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Abstract

Synonymous relationships among biomedical terms are extensively annotated within specialized terminologies, implying
that synonymy is important for practical computational applications within this field. It remains unclear, however, whether
text mining actually benefits from documented synonymy and whether existing biomedical thesauri provide adequate
coverage of these linguistic relationships. In this study, we examine the impact and extent of undocumented synonymy
within a very large compendium of biomedical thesauri. First, we demonstrate that missing synonymy has a significant
negative impact on named entity normalization, an important problem within the field of biomedical text mining. To
estimate the amount synonymy currently missing from thesauri, we develop a probabilistic model for the construction of
synonym terminologies that is capable of handling a wide range of potential biases, and we evaluate its performance using
the broader domain of near-synonymy among general English words. Our model predicts that over 90% of these
relationships are currently undocumented, a result that we support experimentally through ‘‘crowd-sourcing.’’ Finally, we
apply our model to biomedical terminologies and predict that they are missing the vast majority (.90%) of the
synonymous relationships they intend to document. Overall, our results expose the dramatic incompleteness of current
biomedical thesauri and suggest the need for ‘‘next-generation,’’ high-coverage lexical terminologies.
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Introduction

Most words and phrases in English possess synonyms—

expressions that share close or identical meaning within a

restricted cultural context [1]. For example, trait and phenotype
are often used interchangeably within the genetics literature [2],

but not within general English, while the converse is true of

adjectives blue and sad. Synonymous relationships play a variety

of roles within natural language. For example, an entire

sentence may be rendered incomprehensible upon encountering

a rare, previously unseen word. Knowing a single synonym for

such a word, however, even if distantly related, enables at least

partial comprehension of the sentence’s meaning. Thus,

synonyms can be seen as a simple, concise way of encoding

the semantics of individual words [3], which makes them useful

for artificial intelligence applications. Much like their human

counterparts, computer programs that parse natural language

must rely on a finite set of ‘‘known’’ synonymous relationships,

so deficiencies in their thesauri could have a profound impact on

their ability to process human communication. While intuitively

important, synonymy has enjoyed relatively little attention from

the text mining and natural language processing communities.

Synonymy is extensively documented within many large

computational lexicons [4,5], but it is not immediately obvious

whether inclusion of synonyms sufficiently improves natural

language processing results to justify the computational over-

head.

Within the field of biomedical text mining, several studies have

demonstrated that manually curated terminologies, and thus

thesauri, are dispensable for particular tasks [6], specifically

named-entity recognition (NER) [7,8]. This is not terribly

surprising, as the goal of NER is to simply find mentions of

diseases, drugs, genes, etc. in free text, but not to determine which

disease, drug, or gene to which the mention refers. In our personal

experience, however, identification of the precise object being

mentioned, or named-entity normalization (NEN), crucially

depends on thorough documentation of synonymy, an observation

supported, for example, by its extensive use within the BioCreative

gene name normalization challenge [9]. Named-entity normali-

zation is absolutely critical for integrating text-mined knowledge

with other biomedical datasets. For example, tasks that utilize

clinical records to uncover off-label drug usages [10] or to find

novel genetic associations [11,12] inherently depend on the

identification of specific named entities. Nevertheless, relatively

little effort has been devoted to the general problem of biomedical

named entity normalization [13,14]. Furthermore, although gene

name normalization has been extensively studied within the

literature [9,15–20], the systematic evaluation of other specific

biomedical NEN tasks remains in its infancy [21–23]. Finally,

given its widespread use within NEN algorithms, it is surprising
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that the impact of synonymy on this task and text mining in

general remains under examined.

In this study, we quantify the importance of synonymy for

named-entity normalization within the field of biomedicine. More

specifically, we evaluated the performance of several general-

purpose NEN algorithms, both with and without synonymy, on

two gold-standard disease name normalization corpora. We found

that every algorithm, even one that explicitly attempts to learn

synonymy during training [21], is detrimentally affected by

missing synonymous relationships. To quantify the extent of the

missing synonymy problem within biomedicine, we developed a

statistical model capable of inferring the number of synonymous

relationships missing from a set of manually annotated thesauri

while simultaneously accounting for a wide range of potential

biases. To investigate the validity of our approach, we applied the

model to the much broader domain of general-English near-

synonymy, and we demonstrated that the vast majority of these

relationships are currently undocumented. To verify this result

experimentally, we developed a ‘‘crowd-sourcing’’ pipeline to

uncover novel examples of high-quality near-synonyms. Finally,

we applied our statistical model to two biomedical sub-domains

(Diseases and Syndromes and Pharmacological Substances) and

estimated that the vast majority of their synonymous relationships

(.90%) are likely undocumented. Overall, this work quantitatively

measures the impact and extent of synonymy within biomedicine

and highlights the need for more sophisticated approaches towards

detecting, cataloging, and utilizing synonymous relationships.

Results

Documented Synonymy Significantly Improves
Biomedical Named-Entity Normalization

Although synonymy is not necessarily important for every

biomedical text-mining task [6–8], we believe that it is absolutely

critical for some, especially named entity normalization. It does

not appear, however, that biomedical thesauri have been

constructed according to any systematic standards or consistency,

suggesting that a considerable fraction of documented synonymy

may be of low utility. For example, it is possible that only a few

common synonyms are ever used in biomedical text, and while

these select few may be very useful, the remaining relationships are

either irrelevant (never used in natural language) or redundant

(such as an obvious spelling variant). To evaluate the utility of

documented synonymy, we first examined its impact on the

normalization of disease names. We constructed a large terminol-

ogy of Diseases and Syndromes using the UMLS Metathesaurus [5]

(see Materials and Methods), asking whether removing synonyms

from this terminology significantly impacted the performance of

four of normalization algorithms [21,24] (see Table 1 and

Supporting Information Text S1 for details). We evaluated this

procedure using two gold standard corpora generated indepen-

dently of our study: the NCBI and Arizona Disease Corpora,

abbreviated NCBI and AZDC, respectively [25,26]. To ensure

that our analyses were not biased by a few commonly occurring

diseases, we restricted our analysis to unique mentions only.

Not surprisingly, we observed that synonymy was broadly useful

for disease name normalization, accounting for 20–40% of task

recall (see Table 1) while having only a slight, positive impact on

precision (see Figure S1). Even algorithms that explicitly account

for synonymy during use, like MetaMap [24] and pairwise-

Learning-to-Rank (pLTR) [21], benefited substantially from

thorough synonym annotation. To our knowledge, gold-standard

corpora for general biomedical terminologies do not exist, so it is

difficult to extend these results to other domains within biomed-

icine. To further evaluate the importance of synonymy for named-

entity normalization, we constructed a terminology for Pharma-
cological Substances (see Materials and Methods), and we repeated

our normalization experiment on a random sample of 35,000

unique noun phrases isolated from MEDLINE (see Materials and

Methods). We used MetaMap (due to high precision on the

previous task) to map noun phrases to this terminology with and

without synonymy. Once again, we observed that synonymy was

responsible for retrieving a significant fraction of the identified

concepts (approximately 30%, see Figure S2). Although the lack of

a gold standard renders true assessment of the increase in recall

impossible, we note that precision remained constant (or even

increased, see Figure S1) in our previous experiment as synonyms

were added back to the Diseases and Syndromes terminology.

Assuming that this trend applies to Pharmacological Substances,
the increase in recall due to synonymy should have a strictly

positive impact on normalization performance, suggesting that our

results obtained using gold-standard corpora apply to other and

possibly all sublanguages of biomedicine.

Although synonymy as a whole appears to be useful for

biomedical named-entity normalization, it is still possible that a

large fraction of synonymous relationships are redundant and/or

unimportant. If this were true, current terminologies could be

made much leaner by removing useless and/or redundant

synonyms. It is very difficult to broadly assess the importance of

synonyms, as the measurement is highly task and context

dependent. Therefore, we will address this issue more extensively

in the Discussion. Synonym redundancy, on the other hand, can

be directly estimated from the normalization results described in

the previous paragraph, at least with respect to the corpora and

algorithms considered here. We computed the extent of redun-

dancy in the biomedical terminologies by removing random

fractions of synonyms and subsequently re-computing concept

recall. If each synonym encodes unique information, recall for a

particular corpus and algorithm should increase linearly with the

fraction of included synonymy. Alternatively, if redundant

synonyms are present, then the recall rate should increase sub-

linearly (see Supporting Information Text S1 for details). We did

in fact observe sub-linear increases in concept recall (see Figures

S1 and S2), indicative of redundancy in documented synonymy.

Author Summary

Automated systems that extract and integrate information
from the research literature have become common in
biomedicine. As the same meaning can be expressed in
many distinct but synonymous ways, access to compre-
hensive thesauri may enable such systems to maximize
their performance. Here, we establish the importance of
synonymy for a specific text-mining task (named-entity
normalization), and we suggest that current thesauri may
be woefully inadequate in their documentation of this
linguistic phenomenon. To test this claim, we develop a
model for estimating the amount of missing synonymy.
We apply our model to both biomedical terminologies and
general-English thesauri, predicting massive amounts of
missing synonymy for both lexicons. Furthermore, we
verify some of our predictions for the latter domain
through ‘‘crowd-sourcing.’’ Overall, our work highlights the
dramatic incompleteness of current biomedical thesauri,
and to mitigate this issue, we propose the creation of
‘‘living’’ terminologies, which would automatically harvest
undocumented synonymy and help smart machines enrich
biomedicine.

Synonymy Matters for Biomedicine
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We directly estimated the fraction of redundant synonymous

relationships with respect to each corpus and algorithm, as

effective redundancy depends on the method employed (some

methods are able to internally generate more extensive spelling

and lexical variation than others [13,21], see Supporting

Information Text S1 for details). We found that most concepts

whose recall depended on synonymy were not paired with

redundant synonyms (see Table 1, Column 4). Furthermore, only

a minor fraction of the synonymous relationships associated with

these concepts were predicted to be redundant (see Table 1,

Column 5 and Supporting Information Text S1 for more details).

Overall, these results suggest that synonymy is useful for

biomedical named-entity normalization and that current termi-

nologies are not saturated with redundant information, highlight-

ing the potential for additional high-value synonyms to further

improve performance.

A Probabilistic Model for Inferring the Extent of
Undocumented Synonymy

Based on the analysis we described in the preceding section, we

are convinced that synonymy is important for named-entity

normalization. Furthermore, assuming that our conclusions are

correct, there is much room to improve current biomedical

thesauri. The analysis just described, however, does not prove that

high-utility synonyms are missing from the terminologies, nor does

it indicate how many terms are missing. With respect to the former

question, we manually curated the normalization errors made by

MetaMap in our prior analysis of disease names, and, consistent

with previous observations [21], found that a substantial fraction

of its errors (14% for the AZDC corpora and 34% for NCBI)

could be traced back to missing synonyms. Moreover, approxi-

mately half of these same normalization errors were committed by

all of the other algorithms (examples are listed in Table S1). These

rates were generally comparable to the magnitude of errors caused

by ambiguous terms (26% and 38% for AZDC and NCBI

respectively), and they likely represent a lower bound on the true

error rates due to missing synonymy. This is because such errors

require annotators to recognize a synonym not contained within a

large, complex terminology, a task that is likely difficult even for

domain experts.

If undocumented synonyms of high utility exist, the question

arises, ‘‘How many?’’ This is difficult to answer, as current

biomedical terminologies provide no indication of synonym

quality. Our analysis from the previous section suggests that a

non-negligible fraction of documented synonyms are useful and

thus, one approach to quantifying the extent of the problem is to

estimate the total number of synonyms missing from terminolo-

gies, a considerable fraction of which should be useful. To estimate

the extent of undocumented synonymy, we examined the overlap

between several distinct biomedical terminologies, which we

isolated from the UMLS Metathesaurus [5]. Assuming that the

terminologies were constructed approximately independently from

one another (detailed assumptions and justifications provided

below), the overlap in concepts and synonyms across thesauri

should be informative of the missing portion.

In Figure 1A, we depict the concept overlap for ten

terminologies [5,27–35] annotating Diseases and Syndromes.

The concentric rings in the figure illustrate all of the possible N-

way intersections among vocabularies (N = 2,3,..,10), with the

outermost ring indicating the vocabularies themselves, the next

ring depicting all possible two-way intersections, the third all

three-way intersections and so on, until we reach the center of the

plot, which depicts the overlap among all ten vocabularies.

Colored bars within each ring indicate the identity of intersecting

vocabularies (colors) and the extent of their overlapping

information. Precisely, the height of the bars corresponds to the

observed overlap among the terminologies, divided by their

maximum possible overlap (for example, see Figure 1A, right

panel). Therefore, if a colored bar extends through the full width

of its concentric ring, then the smallest of the N intersected

Table 1. The effects of missing synonymy on disease name normalization.

Algorithm Corpus % Recall Due to Syn. % Recalled Concepts with Red. Syn. Red. Syn. Fraction

Boolean Search AZDC 29% 46% 12.2%

(8.4%, 16.5%)

Boolean Search NCBI 30% 37% 7.0%

(4.7%, 9.5%)

MetaMap AZDC 35% 54% 21.1%

(15.6%, 27.0%)

MetaMap NCBI 33% 46% 12.2%

(8.7%, 16.2%)

Cosine Similarity AZDC 37% 20% 5.6%

(3.6%, 7.8%)

Cosine Similarity NCBI 38% 37% 12.9%

(9.5%, 16.6%)

pLTR AZDC 31% (Avg.) <0% <0%

(0%, 0%)

pLTR NCBI 23% (Avg.) 39% 3.2%

(2.1%, 4.4%)

This table indicates the total fraction of recall attributable to synonymy (third column) for four different normalization algorithms (first column) and two different gold-
standard corpora (second column). The fourth column indicates the fraction of concepts in the third column whose recall depended on redundant synonyms, and the
fifth column provides the fraction of the total number of synonyms predicted to be redundant for the recalled concepts (mean plus 95% confidence interval).
doi:10.1371/journal.pcbi.1003799.t001
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terminologies is perfectly nested within all of the others. Most of

the intersections illustrated in Figure 1A are tiny, and this

becomes more evident as the number of intersected dictionaries

increases (Figure 1A, left panel). This suggests that the pool of

concepts used to create these terminologies is much larger than

the set currently documented, as there is little repetition in

annotated information. The situation appears even more

dramatic for synonyms associated with these concepts, as the

overlap among annotated terms is far less (Figure 1B). Although

terms technically represent a superset of synonyms (synonymy

only exists whenever two or more terms are paired with the same

concept), large numbers of missing terms directly imply large

numbers of missing synonyms. Furthermore, the same trends are

readily apparent for the set of terminologies documenting

Pharmacological Substances [5,27,28,30–32,35–37] (Figure 1C

and 1D, respectively). Overall, these results imply that biomedical

thesauri are missing a vast amount of synonymy, although the

true magnitude of the problem remains uncertain.

To estimate the amount of synonymy missing from these

terminologies, we extended a statistical framework originally

developed for estimating the number of unobserved species from

samples of randomly captured animals [38–40]. In its simplest

form, our approach assumes that each of the terminologies

mentioned in Figure 1 was constructed by independently sampling

concept-to-term (or synonymous) relationships from some large,

unobserved population. In the parlance of the ‘‘missing species’’

problem, these concept-to-term relationships represent the ‘‘spe-

cies,’’ and their occurrence within biomedical language represent

the ‘‘population.’’ The model assumes that these species were

‘‘captured’’ by the annotators who constructed the biomedical

terminologies, and once a concept-to-term relationship was

captured once or more, it was included in the resource. Given

that the total population of relationships is very large and rate of

‘‘capture’’ for any particular relationship is necessarily very small,

this process of annotating concept-to-term relationships can be

effectively modeled using a Poisson process [40]. By modeling all

Figure 1. Very little information is shared across multiple biomedical terminologies. (A) The panel on the left illustrates the overlap
among the concepts annotated by the terminologies documenting Diseases and Syndromes. The figure itself is composed of ten concentric rings,
with the outermost ring (k = 1) indicating the colors assigned to each dataset. The next ring (k = 2) displays the overlap in concepts among all pairwise
comparisons, arranged in clockwise order starting with the intersection (MSH, NCI). The extent in overlap was computed by dividing the number of
co-occurring annotations by the maximum possible number given the sizes of the terminologies being intersected (percent maximum overlap). This
information is displayed within the concentric ring using bi-colored bars, whose heights depict the percent maximum overlap for the terminologies
indicated by the colors. The panels on the right illustrate this idea by enlarging a section of the original figure, highlighting a particular intersection
(NCI, CHV), and explaining how the colored bar translates into the percent maximum overlap. The remaining concentric rings (k = 3…10) display the

overlap extent for all higher order intersections (3-way, 4-way, etc.), with each ring containing
10

k

� �
colored bars. (B) This figure illustrates the

overlap among terms annotated to each concept for the same ten datasets depicted in (A). (C, D) These panels show the overlap in concepts (C) and
terms (D) for the Pharmacological Substances terminologies. Note that only the ten largest datasets were included in each panel for the sake of clarity.
doi:10.1371/journal.pcbi.1003799.g001
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concept-to-term annotations in each thesaurus, we were able to

compute the expected number of synonyms missing from all them

(see Materials and Methods for mathematical details). Further-

more, because a concept annotated with zero concept-to-term

relationships is effectively missing from the combination of

terminologies, this approach enabled us to estimate the number

of undocumented concepts.

In the previous description, we made a subtle but critical

assumption: each thesaurus was constructed by independently

sampling concept-to-term relationships. It is well known that

thesauri annotate lexical relationships according to potentially

unique goals and biases [3], and such practices could potentially

explain a fraction of the reduced overlap observed in Figure 1.

Furthermore, some concepts and synonyms may have been easier

to notice and annotate than others. For example, it could have

been more difficult to find synonyms for very rare concepts. As a

result, one might expect these entries to be infrequently replicated

across terminologies. This and other examples call into question

our independent sampling assumption, as they suggest widespread

correlation in the annotation rates of concept-to-term relation-

ships. To account for a range of potential biases, we extended our

statistical model by assuming that concepts and terms belong to

distinct classes, which are in turn associated with unique

annotation rates (see Supporting Information Text S1 for details).

By design, this mixture modeling approach enabled us to capture

correlation structure that exists among annotations, both within

and across terminologies.

To illustrate, imagine that we have two terminologies (denoted

T1 and T2), each annotating two distinct concepts (C1 and C2).

Imagine that C1 is rare while C2 is common. Furthermore, assume

that both terminologies have sparsely annotated synonyms for C1

but many shared synonyms for C2. Our hierarchical mixture

model could account for this bias by assigning these two concepts

to distinct classes, one of which was easier to annotate (the

common concept class) while the other was very difficult (the rare

concept class). The resulting difference in annotation rates would

explain the observed differences in overlap patterns for the two

concepts while simultaneously explaining annotation correlations

observed across both terminologies. Now, assume that there is a

third concept (C3), which is also quite common and thus shares

many annotations across T1 and T2. It could also be assigned to

the common concept class, and thus, the annotation patterns for

these two concepts would correlate as well. In this example, we

used concept frequency as the explanation for why some concepts

are easier to annotate than others, but biases could be caused by a

multitude of factors, such as semantic granularity or hyper/

hyponymous relationships. For this reason, we found that the

mixture modeling approach accounted for annotation biases much

better than explicitly including word frequency or any other

particular property as a confounder in the analysis. The mixture

model is simply more flexible at capturing all observed variability.

In the following section, we illustrate the effectiveness of our

approach for capturing widespread annotation variability by

applying it to general-English near-synonymy. Because this

linguistic domain is widely accessible to non-experts, it enabled

us to verify some of our modeling predictions experimentally.

Undocumented Near-Synonymy within General English
To evaluate our statistical approach for inferring undocumented

synonymy, we applied it to a compendium of near-synonymous

relationships among general-English words. Although biomedical

and general-English synonymy are not equivalent, their docu-

mentation and storage patterns are quite similar. Both are

contained in key-value structures consisting of manually curated

concepts (or headwords with respect to general-English synonymy)

and terms (synonyms in general-English). Therefore, we hypoth-

esize that some aspects of our statistical method’s performance,

including its ability to detect and account for annotation

variability, should translate across domains. Additionally, gener-

al-purpose thesauri necessarily include fragments of more special-

ized vocabularies (e.g., genetics, molecular biology, physics,

astronomy and so on), so their coverage has practical ramifications

for many domains, including biomedicine. We acknowledge,

however, that there are differences between general-English and

biomedical synonymy. Importantly, such differences enabled us to

perform a more thorough analysis of missing synonymy in general-

English. First, the dataset consists only of individual words and not

phrases, so it is much easier to measure the linguistic properties of

various annotations (ex: word length, frequency, etc.) in order to

determine whether our method captures specific biases. Second,

knowledge of general-English synonymy is collectively held by

millions of people and documents, allowing us to experimentally

verify some of our method’s predictions.

We carried out our analysis by combining the annotations

provided by eight typeset dictionaries and one digital thesaurus.

The typeset dictionaries [41–48] represent some of the most

widely used synonym references, while WordNet [4] is a digital

thesaurus popular within the artificial intelligence community. In

Figures 2A and 2B, we depict the overlap among headwords (i.e.

concepts) and synonym pairs (i.e. terms) that were annotated by

the nine dictionaries in this study. The overlap of annotated

headwords appears fairly high for these thesauri (Figure 2A), while

the overlap among their synonyms is substantially lower

(Figure 2B). After fitting our annotation model to the nine

thesauri, we predicted that only 30% of headwords are missing

from the combined dataset (see Figure 2C), although we note that

the annotation of headwords for general-purpose thesauri appears

to be heavily biased towards words of higher frequency (see Figure

S3). By contrast, our method predicted that 93% of near-

synonymous relationships are currently undocumented, with the

majority belonging to previously documented headwords (86%,

see Figure 2D, blue vs. red bars).

Our analysis also predicted that general-English near-synonymy

is extremely pervasive: each headword, on average, was predicted

to have about 200 near-synonyms, although the variance in

number of synonyms was predicted to be large (<46104). Because

‘‘missing species’’ estimators systematically underestimate richness

[39] and the English language is currently undergoing exponential

growth [49], the extent of undocumented synonymy predicted by

our model is likely a severe underestimate of reality. If we

extrapolate our results to more realistic estimates for the number

of English headwords [49] (see Supporting Information Text S1

for details), the extent of near-synonymy in the language is likely to

be at least an order of magnitude larger than the prediction

generated by our model (see Figure 2E).

Beyond providing insight into the extent of near-synonymy

among simple English words, this analysis allowed for a more

critical scrutiny of our statistical approach to latent synonym

inference. For example, we observed that the number of synonyms

annotated per general English headword was highly variable and

its distribution was multimodal (Figure 2F, in gray). Our mixture

modeling approach captured this variation quite well (Figure 2F,

in blue), especially in comparison to more standard approaches,

like unimodal Geometric or Log-Gaussian models (Figure 2F, in

red and green). Furthermore, as noted in the previous section, the

terminologies analyzed in Figure 2 were likely constructed

according to their authors’ own unique preferences and biases.

We predicted, for example, that general-English thesauri would be

Synonymy Matters for Biomedicine
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Figure 2. Most near-synonymous relationships among general English words are undocumented. The overlap among the (A) headwords
and (B) synonymous relationships annotated within nine general-English thesauri. (C) The number of known (above x-axis) and undocumented
(below x-axis) headwords belonging to each of the ten, headword-specific mixture model components (see Supporting Information Text S1). (D) The
number of known (above x-axis) and undocumented (below x-axis) synonymous relationships belonging to each mixture component. The blue bars
indicate undocumented relationships paired to known headwords while the red bars indicate undocumented relationships paired to latent

Synonymy Matters for Biomedicine
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constructed with a bias for writing over reading, following from the

observation that thesauri are typically used to add richness and

variety while composing text. In support of this hypothesis, we

found that headwords in our dictionaries tended to be shorter and

more frequent than non-headwords (see Figure S3A and S3B,

respectively). Although we did not specifically encode this bias into

our statistical framework, our mixture-modeling approach cap-

tured it well (see Figure 2G). Our method also captured other

types of bias and variability present within the thesauri (e.g., a

preference for certain parts-of-speech, see Figure S4A), as the

annotation rates for different mixture components varied consid-

erably across terminologies (Figure S4A and S4B). Finally, we note

that the continual production and conglomeration of manually

curated thesauri is unlikely to be a fruitful strategy for collecting

undocumented general-English near-synonymy. It would require

approximately 2000 independently collected, WordNet-sized

dictionaries to unearth 90% of the undocumented relationships

(Figure 2H). Thus, alternative strategies will be necessary to

uncover a considerable fraction of undocumented English near-

synonymy. In the following section, we utilize one such approach

to uncover previously undocumented English near-synonyms.

Experimental Validation of Undocumented English
Near-Synonymy

Our statistical analyses predicted ubiquitous undocumented

synonymy among common English words. But do such missing

relationships truly exist, and if so, are they of sufficient semantic

similarity to necessitate inclusion in English thesauri? We sought to

answer these questions and validate some of our predictions

concerning undocumented near-synonymy by uncovering rela-

tionships not annotated in our combined dataset. Because we

predicted so much missing synonymy, we reasoned that it should

be relatively straightforward to uncover examples. The analysis

performed in the previous section, however, suggested that

examining more manually curated thesauri was unlikely to be

the most productive approach. Instead, we developed a targeted,

‘‘crowd-sourcing’’ system for near-synonym discovery and valida-

tion, and we used this method to test whether such relationships

were ubiquitous and potentially of sufficient quality to justify

inclusion into lexical resources.

To perform this experiment, we first generated a random list of

300 undocumented, provisional headwords, sampled from Wiki-

pedia, including ‘‘phenotype’’, ‘‘unhealthily’’, and ‘‘instinctual’’

(see Materials and Methods for details). We then presented this list

to workers on the Amazon Mechanical Turk service (Turkers) and

asked them to suggest novel synonyms. The notion of near-

synonymy within English is complex [1], so rather than attempting

to provide a precise definition of the relationship, we instead relied

on Turkers’ preconceived notions of ‘‘synonymy.’’ To ensure that

their definitions aligned with those used by existing thesauri, we

performed a crowd-sourced validation experiment that mixed the

harvested relationships with known, high-quality pairings (see

Materials and Methods) obtained from the thesauri in our dataset

(positive controls) and randomly generated null examples (negative

controls). We then asked another round of Turkers to validate

these proposed synonyms along with positive and negative

controls. Finally, we applied a simple, probabilistic model of

agreement in the validation process [50–52] to the Turker-

generated validation data and computed a posterior probability of

accuracy for each proposed synonym. This process enabled the

identification of novel synonyms that were most like the positive

and least like the negative controls. In other words, it calibrated

the near-synonymy obtained from the Turkers so that it closely

matched that from existing thesauri. On average, Turker

evaluators correctly identified true negatives 93% of the time

and true positives 67% of the time.

The harvesting experiments proved very successful, generating

thousands of potentially novel near-synonym pairs in only a few

hours and for a total cost of less than $500. Our amateur linguists

proved proficient at identifying previously documented examples

of near-synonymy, achieving a mean accuracy of <83%

(Figure 3A). The combined performance of the crowd-sourcing

system was even more impressive: a simple classifier constructed

using a model of the validation process [52] was able to distinguish

correct synonymous relationships from incorrect ones with an area

under the receiver operating characteristic curve (AUC) of 0.962

(Figure 3B and 3C). After selecting a conservative classification

threshold (posterior probability (PP).0.9, false positive rate ,2%,

true positive rate <65%, see Figure 3C and 3D), we generated a

list of 707 high-quality, near-synonymous relationships mapping to

a total of 214 previously undocumented headwords (provided in

Dataset S4). For example, the noun phenotype was discovered to

be a near-synonym of trait (PP.0.99), and the adverb unhealthily
was paired to destructively (PP.0.99), hazardously (PP.0.96), and

badly (PP.0.90). Not all likely candidates of near-synonymy

survived this conservative filtering, although the apparent quality

of the relationships strongly correlated with their inferred posterior

probabilities of accuracy (see Figure 3D). For example, many

proposals suggested by more than one Turker were not ultimately

accepted (66%), but these were typically strong examples of hypo-

or hypernymy (e.g., tribromide: anion). Correspondingly, 44% of

the synonyms recommended by multiple Turkers made the final

cut, more than double the 21% acceptance rate for those proposed

a single time.

To assess the quality our discovered synonymous relationships,

we examined their semantic similarity within a corpus of nearly 5

million English Wikipedia articles. Specifically, we measured the

semantic similarity among novel, true positive, and true negative

synonym pairs by comparing the normalized information content

of their shared linguistic contexts to those obtained from a null

background (see Supporting Information Text S1) [53]. We found

that random synonym pairs (true negatives) had an average

semantic similarity of .62, while previously documented synonyms

(true positives) had an average similarity score of 4.62 (Figure 3E

and 3F). Importantly, the novel synonym pairs validated by our

pipeline had an average semantic similarity score of 3.65, and

headwords. (E) The number of synonymous relationships is shown as a function of the total number of headwords in the English language. The width
of the line indicates the 99% confidence interval for the estimate (see Supporting Information Text S1). (F) The distribution over the number of
synonyms annotated per headword (gray) is compared to the theoretical distribution obtained using best-fitting statistical annotation model (blue).
The R2-value indicates the fraction of variance in synonym number explained by the model. For reference, log-Gaussian and geometric models were
fit to the data as well (red and green, respectively), although their quality of fit was several thousand orders of magnitude worse than the best fitting
annotation model (according to marginal likelihood). (G) Box-whisker plots depicting the mean relative word frequencies (1,000 bootstrapped re-
samples) for each of the ten headword-specific mixture components. For reference, the probability of headword annotation, marginalized over all
possible synonym pairs, is plotted in green. (H) The three curves indicate the expected fraction of undocumented synonymy that would be
discovered upon repeatedly and independently constructing additional lexical resources (x-axis) identical to the complete dataset (blue), WordNet
only (red), and WordNet plus Webster’s New World (green).
doi:10.1371/journal.pcbi.1003799.g002
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many pairs had scores that were in the top 1% of those obtained

by true positive relationships (Figure 3E). This result strongly

suggests that at least a fraction of undocumented but easily

discoverable relationships are potentially of very high quality.

The Vast Majority of Biomedical Synonymy Is
Undocumented

Having evaluated and validated the performance of our statistical

methodology on the general-English dataset, we applied it to the

biomedical terminologies described in the previous sections. The

resulting estimates of undocumented synonymy were very high (see

Table S5 for a summary of our statistical inference results). Our

model predicted that approximately 60% of the concepts and 90%

of the synonyms specific to Diseases and Syndromes are presently

missing from the combined dataset (see Figure 4A and 4C).

Furthermore, nearly half of the presently undocumented synonyms

belong to concepts currently absent from any terminology

(Figure 4C, in red). Finally, we predicted that, on average, each

concept in the domain of Diseases and Syndromes maps to about

5.85 synonyms, indicating that synonymy is far more prevalent than

present vocabularies suggest (each concept currently possesses only

1.15 documented synonyms on average). With respect to the

domain of Pharmacological Substances, the results are similar but

far more extreme: 95% of concepts and 99% of synonyms are

presently missing from the combined data set (Figures 4B and 4D,

respectively). In contrast with Diseases and Syndromes, the vast

majority of Pharmacological Substances synonyms are associated

with undocumented concepts (Figure 4D, red and blue bars), with

each concept predicted to have only 3.18 synonyms on average.

Thus, it appears that synonymy is more pervasive with respect to

Diseases and Syndromes.
The amount of synonymy we predict in the biomedical domain

pales in comparison to its pervasiveness in general-English, where

the average word possesses nearly 200 synonyms. This should not

be particularly surprising, as aspects of languages common to more

domains of human life should have richer synonymy (i.e. a higher

expected number of synonyms per concept). Individuals from

numerous cultural backgrounds speak English, and the meanings

they assign to common words can be subtle and highly variable. As

a whole, this causes such words to become semantically imprecise

and increases the odds that their meanings overlap those of other

terms, generating a web of enriched synonymy. Moreover, it is

important to note that most general-English words are much older

than biomedical terms, providing more opportunity for their

semantics to evolve and overlap. As the biomedical lexicon

becomes used by more sub-cultures, however, it is likely that its

terms will acquire new shades of meaning and become less

semantically precise. Overall, this suggests that the gulf in

synonym richness currently observed between biomedical and

general-English terms may attenuate over time.

Discussion

Terminologies and ontologies have become critical for the

analysis and cross-linking of various types of biomedical data

[5,54,55], especially with respect to information harvested from

free text. Due to the enormous amount of lexical and syntactic

variation within natural language, most terminologies have made

extensive efforts to document synonymy. This work has not been

made in vain. In our experiments, synonymy contributed

substantially to the successful normalization of disease names,

increasing overall recall by 20–40%, depending on the algorithm

and corpus (see Table 1). The lack of gold standard corpora makes

this normalization experiment difficult to replicate in other

biomedical sub-domains, but we showed that the total number

of recalled concepts associated with Pharmacological Substances
also depended strongly on available synonyms (see Supplemental

Figure S2). This anecdotal evidence suggests that similar trends are

likely to characterize biomedical terminologies in general.

These results, of course, do not automatically imply that all

synonyms documented within these terminologies are useful: some

fraction of them could be redundant or simply unimportant. Our

analyses indicate that, at least for the corpora and algorithms

examined, synonymous redundancy is minimal (see Table 1 and

Supporting Information Text S1). The notion of ‘‘importance,’’

however, merits a special discussion. At first glance, one might

think that the best measurement for a synonym’s importance

would be its marginal frequency within some large text corpus, but

we doubt that this is the case. First, synonyms are context-specific,

and therefore, the overall frequency of a synonym without

consideration of its various contexts can be misleading. With

respected to named-entity normalization, the more relevant metric

is likely the estimated frequency with which a synonym maps to a

particular concept in natural language, conditional on the

occurrence of the concept. Performing such a measurement for

every relationship annotated within some thesaurus would clearly

require a very large corpus, possibly even the entirety of some

linguistic domain. Second, the information content carried by a

synonym is inversely related to its frequency. By focusing only on

commonly occurring terms, one would invariably miss the rare

events that may provide the most insight. Furthermore, determin-

ing the ‘‘importance’’ of any particular synonymous relationship

using small corpora and a single text-mining task is an ill-posed

problem. The utility of synonymy is highly task dependent, so it

would be ill advised to deem a relationship ‘‘unimportant’’ after

such a limited evaluation. Thus, it is unwise to make universal

claims regarding the overall of utility of documented synonymy

given the current study. Nevertheless, based on the normalization

experiments, we have little reason to believe that our results will

not generalize to larger corpora and more nuanced tasks.

Beyond named-entity normalization, synonymy has much

broader implications for natural language processing in general

[56]. For example, we have proposed that one mechanism for the

genesis of synonymy is that it arises from the fusion of diverse

‘‘functional linguistic niches,’’ each drawing on a shared lexicon.

In its extreme form, this ‘‘narrow field—poor synonymy, broad

field—rich synonymy’’ theory predicts that within narrow

subcultures, such as a community of closely interacting biomedical

researchers, specialized terms may be used precisely. As more

people from different subcultures enter the conversation, however,

Figure 3. Undocumented, general-English headwords and near-synonyms can be acquired experimentally. (A) The distribution over
the inferred accuracies of the annotators validating harvested synonyms. (B) The true positive rate (blue) and false discovery rate (red) of the
validation process as a function of the posterior probability of annotation accuracy. Diagnostic statistics were computed using known and random
pairings. (C) The Receiver-Operator-Characteristic curve for the statistical model of the validation process, computed using known and random
pairings. (D) The distribution over the posterior log-odds in favor of annotation accuracy for the novel synonym-headword pairings, annotated with
exemplar pairings (rejected in red and accepted in blue). (E) The distributions over semantic similarity scores for the true negative (red), true positive
(green), and novel synonym pairs (blue). (F) Bootstrapped (10,000 re-samples) distributions over the average semantic similarity scores for each group
of pairings, computed using the data depicted in (E).
doi:10.1371/journal.pcbi.1003799.g003
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discourse becomes more ambiguous and synonymy more com-

monplace. At the same time, disjoint communities may use

concepts and phrases that appear dissimilar but are actually very

close in meaning. For example, the Black–Scholes equations used

in quantitative finance [57,58] and approximations to the Wright-

Fisher process from population genetics [59] are intimately

connected to physical models of diffusion, but this may not be

evident to a physicist listening to an economics or genetics lecture.

Uncovering such deep isomorphisms between concepts and ideas

from distinct domains is one of the ‘‘Holy Grails’’ of text mining,

but at present, such powers are only available to the most broadly

educated human researchers. We believe more thorough docu-

mentation of synonymy represents a first step toward the

automated discovery of deep semantic relationships that link

disparate realms of knowledge.

Given its potential positive impact on named-entity normaliza-

tion and text mining in general, we believe that documentation of

lexical and syntactic variation within biomedical terminologies is a

critical problem within the field. Although other types of lexical

relationships may be equally or even more important for various

text-mining tasks (e.g., hypo/hypernymy, meronymy), we have

demonstrated that deficiencies in synonymy levy a clear and

quantifiable toll on normalization recall. The question then

becomes ‘‘How much synonymy is missing, and how should we

go about collecting and storing it?’’ We used statistical modeling to

predict that the vast majority (.90%) of synonymous relationships

are currently missing from the biomedical terminologies that we

investigated. With respect to collection and storage, it seems

unlikely that manual annotation and documentation of concept-

synonym pairs with no indication of quality will be able to face the

Figure 4. Biomedical terminologies are likely missing the vast majority of domain-specific, synonymous relationships. The numbers
of undocumented concepts and synonyms specific to each biomedical sub-domain were estimated using a hierarchical mixture model in order to
capture annotation variability that occurred within and across terminologies (10 concept components, each with 4 synonym components, see
Materials and Methods and Supporting Information Text S1). In panels (A) and (B), the number of documented concepts per component (green,
above x-axis) is compared to the estimated number of undocumented concepts per component (blue, below x-axis): (A) Diseases and Syndromes and
(B) Pharmacological Substances. In panels (C) and (D), the number of documented synonyms per mixture component (green, above x-axis) is
compared to the estimated number of undocumented synonyms, which come in two flavors, undocumented synonyms paired to documented
concepts (blue, below x-axis) and undocumented synonyms paired to undocumented concepts (red, below x-axis).
doi:10.1371/journal.pcbi.1003799.g004
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enormity of the challenge. For perspective, our statistical model

predicts that the ‘‘true’’ Pharmacological Substances terminology

should contain close to 2.5 million concepts and nearly 8 million

synonyms.

Thus, we believe that current biomedical terminologies have

substantial room for improvement with respect to the acquisition,

storage, and utilization of synonymy. Most importantly, these

lexical resources must move well beyond fixed dictionaries of

manually curated annotations. Instead, they should become

‘‘living’’ databases, constantly evolving and expanding like search

engines that index the enormity of the changing web. Such

databases could initially integrate well-established core terminol-

ogies, like the Metathesaurus [5], but should ultimately be much

broader in scope. Indeed, a distributed lexical database should

contain multiple linguistic relationships, and each of the proposed

associations should be assigned a unique and consistent measure-

ment of its quality or evidentiary support. This value, computed

using a combination of expert evaluations and automated analyses

conducted over an ever-expanding corpus of natural language,

should be updated in real time. By assigning such measurements to

relationships, the terminology should never appear bloated to

individuals interested in only the highest quality associations. This

weighted, networked approach to lexical terminologies is similar in

principle to the functional gene networks globally curated,

annotated, and used within the genomics community [60–63].

Instead of modeling relationships among genes, however, the

nodes of these lexical networks would represent terms or concepts

and the weighted (hyper)-edges would encode linguistic relation-

ships. Because of the sheer magnitude of linguistic knowledge that

these resources must entail, they should take advantage of memory

efficient representations, such as storing some fraction of synonyms

using statistically weighted rules or patterns [64].

To some extent, lexical resources with similar goals are already

being actively developed. For example, the UMLS Metathesaurus

[5], NCBO BioPortal [54], and BioLexicon [55] all the combine

numerous independent terminologies and store multiple linguistic

relationships. Consistent with our vision of automatic knowledge

acquisition from free text, developers of the BioLexicon used

computational methods to uncover novel term variants for gene

and protein named entities [55]. In fact, automatic acquisition of

synonymous relationships from natural language is not a new idea

[65–67], and numerous researchers have developed general-

purpose, automated synonym extraction algorithms for the

biomedical domain [56,64]. These efforts are steps in the right

direction, but we feel that they fall short of our vision for ‘‘next

generation’’ terminologies in several ways. First, although

relatively thorough, these databases do not systematically annotate

the quality of their documented linguistic relationships. In our

opinion, this greatly decreases their potential utility, both from an

efficiency (i.e., very long search times) and efficacy (i.e., results

obtained may be of dubious quality) standpoint. Second, current

resources are largely static and do not adapt to newly acquired

knowledge or the expanding linguistic environment. Thus, they

remain distinct from our envisioned ‘‘living’’ terminologies.

For a terminology to be ‘‘living’’ requires a number of essential

attributes. First, it needs a large, dedicated community of users and

experts heavily invested in maintaining its quality and relevance.

Second, the terminology must be able to evolve by identifying and

repairing its deficiencies. Many of these deficiencies, such as gaps

in coverage or inconsistencies in logical structure, could be

identified automatically using statistical methods similar to those

utilized in the present work. To be most effective, however, ‘‘next

generation’’ terminologies should be designed with computational

tools and corpora that extend and repair them in real time. For

example, a named entity recognition and normalization tool like

MetaMap [24] could encounter an unknown term, store various

similarity measurements it inherently computes from corpora, and

then provide this data back to the terminology in a structured

format. The automated terminology could then integrate this term

into its knowledge base. That way, when the term is subsequently

encountered in another context, perhaps even by a different

computational tool, more and more knowledge concerning its

linguistic relationships and contexts would accumulate and

become available to all within the community. Ultimately, this

would ensure that the terminology evolves with the linguistic

domain it was intended to document.

Perhaps most importantly, ‘‘next generation’’ lexical terminol-

ogies should be readily accessible to a wide range of computational

tools and researchers, as their growth and performance will be

inextricably tied to ease of use. This can be partially accomplished

by developing a suite of software tools tuned to a specific database,

similar to the MetaMap [24] and MetamorphoSys [5] software

programs that accompany the UMLS Metathesaurus. We believe

that a truly successful ‘‘living’’ terminology, however, must be

simple and transparent enough to transcend the use of specialty

software. This may prove the most difficult challenge faced in the

development of these resources, and we imagine that its solution

will require new crowd-sourcing, natural language modeling, and

distributed computing technologies that facilitate the integration of

diverse information into a networked whole. The development of

this technology is not unlike the sequencing of the human genome

in scale and importance. A vast library of linguistic relationships

among an ever expanding collection of words and phrases would

allow a quantum leap in machine reading, understanding and

intelligence, with applications relevant not only to biomedicine but

all fields of science and scholarship.

Materials and Methods

Constructing the Biomedical Terminologies
The two biomedical terminologies used in this study, Diseases

and Syndromes and Pharmacological Substances, were extracted

from the UMLS Metathesaurus [5]. The Metathesaurus is a large

collection of over 100 vocabularies documenting a variety of

linguistic relationships among biomedical concepts, which in turn

link into a single, semantic network. Similar to the key-value

structure of traditional dictionaries, the Metathesaurus is orga-

nized around a set of concepts (keys), each of which is associated

with one or more linguistic terms (values). When multiple terms

are assigned to a single concept, such variants represent distinct

encodings of the same linguistic entity. Therefore, whenever a

Metathesaurus key is annotated with two or more phrases (values),

those phrases are synonymous with each other. Consistent with

previous work [13,68,69], we identified a set of technical phrases

in the Metathesaurus that were representative of artificial

machine-readable sublanguages (such as database-specific encod-

ings) rather than natural language. Previous studies found that

removing these specialized terms improved information extraction

from natural text [22,68]. Therefore, prior to isolating the

terminologies, we subjected the Metathesaurus to the rule-based

filtering outlined in [68]; see the Supporting Information Text S1

for details. To perform the annotation overlap analysis described

in the main text, we used the metadata provided by the

Metathesaurus in order to determine the vocabularies of origin

for each concept-term pair. After processing, the Diseases and
Syndromes dataset (Dataset S1) incorporated 59,265 concepts

paired with 127,431 terms derived from 14 vocabularies (see Table

S2). The Pharmacological Substances dataset (Dataset S2)
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contained 122,266 concepts aligned with 198,270 terms harvested

from 11 vocabularies (see Table S3). To recast the datasets as

concepts and synonyms, one term from each annotated set was

assigned as the preferred term (in accordance with the UMLS

designations), also known as the headword (consistent with the

general-English thesauri), while the remaining were treated as

synonyms.

The General English Headword-Synonym Dataset
We constructed the general English synonym dataset by

digitizing 8 hard-copy thesauri [41–48] and combined them with

the digital WordNet [4], as described previously [70]. Similar to

the biomedical terminologies, the general English dataset follows a

key-value structure, but instead of annotating concepts with terms,

this dataset explicitly assigns lists of synonyms to specific English

words, which we call headwords. This direct enumeration of

synonymy among specific words implies that these relationships

possess an inherent directionality, which in turn suggests that this

phenomenon is not bidirectional, at least according to all of the

print dictionaries included in our analysis. WordNet is the only

exception, as it explicitly assumes synonymy is bidirectional [4].

Implied directionality in most thesauri reflects the subtle nature of

near-synonymy in natural language [1,71] and the complicated

notions that underlie thesaurus construction [3]. To account for

synonym-headword directionality in our downstream analyses, we

treated each headword-synonym pair and its potential inverse as

distinct entities. After parsing each dictionary and joining the

resulting annotations by headword, the subsequent synonym

compendium was subjected to thorough post-processing in order

to remove word phrases and linguistic variation caused by

differences in conjugation [72]. The full compendium, with words

replaced by numerical keys (in accordance with copyright law), is

provided as Dataset S3. In total, this file contains over one million

unique synonym pairs mapping to just over 53,000 headwords (see

Table S4).

Wikipedia Corpus Generation and Analysis
To examine the properties of general English headwords and

their synonyms in free text, we constructed a large corpus using

Wikipedia (downloaded in October 2011). Part-of-speech infor-

mation was assigned to this corpus using the Stanford Tagger

(model: left3words-wsj-0-18.tagger) [73], and headword/synonym

word frequencies were estimated using a Dirichlet-Multinomial

smoothing model [74,75]. To estimate semantic similarity among

synonym pairs, we computed the normalized information content

of their shared contexts [53] and compared this value to a null

background distribution. Details concerning this procedure are

provided in the Supporting Information Text S1.

Assessing the Effects of Synonymy on Biomedical
Concept Normalization

To assess the effects of synonymy on disease name normaliza-

tion, we used two expertly-annotated gold-standard corpora

[25,26]. The AZDC corpus [26] was constructed using nearly

3,000 sentences isolated from 793 biomedical abstracts, and its

disease name mentions were mapped to the UMLS Metathe-

saurus. The NCBI corpus [25] builds upon the previous dataset by

performing a more thorough annotation of these same 793

abstracts, although the version we obtained was annotated using

the MEDIC terminology [76] rather than the UMLS. We

replaced the MEDIC annotations with UMLS concepts by

aligning the database identifiers included within both terminolo-

gies. Consistent with previous studies [21], we expanded the

abbreviations in each corpus using the tool developed in [77], as

we wished to mitigate errors due to abbreviations resolvable using

current technology. After abbreviation resolution, we isolated all

disease mention-concept pairs from each corpus, as we were

focusing on disease name normalization. Finally, in order to

prevent a few common disease names from dominating our results,

we restricted our analyses to the set of all unique concept-mention

pairs.

Following pre-processing, each corpus was evenly split into

testing and training sets, although only one of the algorithms

included in this study required training [21]. We evaluated the

effects of synonymy on named-entity normalization by comparing

recall, precision, and the F1-measure (harmonic mean of precision

and recall) for four algorithms before and after removing

synonymy, using the testing set only. The four normalization

algorithms implemented in this study were: Boolean search,

MetaMap [13], cosine similarity, and pairwise Learning-to-Rank

(pLTR, as described in [21]). Implementation and training (if

applicable) of these algorithms is described in more detail in the

Supporting Information Text S1. Note that some concepts

annotated within the corpora were not included in the Diseases
and Syndromes terminology—the annotators used a more

expansive definition of the sub-domain—so recall and precision

were evaluated only with respect to those mentions whose concepts

were included in this terminology. To assess the effects of synonym

coverage on concept recall for Pharmacological Substances, we

compared the total number of concepts recovered by MetaMap

[13] from a large corpus of free text before and after removing all

synonyms from the terminology. Our corpus of free text was

constructed by randomly sampling 35,000 unique noun phrases

from the abstracts contained within the MEDLINE database [78].

Noun phrases were isolated from free text using the OpenNLP

software suite [79].

To determine the fraction of redundant synonyms for a

particular algorithm and corpus, we randomly removed fractions

of synonyms from the terminology of interest and re-computed the

number recalled terms (see Figure S1). Assuming that each disease

name mention maps to only one, non-redundant concept-to-term

relationship, then the number of recalled concepts should decrease

linearly with the fraction of removed synonyms. If such mentions

actually map to multiple concept-to-term annotations, however,

then the number of recalled concepts will actually decrease at a

non-linear rate. In fact, the fraction of redundant concept-to-term

annotations (and thus synonyms) can be estimated from changes in

concept recall that occur as different fractions of synonyms are

randomly removed from the terminology. These estimates are

provided in Table 1, but details concerning the estimation

(including assumptions and limitations) are described in the

Supporting Information Text S1.

Estimating the Extent of Undocumented Synonymy
As discussed in the main text, we extended a parametric, model-

based solution to the ‘‘missing species’’ problem in order to

compute estimates for the true numbers of concepts and synonyms

belonging to particular biomedical sublanguages. Essentially,

solutions to the ‘‘missing species’’ problem attempt to predict the

true number of species in some environment of interest given an

incomplete sub-sample [38–40]. Below, we outline the mathemat-

ical details concerning our model and how it can be used to

estimate the quantities of interest. The following description can

be seen as a sequence of three interconnected parts. First, we

describe how the process of annotating synonyms for a single

concept can be modeled using a Poisson process. Second, we

describe how Bayes’ Theorem can be used in conjunction with this
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Poisson model to generate a prediction for the number of

synonyms missing with respect to this concept. Third, we briefly

outline how this approach can be extended to infer the total

number of synonyms missing from an entire thesaurus. Further

details concerning the approach, including its extension to

multiple dictionaries and the inclusion of mixture components,

are relegated to the Supporting Information Text S1.

To begin, imagine that a lexicographer annotated the terms

associated with some concept of interest by ‘‘sampling’’ them from

the ‘‘environment.’’ The precise definition of ‘‘sampling’’ is

irrelevant, but one can imagine that the complex process of

detecting concept-to-term relationships from linguistic experience

depends on a series of probabilistic events (e.g., coming across a

particular article; having a conversation with a certain scientist,

etc), not unlike the capturing of biological species. Thus, according

to this analogy, the corpus of natural language specific to a

lexicographer’s domain of interest represents the ‘‘environment.’’

Let rj denote the number of times that relationship j was sampled

by some lexicographer, and let lj indicate the Poisson process-

sampling rate for this relationship. The sampling probability

associated with the jth concept-to-term relationship is:

P(rj Dlj)~
lj

rj exp½{lj �
rj !

:

As discussed in the main text, this equation implicitly assumes that

the total number of occurrences of relationship j in the language of

interest (i.e. the ‘‘species population’’) is infinite. Obviously, this is

an approximation, but given that these ‘‘populations’’ are very

large and the sampling probabilities are very small, this should be

a reasonable assumption.

To extend this model to the full set of synonymous relationships

associated with some concept, let S denote the total number of

terms that map to this concept (indicating S{1 synonyms),

including those that were not annotated by the lexicographer. In

the parlance of the ‘‘missing species problem,’’ S denotes the

unobserved total number of species in the environment, and

ultimately, we will describe how to infer this value given an

incomplete sample derived from the annotations. To do so, we first

define the vector ~rr~Sr1,r2, . . . ,rj , . . . rS’{1,rS’T, which indicates

the number of times each relationship rj was sampled, given that

they were each sampled at least once. This distinction is

important, as a relationship that is never sampled (rj~0) cannot

appear in the terminology. Thus, the length of the vector ~rr,

denoted S’, indicates the number relationships annotated by the

lexicographer, and thus, S§S’.

To simplify the model, let g lj D~hh
� �

denote the generating (prior)

distribution for the Poisson process sampling rates. By marginal-

izing each lj over g lj D~hh
� �

, we can reduce the dimensionality of

our model by expressing it only in terms of the parameters defining

the prior distribution g lj D~hh
� �

:

p~hh rj

� �
~

ð?
0

P(rj Dlj)g lj D~hh
� �

dlj :

With this notation in place, the full probability model for the

relationship-sampling vector~rr can be decomposed into:

P(~rr,S’DS,~hh)~P(S’DS,~hh)|P(~rrDS’,~hh),

where P(S’DS,~hh) indicates the probability of annotating S’ terms at

least once and P(~rrDS’,~hh) represents the probability of sampling~rr,

conditional on S’. Based on the descriptions of ~rr and S’ given

above, the first term on the right-hand-side is simply the

probability that S’ concept-to-term relationships are sampled at

least once, which corresponds to the following binomial model

[80]:

P(S’DS,~hh)~
S

S’

� �
p~hh(0)
� 	S{S’

| 1{p~hh(0)
� 	S’

:

The second term on the right-hand-side corresponds to a

multinomial distribution (with an infinite number of categories)

[80]. To see this, note that, after marginalizing the Poisson

sampling rates out of the model, the probabilities assigned to

elements of~rr with the same value (denoted k) are equivalent:

P(rj~kD h
!

,S’)~P(rk~kD h
!

,S’)~
p~hh(k)

1{p~hh(0)
,

where the denominator in the previous equation re-normalizes the

sampling probability to account for the fact that each element in~rr
must be greater than 0. Let fk denote the number of relationships

that were sampled k times:

fk~
XS’

j~1

d rj~k
� �

,

where d(X ) is 1 if X is true and 0 otherwise. Then,

P(~rr,S’DS,~hh)~(S’!)P
K

k~1

1

fk!

p~hh(k)

1{p~hh(0)

� �fk

,

where K denotes the largest sampling count in~rr and the factorials

correspond to the multinomial coefficient (i.e. accounting for the

fact that the elements of ~rr with the same value are statistically

indistinguishable).

With our probability model for the annotation data fully

specified, we can now describe our approach for estimating the

total number of synonymous relationships missing from some

annotated set, denoted S{S’. This value can be estimated from

the probability distribution over the total number of terms

associated with the concept of interest, conditional on the observed

data and the model parameters (denoted P(SDS’,~rr,~hh)). To derive

this distribution, we apply Bayes Theorem and note that:

P(SD~rr,S’,~hh)~
P(~rr,S’DS,~hh)P(S)X

S

P(~rr,S’DS,~hh)P(S)
:

Thus, to estimate S, we must specify both the data likelihood

(P(~rr,S’DS,~hh), defined in the preceding paragraph) and a prior

distribution for the total number of terms paired to the concept of

interest (P(S)). The data likelihood defined above and in the

preceding paragraph depends on the sampling count vector~rr, but

in practice, we never actually observe the precise number of times

each relationship was sampled, only whether it was sampled at

least once (rj=0). To account for this fact, we can simply

marginalize the likelihood P(~rr,S’DS,~hh) over all possible values of~rr.

Based on the factorization outlined in the previous paragraph, this
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is trivial, yielding the following likelihood for observing S’
annotated concept-to-term relationships:

P(S’DS,~hh)~P(S’DS,~hh)|
X
~rr[R

P(~rrDS’,~hh)

~
S

S’

 !
p~hh(0)
� 	S{S’

| 1{p~hh(0)
� 	S’

:

By coupling this likelihood with a simple prior distribution, we can

easily specify the desired posterior distribution over the true

number concept-to-term relationships. For example, assuming that

the true number of terms paired to each concept is geometrically

distributed (P(S)~c(1{c)S{1), the posterior distribution for S is:

P(SDS’,~hh,c)~
P(S’DS,~hh)P(S)X?

S~S’

P(S’DS,~hh)P(S)

~
S

S’

 !
1{p~hh(0) 1{cð Þ
� 	S’z1

| p~hh(0) 1{cð Þ
� 	S{S’

:

At this point, the expectation of the posterior distribution can used

to estimate the total number terms that were not annotated for

some concept of interest, given by:

ŜSMissing~E SDS’,~hh,c
h i

{S’

~
p~hh(0) 1{cð Þ S’z1ð Þ

1{p~hh(0) 1{cð Þ {S’:

In practice, the previous posterior is not very useful unless p~hh(0)

and c are known. Otherwise, there are three unknown

parameters in a model with only one observation, rendering

joint inference intractable. To overcome this difficulty, we 1)

assumed that the sampling probabilities p~hh(0) were correlated

across concepts annotated by the same dictionary and 2) jointly

modeled the annotations provided by multiple, independent

dictionaries. Given these assumptions, we were able to construct a

global likelihood for all of the synonymous relationships

documented by a set of terminologies. This in turn enabled us

to estimate the total number of undocumented relationships

specific to the linguistic domain of interest while simultaneously

providing enough information to estimate the unknown param-

eters p~hh(0) and c.

To derive this likelihood with respect to a single dictionary,

let S’i denote the number of concept-to-term relationships that

were annotated (observed in the terminology) with respect to the

ith concept, and similarly, let Si denote the true number of

terms for this concept. Assume that a total of N ’ concepts were

annotated in the terminology, such that S’
!

~SS’1,S’2, . . . ,
S’N ’{1,S’N ’T denotes the full vector of observed relationships.

To correctly specify a probability model for the vector S’
!

, we

must also consider those concepts whose terms were not

annotated within the terminology (i.e. S’i~0). Let N denote

the true number of concepts in the linguistic domain, and let w
denote the total number of concept-to-term relationships

associated with the N{N ’ undocumented concepts. The

likelihood for the observed data S’
!

and N ’, conditional on fixed

N , w and ~hh, is:

P S’
!

,N ’D~SS,N,w,~hh
� �

~
N

N{N ’

 !
|

w{1

wzN ’{N

 !
p~hh 0ð Þ
� 	w" #

|

P
N ’

i~1

Si

S’i

 !
1{p~hh 0ð Þ
� 	S’i p~hh 0ð Þ

� 	Si{S’i

2
4

3
5,

where the first multiplication factor (a binomial coefficient)

accounts for the number of ways to select N ’ annotated concepts

from a total pool of N , the second factor in square brackets

accounts for the probability of failing to annotate w synonymous

relationships (marginalized over all possible assignments to the

N{N ’ undocumented concepts), and the third factor provides

the probability of annotating the N ’ observed concepts.

Extending the previous equation to multiple independent

dictionaries is straightforward, illustrated in the Supporting

Information Text S1.

By coupling the previous likelihood with a joint prior

distribution for the unknown quantities of interest (denoted

P(~SS,N,w), see Supporting Information Text S1 for details), the

model outlined above can be used to derive a posterior distribution

for the true number of terms paired with the documented concepts

(~SS), the total number of concepts specific to the linguistic domain

of interest (N ), and the number of concept-to-term relationships

associated with the undocumented concepts (w). In practice,

however, this requires knowledge of the relationship sampling

rates (p~hh 0ð Þ) and the parameters defining the prior distribution

over the number of undocumented concepts and terms. To

circumvent this issue, we jointly inferred the numbers of

undocumented concepts and terms along with the unknown

parameters using an approximate, Bayesian approach [81,82].

Details concerning this procedure are provided in the Supporting

Information Text S1.

Finally, as discussed in the main text, the sampling model

outlined above assumes that the concept-to-term relationships,

both within and across concepts, were sampled from the linguistic

domain at equivalent rates. This assumption is somewhat artificial

and restrictive, as the terminologies included in this study were

likely constructed according to their own unique preferences,

biases, and perhaps even definitions of synonymy. To formally

account for such variability, we extended the above model by

allowing the sampling rates p~hh 0ð Þ to vary across terminologies,

concepts, and terms. Consistent with previous applications [83],

we found that the mixture modeling approach successfully

captured the variation we observed both within and across

different terminologies. Details concerning the mixture model, its

inference, and resulting estimates of undocumented synonymy are

provided in the Supporting Information Text S1. A summary of

the modeling results is provided in Table S4.

Crowd Sourcing Undocumented General English
Synonymy

To find potentially undocumented headwords of high-quality,

we passed all of the words contained within our Wikipedia corpus

through several filters (including a large English dictionary [84]),

removing proper nouns, misspelled words and those words

annotated as headwords in our general English dataset. We then

randomly sampled 300 of these putative undocumented head-

words for downstream analysis. In order to harvest previously

undocumented synonymous relationships, we turned to the

Amazon Turk web service and hired a work force of general-

English speakers. To ensure that our work force included only
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highly-qualified ‘‘Turkers,’’ we only allowed individuals with

an IP address in the United States to complete our task, and we

further required that each Turker have an approval rating of at

least 85%.

We conducted our harvesting experiment by posting a set of

100 Human Intelligence Tasks (HITs), where each task

consisted of a random group of three candidate headwords.

Within each HIT, we asked the Turkers to provide at least five

novel synonyms for the group of three headwords. In our

instructions to Turkers, we specifically emphasized that only

single-word answers were allowed and the parts-of-speech of

the headword and synonym must match. Because the notion of

synonymy is somewhat vague and open to interpretation

[1,71], we did not explicitly provide Turkers with a precise

definition of the relationship, relying instead on their individ-

ual intuitions and self-imposed definitions. To ensure that

Turkers’ definitions of synonymy were consistent with those

used by established dictionaries, we incorporated positive and

negative controls into our subsequent validation stage (see

below for details). After each HIT was completed three times,

we automatically filtered the candidate synonym pairs for

mismatched parts-of-speech and misspellings using the SPE-

CIALIST lexicon [84] and the iSpell word list, respectively.

After filtering, we obtained a total of 2,871 entirely novel,

candidate synonymous relationships.

We validated the harvested synonymous relationships by

combining them with positive and negative controls and

subjecting them to an additional crowdsourcing experiment.

For a positive control, we selected the top 5,000 synonym pairs

from our dataset previously determined to be highly inter-

changeable in written English text [70]. For a negative control,

we generated a set of 5,000 synonymous relationships by

randomly shuffling lists of headwords and synonyms with

identical parts-of-speech. We conducted the validation exper-

iment by assigning each HIT a random group of ten known

pairings, ten random pairings, and ten harvested pairings. For

each of the 30 synonym pairs, we asked Turkers a simple true-

false question: ‘‘Do you think that A is a synonym of B (given

B’s part of speech C)?’’ With respect to the harvesting

experiment, we set higher criteria for our validation Turkers.

In addition to being located within the US, they had to have

completed more than 100 HITs with an approval rating of

95% or higher. To prevent poorly performing Turkers from

biasing our results, we removed all responses in which the

corresponding Turker did not annotate the known and random

pairings at a performance level significantly better than

random (T-test, p.0.05 after correcting for multiple testing);

all rejected HITs were re-posted for another round of

validation by a different Turker.

After conducting the experiment, we evaluated each candi-

date synonym pair by computing the posterior probability that it

represented a true relationship. We computed these probabil-

ities by applying a statistical model of the validation process

[50–52] to the Turker-generated synonym data. We fit the

model using the PyAnno software package [85], which provided

the posterior probability that each synonym pair represented a

true relationship, conditional on the data and underlying model

parameters. Ultimately, the positive and negative controls

allowed us to evaluate the quality of modeling predictions. As

described in the main text, a simple binary classifier constructed

from the posterior validation probabilities identified synony-

mous relationships harvested from the dictionaries with an area

under of the receiver-operating-characteristic curve of 0.962.

Using the known and random pairings as a guide, we estimated

the posterior probability threshold values for various true and

false positive rates. In the end, we reported our results with

respect to a false discovery rate of 2%. The full table of

candidate synonym pairs and validation results is provided in

Dataset S4.

Supporting Information

Dataset S1 The general-English near-synonymy data-
set. Each line in the file provides a headword, its annotated

synonyms, and a binary array that indicates the annotating

dictionaries for each pair. The dictionaries are listed according to

their order in the binary array (column-wise) on the first line of the

file. Note, headwords and synonyms have been replaced by

integers in accordance with copyright law.

(ZIP)

Dataset S2 The Diseases and Syndromes synonym
dataset. The format of this file is identical to that of Dataset

S1. See Supporting Information Text S1 for the processing

procedures that resulted in this dataset.

(ZIP)

Dataset S3 The Pharmacological Substances synonym
dataset. The format of this file is identical to that of Dataset S1.

See Supporting Information Text S1 for the processing procedures

that resulted in this dataset.

(ZIP)

Dataset S4 The headwords and harvested synonym
pairs obtained from the crowd-sourcing experiment.
Each line in the file contains a provisional a headword, its part-of-

speech, its harvested synonyms, and their associated posterior

probabilities computed from the validation experiment.

(ZIP)

Figure S1 Missing synonymy negatively affects disease
name normalization. To test the importance of synonymy for

named entity normalization, we removed random subsets of

synonyms from the Diseases and Syndromes terminology (x-axes

indicate the fraction remaining) and computed recall (blue),

precision (red), and their harmonic average (F1-measure, green)

(y-axis) for four normalization algorithms (bottom) applied to two

disease name normalization gold-standard corpora (left). Error

bars represent twice the standard error of the estimates,

computed from five replicates. Numerical results are presented

in Table 1, and a description of the methodology is provided in

the Materials and Methods and the Supporting Information Text

S1.

(TIF)

Figure S2 Recall of normalized Pharmacological Sub-
stances depends on synonymy. The fraction of the total

number of recalled concepts returned by MetaMap (y-axis) upon

removing a subset of the synonyms contained within the

Pharmacological Substances terminology (x-axis indicates fraction

remaining). The evaluation corpus consisted of 35,000 unique

noun phrases isolated from MEDLINE (see Materials and

Methods for details).

(TIF)

Figure S3 Headword selection bias in general-English
thesauri. (A) The empirical distribution over stemmed word

length shown for headwords (blue) and non-headwords (synonyms

only, red). The inset panel depicts bootstrapped estimates (1000 re-

samples) for the mean values of these two distributions. (B):

Relative word frequency of headwords (blue) and non-headwords

Synonymy Matters for Biomedicine

PLOS Computational Biology | www.ploscompbiol.org 15 September 2014 | Volume 10 | Issue 9 | e1003799



(synonyms only, red). In both cases, a Student’s T-test for a

difference in means produced a p-value ,2.2610216.

(TIF)

Figure S4 Bias and variability captured by the anno-
tation mixture model. (A) The distributions over parts-of-

speech across the ten headword components specified within the

best-fitting mixture model. (B): The probability of headword

annotation, marginalized over all possible numbers and classes

of synonyms, for the complete set of nine, general-English

thesauri.

(TIF)

Table S1 Examples of missing synonyms annotated
within the gold-standard disease name normalization
corpora. The first column indicates the term mentioned in the

text, while the second column provides the annotated concept.

The third column indicates the corpus of origin. Algorithms

considered in this study did not properly normalize any

examples provided here presumably because the synonym was

not provided in the complete disease name terminology.

(PDF)

Table S2 The sources for the Diseases and Syndromes
dataset. Summary statistics for the thirteen thesauri used to

construct the Diseases and Syndromes terminology.

(PDF)

Table S3 The sources for the Pharmacological Sub-
stances dataset. Summary statistics for the ten thesauri used to

construct the Pharmacological Substances terminology.

(PDF)

Table S4 The sources for the general-English dataset.
Summary statistics for nine thesauri used to construct the general-

English near-synonym terminology.

(PDF)

Table S5 Estimates for the extent of undocumented
synonymy for the three terminologies included in this
study. This table provides the lower bound on the log-evidence

for the best fitting annotation mixture models specific to each

lexical domain. Moreover, it provides the fraction of headwords/

concepts and synonym pairs/terms predicted to be undocumented

within each dataset. Values in parenthesis indicate the 99%

credible intervals for the estimates.

(PDF)

Text S1 Supplemental materials and methods.
(PDF)
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