that the CNT/CD directly senses  K+ is also provided 
by the observation that CNT/CD-specific KCNJ10 KO mice 
(lacking Kir4.1) have disturbed  K+ homeostasis and impaired 
 K+-dependent regulation of ENaC and ROMK [122].

Regulation of NCC in the DCT: role of WNK 
kinases

Although both ENaC and NCC are critical determinants of 
sodium balance, and thereby modulate blood volume and 
blood pressure, their expression patterns and regulation are 
distinct. NCC is expressed in the apical membrane of DCT 
cells, and only colocalizes with ENaC in the DCT2. NCC 

Fig. 2  Coordinated regulation of ENaC and NCC by interstitial potas-
sium. The effects of increased interstitial  K+ on  Na+ transport are 
shown for a DCT1 cell (top) and CNT/CCD cell (bottom). Baseline 
membrane potential is controlled primarily by Kir4.1/5.1. Increased 
interstitial  K+ concentration  ([K+]↑) depolarizes the basolateral mem-
brane potential  (Vbl↓), thus altering the electrochemical gradient for 
 Cl− across the basolateral membrane equipped with  Cl− channels (in 
particular ClC-K2 in DCT1), and eventually causes an increase in 
intracellular  Cl− concentration  ([Cl−]↑) in both the DCT1 and CCD. 
Chloride can then bind to WNK1/4, which inhibits its kinase activ-
ity and prevents NCC activation in the DCT1. In the CCD, chloride-
bound WNK1/4 interacts with both mTORC2 and SGK1 to increase 
SGK1 phosphorylation and subsequent ENaC activation. Increased 
electrogenic ENaC activity depolarizes the apical membrane potential 
 (Vap↓), thereby stimulating ROMK-mediated  K+ secretion. Aldoster-
one (A) contributes to ENaC regulation in the CCD by binding to the 
mineralocorticoid receptor (MR) and increasing SGK1 transcription. 
Purple arrows indicate effects due to an increase in interstitial K.+ and 
red arrows depict the effects of aldosterone (A)
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is the therapeutic target of thiazide diuretics and alterations 
in NCC have been associated with hypertension and salt 
sensitivity. Inactivating mutations in NCC (gene name: 
SLC12A3) result in Gitelman’s syndrome, a salt-wasting 
tubulopathy with hypokalemia, hypomagnesemia, meta-
bolic alkalosis, and often (but not always) low blood pres-
sure resulting from impairment in  Na+ reabsorption [55, 98]. 
This phenotype was partially recapitulated in mouse models; 
however, impairment in blood pressure control only became 
evident in NCC knockouts when fed a  Na+ deficient diet [87, 
153]. It has been suggested that the  Cl−/HCO3

− exchanger 
pendrin, which is expressed apically in DCT2 intercalated 
cells, may partially compensate for the loss of NCC, poten-
tially contributing to the inconsistent presentation of low 
blood pressure in Gitelman’s syndrome as well as the mild 
phenotype found in NCC knockout mice [117]. Further-
more, a double knockout of both NCC and pendrin resulted 
in much more severe volume depletion and ultimately renal 
failure [160]. The partially overlapping roles of ENaC, NCC, 
and pendrin emphasize the physiological importance of  Na+ 
reabsorption in the distal nephron.

NCC is regulated by multisite phosphorylation, gly-
cosylation, and ubiquitination, and its regulation can be 
heavily influenced by physiological and dietary factors. 
NCC has been shown to be highly regulated by dietary  K+ 
intake and intracellular  Cl−. It is now widely accepted that 
the predominant regulation of NCC is through WNK (with 
no lysine) kinases, which are characterized by and named 
for the atypical location of their catalytic lysine residue in 
subdomain I, rather II [188]. The key observations leading 
to this view have been well reviewed [62, 96, 120] and are 
only briefly addressed here. Of the WNK family of serine/
threonine kinases, WNK1 and WNK4 are found in the DCT, 
but WNK4 is widely considered the major regulator of NCC 
[26]. A kidney-specific isoform of WNK1 (KS-WNK1), 
which lacks the kinase domain, is also expressed in the DCT. 
It has been reported to activate WNK4 and thus NCC, but its 
overall contribution to NCC regulation is still disputed [6]. 
WNK kinase activity is largely determined by intracellular 
chloride concentration and WNK4 has been shown to have 
higher chloride sensitivity compared to WNK1 [167]. Intra-
cellular  Cl− is highly sensitive to changes in plasma  [K+] 
and influenced by dietary  K+ intake. Thus, NCC is regulated 
by  K+ and  Cl− indirectly through WNK4. High plasma  K+ 
causes depolarization of the basolateral membrane, possi-
bly by altering the Nernst potential for  K+ and/or inhibiting 
Kir4.1/5.1 channels, inhibiting  Cl− efflux through ClC-K2 
channels, which increases intracellular  [Cl−] [168, 178]. 
When  Cl− is present in sufficient amounts, it binds to WNK 
and inhibits its activation by autophosphorylation at serine 
328 [123]. However, in a low chloride environment, WNK1 
and WNK4 autophosphorylate and self-activate to bind, 
phosphorylate, and activate downstream effectors SPAK and 

OSR1 (oxidative stress–responsive kinase 1) [175]. SPAK 
and OSR1 form a complex with scaffolding protein MO25 
(mouse protein-25), which significantly enhances phospho-
rylation and activity of NCC [42]. Phosphorylation of NCC 
not only increases its activity, but also decreases its ubiquit-
ination and subsequent internalization [134, 135].

In humans, gain-of-function mutations in WNK1 and 
WNK4 result in Familial Hyperkalemia and Hypertension 
(FHHt; sometimes referred to as pseudohypoaldosteronism 
type II (PHAII) or Gordon Syndrome), a monogenic form of 
secondary hypertension characterized by hypertension and 
hyperkalemia [59, 93, 183]. The phenotypes associated with 
FHHt can be generally considered the inverse of Gitelman’s 
syndrome. Moreover, inhibiting NCC using thiazide diuretics 
is often sufficient to correct the clinical features of this disease, 
again emphasizing WNK as the major regulator of NCC. FHHt 
resulting from gain-of-function mutations in WNK4 is associ-
ated with more severe phenotypes than mutations in WNK1, 
suggesting WNK4 as the predominant regulator of NCC. 
WNK4 is directly regulated by E3 ligase mediated ubiquitina-
tion via Cullin 3 (CUL3) and its substrate adapter, Kelch-like 3 
(KLHL3), thus mutations in CUL3 and KLHL3 also result in 
FHHt [22, 72]. Chen et al. were able to recapitulate the FHHt 
phenotype with a knockin of a mutant  Cl− insensitive WNK4, 
demonstrating that chloride sensitivity is requisite for WNK4 
modulation of NCC [29]. Conversely, WNK4 knockout mice 
exhibited phenotypes analogous to Gitelman’s syndrome [25].

Dietary composition is a significant factor in NCC regu-
lation both acutely and secondarily by triggering changes 
in RAAS hormones. NCC is responsive to dietary altera-
tions, translating the  Na+/K+ ratio to appropriate alterations 
in blood pressure. For example, NCC has been shown to 
be required for the antihypertensive effects of a high-K+ 
diet [168, 176]. Aldosterone and angiotensin II both regu-
late NCC activity; however, through distinct mechanisms. 
Angiotensin II has been reported to increase membrane 
expression of NCC [150], possibly through effects on 
WNK4 and KLHL3 [156]. Acute stimulation by aldosterone 
is now thought to be indirect and mediated predominantly 
by changes in local  K+ concentration [32, 166], which most 
likely occur due to aldosterone stimulation of ENaC and 
possibly ROMK [32, 73, 166, 184]. An increase in ECF  [K+] 
has the opposite effect, inhibiting WNK/SPAK-dependent 
NCC activation [121]. KLHL3 and CUL3 are required for 
this  K+-dependent modulation of NCC [155].

Site‑specific regulation of ENaC and ROMK 
in the distal nephron

At present, perspectives regarding the functional interplay 
of ENaC and ROMK in the context of dietary  K+ chal-
lenges and their mechanisms of regulation at the systemic 
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and molecular level are undergoing a shift. In the ASDN, 
the homeostatic roles of DCT2 and CNT have probably been 
underestimated, whereas the role of the CCD may have been 
overemphasized [84, 99]. Recent evidence has increasingly 
supported the idea that in the ASDN, ENaC and ROMK are 
expressed and regulated in a site-specific manner which adds 
to the complexity of their functional interplay [90, 104–107, 
171, 185, 192]. ENaC-mediated electrogenic  Na+ absorp-
tion must be accompanied either by parallel  Cl− absorption, 
which is probably paracellular in the ASDN [58, 69, 193], 
or by  K+ secretion predominantly via ROMK. Consequently, 
high ENaC activity in the DCT2/CNT can contribute to 
NaCl absorption to preserve extracellular fluid volume or 
drive renal  K+ secretion to maintain  K+ balance. First, we 
will discuss aspects of site-specific ENaC regulation in the 
context of  Na+ homeostasis and blood pressure control. 
Subsequently, we will highlight implications of site-specific 
ENaC regulation for  K+ homeostasis.

ENaC activity in DCT2 and early CNT is critically 
involved in blood pressure control

As pointed out above, Liddle syndrome and PHA1 provide 
proof of concept that ENaC is a critical effector of long-
term blood pressure control. Initial patch clamp studies 
demonstrated that ENaC activity in the CCD was readily 
observed only in animals treated with mineralocorticoid 
hormones or maintained on a low sodium diet [46–48, 
110]. This led to the concept that renal ENaC activity is 
strictly aldosterone-dependent and probably essential in 
states of  Na+ depletion but playing a minor role when die-
tary  Na+ intake is normal or high. This paradigm was chal-
lenged when patch clamp studies in microdissected mouse 
tubules demonstrated that ENaC activity is aldosterone-
independent in the transition zone from DCT2 to CNT 
(DCT2/CNT) [106, 113]. In this early part of the ASDN, 
sizeable ENaC currents were detected in mice maintained 
on a standard or even high  Na+ diet and were shown to 
be preserved in aldosterone-deficient mice. Subsequent 
studies from different laboratories confirmed aldosterone-
independent ENaC activity in DCT2/CNT [185, 190]. 
Moreover, it has recently been shown that ENaC activity 
in DCT2/CNT is aldosterone-independent but to a large 
extent MR-dependent [90, 104, 185]. Results from global 
and tissue-specific knockout (KO) mouse models also sup-
port the concept of site-specific roles of aldosterone and 
MR in controlling ENaC function in the ASDN. Impor-
tantly, global MR deficiency leads to a more severe renal 
phenotype than deficiency of aldosterone or deficiency of 
MR restricted to CD principal cells [13, 91, 132]. Simi-
larly, CD-specific KO of the α-subunit of ENaC results in 
a relatively mild phenotype [146], comparable to the phe-
notype of MR KO in CD principal cells [132]. In contrast, 

global knockout of β-ENaC results in a severe salt-losing 
syndrome with hyperkalemia and neonatal death, which 
is similar to the phenotype caused by global MR KO [94].

Surprisingly, Liddle mice exhibited enhanced ENaC activ-
ity in CCD only when plasma aldosterone levels were high 
[33]. In contrast, patients with Liddle syndrome typically have 
suppressed plasma aldosterone levels. This raised the question 
where renal ENaC is hyperactive in Liddle syndrome to cause 
salt-sensitive hypertension. This question was answered by patch 
clamp studies demonstrating profound hyperactivity of ENaC in 
the DCT2/CNT from Liddle mice [107]. In particular, the failure 
of Liddle mice to suppress ENaC activity in DCT2/CNT when 
maintained on a high  Na+ diet is consistent with the observation 
that Liddle mice develop hypertension under these conditions 
[126]. These findings indicate that appropriately adjusted ENaC 
activity in the DCT2/CNT is critically important for long-term 
blood pressure control. The high glucocorticoid and angiotensin 
II levels in aldosterone synthase–deficient mice with preserved 
ENaC activity in DCT2/CNT [106] suggest a role of these hor-
mones in stimulating ENaC in this part of the ASDN. A stimu-
latory glucocorticoid effect is consistent with the findings that 
ENaC is aldosterone-independent but MR-dependent in DCT2/
CNT [104], and that MR antagonists cause natriuresis in the 
absence of aldosterone [90]. In addition, angiotensin II stimu-
lates ENaC in DCT2/CNT by an MR-independent mechanism 
[185], which underscores the likely importance of this nephron 
segment for upregulating  Na+ absorption in states of volume 
depletion. It is tempting to speculate that pathophysiologically 
increased ENaC activity in the DCT2/CNT, possibly in combi-
nation with an increased aldosterone sensitivity of ENaC in the 
CNT/CCD [107], may not be limited to Liddle syndrome but 
may contribute to more common forms of salt-sensitive hyper-
tension. Therefore, it will be an important task of future studies 
to elucidate the specific hormonal, local, and molecular factors 
involved in ENaC regulation in the DCT2/CNT.

Aldosterone‑independent ENaC activity in DCT2/
CNT drives baseline  K+ secretion

The concept of aldosterone-independent ENaC activity in 
DCT2/CNT has important implications for renal  K+ secre-
tion, because it implies that the electrical driving force gen-
erated by ENaC-mediated  Na+ absorption and needed for 
 K+ secretion does not depend on aldosterone in DCT2/CNT. 
Indeed, there is a need for aldosterone-independent ROMK-
mediated  K+ secretion, because the kidney maintains its 
ability to excrete  K+ also when plasma aldosterone is low 
[161, 171, 190]. The finding that ENaC activity is aldoster-
one-dependent in CNT/CCD but aldosterone-independent in 
DCT2/CNT suggests that under baseline conditions with low 
plasma aldosterone, ROMK-mediated  K+ secretion mainly 
occurs in the DCT2/CNT. As mentioned earlier, aldoster-
one-independent MR activation by glucocorticoids can 
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occur when this is not prevented by the action of 11ßHSD2. 
Although there is some uncertainty regarding the precise 
level of 11ßHSD2 expression in different parts of the distal 
nephron, it appears to be lower in the proximal portion of 
the ASDN than in its distal portion [1, 20, 71, 104]. Thus, 
11ßHSD2 expression may be sufficiently low in DCT2/CNT 
to allow circulating glucocorticoids to activate MR in this 
part of the nephron. Interestingly, the inhibitory effect of a 
high-salt diet on ENaC activity in the DCT2/CNT is minor 
compared with its large inhibitory effect in the CNT/CCD 
[106, 107]. This is consistent with the concept that a certain 
level of constitutive ENaC activity in the DCT2/CNT has 
to be maintained even in the context of high NaCl intake 
to preserve the kidney’s ability to secrete  K+. The critical 
importance of ENaC activity in the DCT2/CNT for renal 
 K+ secretion is also supported by studies using knockout 
mouse models. Mice with conditional knockout of ENaC 
in the CD were able to maintain  K+ balance when chal-
lenged by high-K+ diet [146]. In contrast, mice with partial 
ENaC knockout in the CNT and possibly DCT2 developed 
hyperkalemia under similar experimental conditions [125]. 
Moreover, in aldosterone synthase–deficient mice placed 
on a high-K+ diet, high apical expression of ROMK was 
observed in the DCT2 and CNT but not in the CCD [171]. 
Confirming the functional importance of the DCT2/CNT for 
renal  K+ secretion, recent patch clamp studies in microdis-
sected tubules demonstrated that baseline ROMK activity 
is higher in DCT2/CNT than in CCD [105, 192]. The high 
baseline activity of ENaC and ROMK in the DCT2/CNT 
provides a regulatory potential for an adaptive inhibition 
of these channels in response to a decrease in dietary  K+ 
intake. Indeed, ENaC activity in DCT2/CNT was shown to 
be strongly downregulated in mice maintained on a low  K+ 
diet [105, 192]. Interestingly, a concomitant downregula-
tion of ROMK currents was observed in one study [192] 
but was not confirmed in another study [105]. In animals 
maintained on a high-K+ diet, ENaC currents increased 
modestly in DCT2/CNT but strongly in CNT/CCD consist-
ent with an increase in plasma aldosterone in response to the 
high-K+ diet and aldosterone-sensitive ENaC in CNT/CCD 
[192]. The findings outlined above highlight the important 
role of the DCT2/CNT in regulating renal  K+ secretion in an 
aldosterone-independent manner mainly by adjusting ENaC 
activity through mechanisms that remain to be elucidated.

Speculations on the mechanism 
of coordinated regulation of NCC and ENaC 
in controlling ECF volume and  K+ excretion

Na+ transport in the distal nephron serves both ECF volume 
regulation and maintenance of plasm  K+ concentration, and 
hence, the coordination of NCC and ENaC is critical [7]. A 

variety of mechanisms contribute to determining the relative 
activity of NCC and ENaC in the three subsegments shown 
in Fig. 1. The effects of aldosterone to stimulate ENaC are 
well established, and the role of interstitial  [K+] in control-
ling NCC in DCT through WNK kinase activity is increas-
ingly well supported [121, 168]. Since aldosterone does not 
likely have a direct effect on NCC [32, 166], interstitial  [K+] 
can play a central role in coordinating NCC activity with 
that of ENaC. But what about versa? Are there factors other 
than aldosterone implicated in coordinating ENaC activation 
with NCC?

As discussed in the section  “The aldosterone-MR-SGK1 
signaling module regulates ENaC”, recent data support the 
idea that mTORC2 plays an important role in maintaining 
renal ENaC activity [56, 60] and in mediating acute regula-
tory effects of renal interstitial  [K+] on ENaC in the distal 
nephron [161] (Fig. 2). Moreover, the effects of mTORC2 
are strongly modulated by WNK1 [161], consistent with a 
prior report that WNK1 stimulates SGK1 and ENaC, inde-
pendently of its kinase activity [189]. Additional regulatory 
interactions of SGK1 and WNK kinases have also been iden-
tified [62], and hence, WNK kinases might play a role in 
coordinating NCC and ENaC responses to interstitial  [K+]. 
Such effects may be particularly important in the DCT2/
CNT where MR-dependent ENaC activation is preserved 
even in the absence of aldosterone and ROMK activity is 
high [90, 104–106, 187]. Other regulators such as angioten-
sin II may also be implicated in NCC-ENaC coordination 
[24], and influence whether aldosterone is natriferic or kaliu-
retic [156]. How these various hormonal and local effects, 
in particular changes in interstitial  [K+], are fully integrated 
remains unclear. Thus, despite recent progress toward under-
standing the intertwined regulatory systems that control dis-
tal tubular  Na+ transport in a site-specific manner, several 
controversies and unanswered questions exist, which are 
exciting topics of ongoing and future research in the field.
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