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Simple Summary: Platinum-based chemotherapy is the first-line treatment for advanced urothelial
cell carcinoma (aUCC). After first-line treatment, we previously showed that maintenance therapy
with vinflunine improves progression-free survival. However, some patients are resistant to vin-
flunine and the specific mechanisms of resistance in aUCC are unclear. We analyzed the genomic
landscape and the biological processes potentially related to vinflunine activity and found that
epithelial-to-mesenchymal transition (EMT) plays a pivotal role as a resistance mechanism. In experi-
ments with cell lines, curcumin reversed EMT and sensitized cells to vinflunine. We suggest that
EMT mediates resistance to vinflunine and that the reversion of this process could enhance the effect
of vinflunine in aUCC patients.

Abstract: In the phase II MAJA trial, maintenance therapy with vinflunine resulted in longer
progression-free survival compared to best supportive care in advanced urothelial cell carcinoma
(aUCC) patients who did not progress after first-line platinum-based chemotherapy. However, de-
spite an initial benefit observed in some patients, unequivocal resistance appears which underlying
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mechanisms are presently unknown. We have performed gene expression and functional enrichment
analyses to shed light on the discovery of these underlying resistance mechanisms. Differential gene
expression profile of eight patients with poor outcome and nine with good outcome to vinflunine
administered in the MAJA trial were analyzed. RNA was isolated from tumor tissue and gene
expression was assessed by microarray. Differential expression was determined with linear models
for microarray data. Gene Set Enrichment Analysis (GSEA) was used for the functional classification
of the genes. In vitro functional studies were performed using UCC cell lines. Hierarchical clustering
showed a differential gene expression pattern between patients with good and poor outcome to vin-
flunine treatment. GSEA identified epithelial-to-mesenchymal transition (EMT) as the top negatively
enriched hallmark in patients with good outcome. In vitro analyses showed that the polyphenol
curcumin downregulated EMT markers and sensitized UCC cells to vinflunine. We conclude that
EMT mediates resistance to vinflunine and suggest that the reversion of this process could enhance
the effect of vinflunine in aUCC patients.

Keywords: advanced urothelial cell carcinoma; vinflunine; chemotherapy resistance; epithelial-to-
mesenchymal transition; maintenance therapy

1. Introduction

Urothelial cell carcinoma (UCC) is the fifth most common type of cancer in developed
countries [1]. Platinum-based chemotherapy is standard-of-care first-line treatment for ad-
vanced UCC (aUCC). These tumors are generally chemosensitive, and objective responses
are achieved with first-line therapy in 40–70% of patients [2,3]. Nevertheless, the duration
of response is limited, and after progression prognosis is generally poor, with a median
overall survival of 14–16 months and <20% of long-term survivors [4].

Based on the positive results of several phase II/III clinical trials [5–7], vinflunine, a
third-generation semi-synthetic vinca alkaloid, was approved in 2009 by the European
Medicines Agency (EMA) for the treatment of patients with aUCC who progressed after
initial treatment with platinum-based chemotherapy. However, since the introduction of
anti-PD-1/L1 immune checkpoint inhibitors as a second-line therapeutic option [8–13], vin-
flunine has been considered a third-line treatment for aUCC patients who have progressed
to immunotherapy or combination chemotherapy [14].

Based on the benefits observed in second line, vinflunine was tested in the maintenance
space. Maintenance therapy can be a useful treatment strategy to delay disease progression,
improve quality of life, and increase overall survival both in patients with metastatic
disease who are not eligible for second-line treatment but who might still expect some
clinical benefit and in those who are eligible for second-line treatment but at risk of rapid
disease progression [15,16]. In a previous randomized, controlled, open-label, phase II
trial of aUCC patients with controlled disease after first-line cisplatin and gemcitabine, we
demonstrated that maintenance therapy with vinflunine plus best supportive care resulted
in significantly longer progression-free survival than best supportive care alone, with no
unexpected long-term adverse effects [12,17].

Like other microtubule-targeting drugs, vinflunine inhibits microtubule dynamics
by binding to tubulin dimers and destabilizing microtubules, thereby blocking cellular
mitosis in the metaphase and leading to apoptosis [18,19]. Vinflunine has shown anti-
proliferative, anti-angiogenic and anti-metastatic properties in vitro and in vivo [20], with
a low toxicity profile compared to other anti-microtubule agents [21,22]. Although several
common resistance mechanisms to anti-microtubule agents, such as P-glycoprotein (P-
gp) drug efflux pump overexpression and β-tubulin alterations, have been related to
vinflunine resistance [22], the specific mechanisms underlying this resistance in aUCC
patients remain unclear.

In order to identify potential mechanisms of resistance to vinflunine, we have con-
ducted a differential gene expression analysis and a pathway analysis using GSEA in-



Cancers 2021, 13, 6235 3 of 18

cluding epithelial-to-mesenchymal transition (EMT) and the IL-6/JAK/STAT3 pathway,
between patients with good and poor outcome included in our vinflunine maintenance
trial [12,17]. The overarching aim was to develop new therapeutic approaches to overcome
vinflunine resistance through an adequate understanding of the mechanisms underlying
this resistance.

2. Materials and Methods
2.1. Patients’ Clinicopathological Baseline Characteristics

From April 2012 to January 2015, 88 patients with aUCC received first-line chemother-
apy with four to six cycles of cisplatin and gemcitabine (carboplatin permitted after cycle
four), with response or stable disease, according to the Response Evaluation Criteria in
Solid Tumors (RECIST), version 1.1 at 21 hospitals and member institutions of the Spanish
Oncology Genitourinary Group (SOGUG). Patients had an Eastern Cooperative Oncology
Group (ECOG) performance status of 1, age ≥ 75 yrs, previous pelvic radiotherapy, or
creatinine clearance < 60 mL/min. Patients were randomized to receive second-line vinflu-
nine (every 21 days as a 20-min intravenous infusion at 320 mg/m2 or at 280 mg/m2) plus
best supportive care or best supportive care alone. One patient was lost immediately to
follow-up and nine discontinued treatment due to toxicity or patient decision [12,17].

We classified patients with good or poor outcome to vinflunine treatment based on
the number of vinflunine cycles received before progression. Patients who progressed
after more than 12 cycles were considered patients with good outcome (15 patients), while
those patients who progressed before receiving four cycles (19 patients) were considered
patients with poor outcome. Sufficient formalin-fixed, paraffin-embedded (FFPE) tumor
tissue for the current study was available from nine patients with good outcome and eight
with poor outcome to vinflunine treatment. Clinicopathological baseline characteristics
were comparable between the two groups (Table 1).

Table 1. Baseline characteristics of the 17 patients included in the present study.

Variables Patients with Good
Outcome (n = 9)

Patients with Poor
Outcome (n = 8) p-Value

Median age, yrs (range) 61 (47–74) 68 (52–80) ns

Gender
Male

Female
7
2

6
2

ns

ECOG PS
0
1

5
4

3
5

ns

Hemoglobin < 10 gr/dL 2 0 ns

Liver metastases 0 2 ns

Number of poor prognostic factors
0
1
2

4
4
1

3
3
2

ns

Response to cis/gem
CR
PR
SD

4
4
1

1
6
1

ns

Status (at last visit)
Alive
Dead

7
2

1
7

ECOG: Eastern Cooperative Oncology Group; PS: performance status; cis/gem: cisplatin/gemcitabine; CR:
complete response; PR: partial response; SD: stable disease; ns: non-significance.
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In order to identify potential genetic determinants of vinflunine resistance, we con-
ducted a four-part investigation. First, gene expression levels were determined by microar-
ray analysis, differential expression was determined with linear models for microarray
data, and Gene Set Enrichment Analysis (GSEA) was used for the functional classification
of the genes. Next, 10 genes found to be highly differential expressed between patients
with good and poor outcome to vinflunine treatment were analyzed by qRT-PCR analysis.
We then performed a functional enrichment analysis to examine the biological processes
potentially involved in vinflunine resistance. Finally, we conducted in vitro functional
studies in UCC cell lines to determine cell viability and the cytotoxicity of vinflunine with
and without curcumin (a well-known inhibitor of EMT) (see Graphical Abstract).

2.2. FFPE-Tissue RNA Extraction

For the gene expression analysis, total RNA was isolated from 10-µm sections of FFPE
tumors fixed on positively charged slides. After selection of tumor areas by macrodissection,
cells were lysed and sheared by sonication with an S2 (Covaris Inc., Wobrun, MA, USA) and
RNA was purified using the truXTRAC FFPE microTube RNA Kit (Covaris Inc., Wobrun,
MA, USA) following the manufacturer’s instructions, eluted in a final volume of 30 µL, and
immediately quantified using the Qubit 3 Fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA).

2.3. Microarray Gene Expression Profiling

Gene expression microarrays were performed with Clariom S Arrays (Affymetrix/
ThermoFisher) at Josep Carreras Leukemia Research Institute (Badalona, Spain). Fifty ng
of total RNA from each sample were processed according to the GeneChip™ 3′ IVT Pico
Kit user guide. The Affymetrix® 450 fluidics station and GeneChip® Scanner 3000 7G were
used to wash, stain and scan the arrays.

Statistical packages included (R v3.3.2), Bioconductor [23], and the Comprehensive
R Archive Network (CRAN) (http://cran.r-project.org/ accessed on 1 November 2021)
were used for statistical analyses. For normalization, we used the Robust Multi-array
Average algorithm (RMA) [24] in the Affymetrix package [25]. Differentially expressed
genes were identified with the limma package [26]. The sva package (R v3.40.0) was used
to estimate batch effects and other artifacts and adjust them into the limma model. Genes
were considered differentially expressed when p≤ 0.05 and the fold change |FC| was >1.5.

For gene annotation, we used the annotation file of Affymetrix with the Clariom_S_Human
array (NetAffx na36) and the UCSC database (Nov. 2016 hg38, GRCh38). The Affymetrix
annotation file obtained the location of each probeset (start, stop, strand and chromosome),
which was then used to map genes with the same coordinates in the UCSC database.

To study whether there were differences between cell subtypes in both patient cohorts,
we applied the EPIC deconvolution method to the linear RMA normalized data. This
method is available through the R immunedeconv package [27]. Statistical differences
between patients with good and poor outcomes were assessed with the Student’s t-test
(Wilcoxon rank sum test).

2.4. Functional Enrichment Analysis

GSEA was used to retrieve functional annotation on the genes identified as dif-
ferentially expressed [28]. This method links the microarray expression profile with
gene sets available in the Molecular Signatures Database (MSigDB, v 6.1) (http://www.
broadinstitute.org/gsea/msigdb/index.jsp, accessed on 1 November 2021). Gene sets in
MSigDB are grouped in eight collections, three of which were used in the present study:
hallmark gene sets, C2 curated gene sets, and C5 GO biological process. GSEA determines
whether the members of a gene set tend to aggregate toward the top or the bottom of
a ranked list of genes. GSEA software with the option Pre-Ranked Analysis was used
(http://www.broadinstitute.org/gsea/index.jsp, accessed on 1 November 2021) to rank
genes using the p-values obtained in the limma analysis. The ranked list of genes was gen-
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erated using the −log(p.val) × signFC for each gene. Gene sets were considered significant
when p ≤ 0.05 and FDR q value < 0.05.

2.5. Quantitative RT-PCR (qRT-PCR)

Genes selected for qRT-PCR analysis were IGFBP3, IGF2, CXCL8, CCDC80, S100A9,
TM4SF1, SCIN, CXorf57, EMX2, KMKN, CDH2, FN1 and ZEB1. qRT-PCR was performed as
previously described [29]. Briefly, retrotranscription was performed with moloney murine
leukemia virus (MMLV) reverse transcriptase (Thermo Fisher Scientific, Waltham, MA,
USA). Template cDNA was amplified using commercial TaqMan gene expression assays
and TaqMan Universal Master Mix (Applied Biosystems, Foster City, USA).

Relative gene expression quantification was calculated according to the comparative
∆Ct method (∆Ct = Ct [gene] − Ctul [endogenous]), as previously described [30], with
β-actin (ACTB) (Thermo Fisher Scientific) as the endogenous control. Student’s t-test
was used to assess statistical differences between patients with good and poor outcome.
p-values were corrected using the FDR method [31].

2.6. Cell Culture

The HT1376 and T24 UCC cell lines [32], kindly provided by Dr. Francesc Xavier
Real (Spanish National Cancer Research Centre, Madrid, Spain), were used for the in vitro
functional studies to determine cell viability and the cytotoxicity of vinflunine and cur-
cumin alone and in combination. The in vitro studies were performed as previously
described [33,34]. Briefly, the HT1376 cells were cultured in MEM (Thermo Fisher Scien-
tific, Waltham, MA, USA) and the T24 cells were cultured in McCoy’s 5A (Thermo Fisher
Scientific, Waltham, MA, USA), supplemented with 10% of heat-inactivated FCS (Reactiva,
08004 Barcelona, Spain), 400 units/mL penicillin, and 40 µg/mL gentamicin (Thermo
Fisher Scientific, Waltham, MA, USA). Cell lines were cultured at 37 ◦C in an atmosphere
of 5% CO2, periodically tested for mycoplasma contamination, and authenticated by short
tandem repeat profiling.

Vinflunine (MedChemExpress, Monmouth Junction, NJ, USA) and curcumin (Sigma
Aldrich, St. Louis, MO, USA) were prepared in dimethylsulfoxide and ethanol abso-
lute, respectively

2.7. Cell Viability Assay

Drug cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetra-
zolium bromide (MTT) assay (Thermo Fisher Scientific, Waltham, MA, USA). T24 urothelial
cancer cells were seeded in a 96-well microtiter plates (Thermo Fisher Scientific, Waltham,
MA, USA) at 5000 cells per well and allowed to attach. Medium containing different
drug concentrations of vinflunine, curcumin and their combination was added after 24h.
After 72h of treatment, MTT was then added and doses for 10–90% of cell viability were
determined by the median-effect line method.

2.8. Analysis of Combined Drug Effects

The cytotoxicity of the combined drugs was assessed with serial dilution of both drugs
at 1/8, 1/4, 1/2, 1, 2 and 4 of the individual IC50 values by MTT test. Fractional survival
was then calculated by dividing the number of cells in drug-treated plates by the number
of cells in control plates. The synergistic effect of the combined treatments was analyzed by
calculating the Combination Index (CI), using Compusyn Software (Combosyn Inc) based
on Chou and Talalay method, as previously described [34]. According to this method,
synergism is indicated by CI < 1, antagonism by CI > 1, and additivity by CI = 1.

2.9. Colony-Formation Assay

To evaluate the cytotoxicity of vinflunine, curcumin and their combination, colony-
formation assays were also performed as previously described [33,34]. Briefly, a serial
dilution of T24 cells was made in order to seed 500 cells/well in a six-well plate (Thermo
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Fisher Scientific, Waltham, MA, USA), and cells were left 24 h to adhere. The following day,
different dilutions of the drugs were added for 72 h. Cells were left a total of 10 days in
culture for colonies to form performing regular medium changes. Cells were subsequently
washed with PBS, fixed with a methanol/acetic acid (3:1) solution for 10 min and stained
with a solution of crystal violet (0.5%) for 10 min. After staining, cells were washed with
PBS and colonies were counted with ImageJ software.

2.10. Western Blotting

Western blotting was performed as previously described [33,34]. Briefly, cells were
washed with PBS and homogenized in a radio immunoprecipitation assay (RIPA) plus
buffer. Then, we determined the protein concentration with the DC Protein Assay (Bio-
Rad Laboratories, Inc., Richmond, CA, USA). For the western blot, 50 µg of protein were
loaded in a 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
gels (Thermo Fisher Scientific, Waltham, MA, USA) and subjected to electrophoresis.
Afterwards, proteins were transferred onto a polyvinylidene difluoride (PVDF) membrane
(Bio-Rad Laboratories, Inc., Richmond, CA, USA) by wet transfer. The membranes were
blocked for 2 h with Odyssey blocking buffer (LICOR Biosciences, Lincoln, NE, USA)
and then incubated overnight at 4 ◦C with specific primary antibodies against E-cadherin
(Cell Signaling, Danvers, MA, USA, Ref #3195; 1:1000), N-cadherin (Cell Signaling, Ref
#13116; 1:1000), Fibronectin (Cell Signaling, Ref # #26836; 1:1000), Vimentin (Abcam,
Cambridge, MA, USA, ab92547; 1:1000), ZEB1 (Cell Signaling, Ref #70512; 1:1000) and
β-actin (Sigma-Aldrich, #T6074, 1:2000). Membranes were incubated with IRDye rabbit
and mouse secondary antibodies (1:10,000) (LICOR Biosciences, Lincoln, NE, USA) and
scanned and analyzed on the Odyssey imaging system (LICOR Biosciences, Lincoln, NE,
USA). Band signal was quantified with the build-in software. Each band was referenced to
either β-actin band from the same sample.

2.11. Apoptosis Assay

Apoptosis was determined by using FITC Annexin V Apoptosis Detection Kit I (BD
Pharmingen) following the manufacturer’s instructions in a FACS Canto II flow cytometer
(Becton Dickinson Immunocytometry System), as previously described [34].

2.12. Statistical Analysis

Patients’ baseline characteristics were compared using a chi-square and Mann–Whitney
U test with SPSS v.19 software.

In vitro data are reported as mean ± SEM of at least three independent experiments.
The statistical analysis was performed with Graphpad Prism V.4 software. Statistical
differences between IC50s were assessed with dose-response curves, non-linear regression
analysis, and F-test. Different experimental conditions were compared with the Student’s
t-test.

3. Results
3.1. Differential Gene Expression Patterns between Patients with Good and Poor Outcome to
Vinflunine Treatment

Transcriptional profiling by microarray revealed 31 genes differentially expressed
between patients with good and poor outcome to vinflunine treatment. Eighteen were
downregulated and 13 upregulated in patients with good outcome (Figure 1).
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treatment, obtained from an adjusted linear model (|FC| > 1.5 and p ≤ 0.05). IGF2 appears twice in the heatmap as two 
different transcripts of this gene were identified in the microarray analysis. 

We then selected the ten downregulated and the ten upregulated genes with the 
greatest FC between patients with good and poor outcome (Table 2). 

Table 2. Genes with the greatest differences in expression between patients with good and poor outcome to vinflunine 
treatment, ranked by fold change. 

Gene Gene Description Chromosome FC * p-Value * 
Genes downregulated in patients with good outcome to vinflunine treatment  

C3+C18F2B3:D19 Complement component 3  chr19 −2.0511 0.0066 
CDR1 Cerebellar degeneration related protein 1  chrX −2.0409 0.0019 

IGFBP3 Insulin like growth factor binding protein 3  chr7 −1.9304 0.0109 
IGF2 Insulin-like growth factor 2  chr11 −1.9108 0.0343 

CCDC80 Coiled-coil domain containing 80  chr3 −1.8935 0.0043 
JCHAIN Joining chain of multimeric IgA and IgM  chr4 −1.8610 0.0230 
CXCL8 Chemokine (C-X-C motif) ligand 8  chr4 −1.8393 0.0399 
S100A9 S100 calcium binding protein A9  chr1 −1.7811 0.0460 
TM4SF1 Transmembrane 4 L six family member 1  chr3 −1.7805 0.0070 

Figure 1. Gene expression patterns associated with vinflunine resistance in aUCC patients. Heat map depicting the
normalized expression of the 31 genes differentially expressed between patients with good and poor outcome to vinflunine
treatment, obtained from an adjusted linear model (|FC| > 1.5 and p ≤ 0.05). IGF2 appears twice in the heatmap as two
different transcripts of this gene were identified in the microarray analysis.

We then selected the ten downregulated and the ten upregulated genes with the
greatest FC between patients with good and poor outcome (Table 2).

We then selected 10 of these genes for qRT-PCR analysis, based on their previously
described role in UCC and/or response to anti-microtubule agents. Six of these genes were
downregulated in patients with good outcome (IGFBP3, IGF2, CCDC80, CXCL8, S100A9
and TM4SF1) and four were upregulated (SCIN, CXorf57, EMX2 and DMKN). However,
the qRT-PCR analysis detected no significant differences in the expression of any of the
genes between patients with good and poor outcome to vinflunine treatment, although
there was a trend towards downregulation of TM4SF1 (p = 0.057) and IGFBP3 (p = 0.065) in
patients with good outcome (Figure 2).
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Table 2. Genes with the greatest differences in expression between patients with good and poor outcome to vinflunine
treatment, ranked by fold change.

Gene Gene Description Chromosome FC * p-Value *

Genes downregulated in patients with good outcome to vinflunine treatment
C3+C18F2B3:D19 Complement component 3 chr19 −2.0511 0.0066

CDR1 Cerebellar degeneration related protein 1 chrX −2.0409 0.0019
IGFBP3 Insulin like growth factor binding protein 3 chr7 −1.9304 0.0109

IGF2 Insulin-like growth factor 2 chr11 −1.9108 0.0343
CCDC80 Coiled-coil domain containing 80 chr3 −1.8935 0.0043
JCHAIN Joining chain of multimeric IgA and IgM chr4 −1.8610 0.0230
CXCL8 Chemokine (C-X-C motif) ligand 8 chr4 −1.8393 0.0399
S100A9 S100 calcium binding protein A9 chr1 −1.7811 0.0460
TM4SF1 Transmembrane 4 L six family member 1 chr3 −1.7805 0.0070
IGLL5 Immunoglobulin lambda-like polypeptide 5 chr22 −1.6382 0.0185

Genes upregulated in patients with good outcome to vinflunine treatment
GRHL3 Grainyhead-like transcription factor 3 chr1 1.5581 0.0011
SCIN Scinderin chr7 1.5654 0.0120

CXorf57 Chromosome X open reading frame 57 chrX 1.5952 0.0066
GSTM1 Glutathione S-transferase mu 1 chr1 1.5981 0.0105

SCNN1G Sodium channel non-voltage gated 1 gamma subunit chr16 1.6793 0.0007
EMX2 Empty spiracles homeobox 2 chr10 1.6874 0.0014

DMKN Dermokine chr19 1.6882 0.0261
TMEM97 Transmembrane protein 97 chr17 1.7270 0.0052

CRH Corticotropin releasing hormone chr8 1.8411 0.0394
SPTSSB Serine palmitoyltransferase small subunit B chr3 1.8950 0.0144

* FC (fold change) and p-value shown for the comparison between patients with good and poor outcome to vinflunine treatment.

Cancers 2021, 13, x 9 of 20 
 

 

IGLL5 Immunoglobulin lambda-like polypeptide 5  chr22 −1.6382 0.0185 
Genes upregulated in patients with good outcome to vinflunine treatment  

GRHL3 Grainyhead-like transcription factor 3 chr1 1.5581 0.0011 
SCIN Scinderin chr7 1.5654 0.0120 

CXorf57 Chromosome X open reading frame 57 chrX 1.5952 0.0066 
GSTM1 Glutathione S-transferase mu 1 chr1 1.5981 0.0105 

SCNN1G Sodium channel non-voltage gated 1 gamma subu-
nit chr16 1.6793 0.0007 

EMX2 Empty spiracles homeobox 2 chr10 1.6874 0.0014 
DMKN Dermokine chr19 1.6882 0.0261 

TMEM97 Transmembrane protein 97 chr17 1.7270 0.0052 
CRH Corticotropin releasing hormone chr8 1.8411 0.0394 

SPTSSB Serine palmitoyltransferase small subunit B chr3 1.8950 0.0144 
*FC (fold change) and p-value shown for the comparison between patients with good and poor outcome to vinflunine 
treatment. 

We then selected 10 of these genes for qRT-PCR analysis, based on their previously 
described role in UCC and/or response to anti-microtubule agents. Six of these genes were 
downregulated in patients with good outcome (IGFBP3, IGF2, CCDC80, CXCL8, S100A9 
and TM4SF1) and four were upregulated (SCIN, CXorf57, EMX2 and DMKN). However, 
the qRT-PCR analysis detected no significant differences in the expression of any of the 
genes between patients with good and poor outcome to vinflunine treatment, although 
there was a trend towards downregulation of TM4SF1 (p = 0.057) and IGFBP3 (p = 0.065) 
in patients with good outcome (Figure 2).  

 
Figure 2. Box plots depicting the qRT-PCR relative expression of the genes differentially expressed in patients with good 
versus poor outcome to vinflunine treatment. β-actin (ACTB) was used as the endogenous gene. CXorf57 expression was 
not detected by qRT-PCR. ΔCt: (ΔCt = Ct [gene]—Ct [endogenous]); PO: poor outcome; GO: good outcome. 

3.2. Epithelial-to-Mesenchymal Transition (EMT) Pathway Mediate Vinflunine Resistance in 
aUCC Patients 

Figure 2. Box plots depicting the qRT-PCR relative expression of the genes differentially expressed in patients with good
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3.2. Epithelial-to-Mesenchymal Transition (EMT) Pathway Mediate Vinflunine Resistance in
aUCC Patients

The functional enrichment analysis of the biological processes potentially involved
in vinflunine resistance in aUCC patients identified EMT (p < 0.001; FDR q < 0.001) and
the IL-6/JAK/STAT3 pathway (p < 0.001; FDR q = 0.0016) as the most negatively enriched
hallmarks in patients with good outcome (Table 3; Figure 3a, b), while the G2M checkpoint
(p = 0.017; FDR q = 0.019) was positively enriched in these patients (Table 3; Figure 3c).

Table 3. Table showing the significant Hallmark terms negatively and positively enriched in patients with good outcome
compared to those with poor outcome to vinflunine treatment, obtained by GSEA overlap.

Gene Set No. Genes in Set Gene Overlap p-Value FDR
q-Value

Negatively enriched gene sets in patients with good outcome to vinflunine treatment
EMT 196 73 0.000 0.000

IL6/JAK/STAT3 signaling 87 39 0.000 0.001
Coagulation 136 46 0.000 0.003

Allograft rejection 198 68 0.002 0.008
Interferon gamma response 196 75 0.000 0.007

Inflammatory response 197 71 0.000 0.023
Hypoxia 196 67 0.000 0.031

Angiogenesis 36 11 0.040 0.035
Complement 194 71 0.000 0.035

Kras signaling up 195 65 0.004 0.036
Myogenesis 199 57 0.006 0.047

Positively enriched gene sets in patients with good outcome to vinflunine treatment
G2M checkpoint 197 61 0.017 0.019
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In order to demonstrate that the identified hallmarks are contributed by the tumor
and not by cancer-associated fibroblasts (CAFs) or other immune cell populations, such as
tumor-associated macrophages (TAMs), we applied the EPIC deconvolution method to
the linear RMA normalized data and found no statistically significant differences in the
levels of TAMs, CAFs or other lymphocyte populations between patients with good and
poor outcome to vinflunine treatment, suggesting that the identified hallmarks are indeed
contributed by the tumor (Figure S2).

Since these results suggested a role for EMT in resistance to vinflunine in aUCC
patients, we hypothesized that the combination of vinflunine with an EMT inhibitor could
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be an appropriate strategy to enhance vinflunine sensitivity. We therefore proceeded to test
this hypothesis in vitro.

3.3. Downregulation of EMT Markers Enhances Vinflunine Sensitivity in UCC Cell Lines

Cells undergoing EMT display decreased expression of epithelial genes, such as E-
cadherin, and increased expression of mesenchymal genes, such as N-cadherin, Vimentin
and Fibronectin [35]. In fact, a crucial change that occurs during EMT is the “cadherin
switch”, in which the normal expression of E-cadherin is replaced by the abnormal expres-
sion of N-cadherin [36]. In two UCC cell lines, T24 and HT1376, we analyzed the basal
protein expression levels of the EMT markers E-cadherin, N-cadherin, Fibronectin and
Vimentin, as well as the transcription factor Zinc-finger E-box-binding homeobox 1 (ZEB1),
a key inducer of EMT, at 48, 72 and 96 h post-cell seeding. T24 cells expressed the mes-
enchymal proteins N-cadherin and Fibronectin, but not the epithelial marker E-cadherin.
In contrast, in HT1376 cells, only E-cadherin expression was detected by Western blot.
The transcriptional repressor of E-cadherin expression, ZEB1, was only expressed in the
T24 cells (Figures 4a and S3). In line with previous reports [37], vimentin expression was
not detected in either cell line.

Morphological changes associated with EMT include loss of cell–cell contacts, the
appearance of elongated mesenchymal features, and growth as single cells [38]. We
observed important morphological differences between the two cell lines. In contrast
to HT1376 cells, the T24 cells contained a large number of elongated, spindle-shaped
fibroblast-like cells with well-developed microvilli (Figure 4b).

Since these results suggested that T24 cells present a mesenchymal-like phenotype
whereas HT1376 cells have an epithelial phenotype, we selected the T24 cell line for further
analysis. First, we assessed the effect of vinflunine treatment on the viability of T24 cells by
treating them with increasing doses of vinflunine for 72 h. As expected, vinflunine exposure
decreased cell proliferation (Figure 4c) and colony formation (Figure 4d) of T24 cells in a
dose-dependent manner.

Several EMT inhibitors are known to enhance chemosensitivity [39], including cur-
cumin (diferuloylmethane), a polyphenol that has been shown to inhibit EMT in several
human tumors [40], including bladder cancer [41], thereby overcoming chemoresistance
and enhancing the antiproliferative effects of conventional chemotherapy [42,43]. Based on
this evidence, as well as on our previous experience with curcumin as a chemosensitizer
in colorectal cancer [33,44], we investigated the effect of increasing concentrations of cur-
cumin on T24 cell viability over 72 h. Curcumin decreased cell proliferation (Figure 5a) and
colony formation (Figure 5b) of T24 cells in a dose-dependent manner. We then assessed
the expression of N-cadherin, Fibronectin and ZEB1 in T24 cells after 72 h of curcumin
treatment at 10 and 15 µM. As expected, curcumin decreased both protein (Figure 5c) and
gene (Figure 5d) expression of these three proteinsin a dose-dependent manner, especially
at 15 µM. Based on these results, we reasoned that adding curcumin to vinflunine treatment
could enhance vinflunine sensitivity. Therefore, we treated T24 cells with different concen-
trations of concomitant vinflunine plus curcumin for 72 h. Cell viability (Figure 5e,f) and
clonogenic assays (Figure 5g) showed that the addition of curcumin acted synergistically
to sensitize cells to vinflunine, especially at high doses of both drugs. Furthermore, the
combination treatment was associated with an increase in apoptosis compared to each of
the drugs individually (Figure 5h).
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Figure 4. Basal protein expression levels of EMT markers in UCC cells and the effect of vinflunine on T24 cell proliferation.
(a) Western blot analysis of E-cadherin, N-cadherin, Fibronectin and ZEB1 in T24 and HT1376 cells at 48, 72 and 96 h post-cell
seeding. Beta-actin was used as endogenous control. (b) Phase-contrast microscopy images of the T24 and HT1376 cell
lines. Scale bar: 50 µm.(c) Dose–response curve for T24 cells after vinflunine treatment at 0–100 nM for 72 h (mean ± SEM).
IC50 value is shown as mean (95% CI). (d) Representative colony assay images (left) and bar graph (right) representing the
percentage (mean ± SEM) of colonies in T24 cells after 72 h of vinflunine treatment at the indicated doses. * p < 0.05 and
** p < 0.01 relative to vehicle (veh) condition. All results were obtained from at least three independent experiments.
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Figure 5. Curcumin treatment downregulated EMT markers and enhanced vinflunine sensitivity in T24 cells. (a) Dose–
response curve for T24 cells after curcumin treatment at 0–50 µM for 72 h (mean ± SEM). IC50 value is shown as mean
(95% CI). (b) Representative colony assay images (left) and bar graph (right) representing the percentage (mean ± SEM) of
colonies in T24 cells after curcumin treatment for 72 h at the indicated doses. * p < 0.05 and ** p < 0.01 relative to vehicle.
(c) Western blot analysis (left) and graphic representation (right) of N-cadherin, Fibronectin and ZEB1 in T24 cells after
curcumin treatment for 72 h. Beta-actin was used as endogenous control. * p < 0.05 and ** p < 0.01 relative to the vehicle.
(d) Bar graph illustrating relative gene expression levels (mean ± SEM) of N-cadherin (CDH2), Fibronectin (FN1) and ZEB1
after 72 h curcumin treatment at the indicated doses. Gene expression levels of β–actin (ACTB) were used as endogenous
control. * p-value < 0.05 relative to vehicle condition. (e) Bar graphs representing mean ± SEM percentage of cell viability
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after treatment with vinflunine, curcumin or the concomitant combination for 72 h at the indicated doses in T24 cells.
* p < 0.05 and ** p < 0.01 relative to the indicated treatment (f) Dot plot representing combination index values calculated for
each dose of the combination treatment. (g) Representative colony assay images (top) and bar graph (down) representing
the percentage (mean ± SEM) of colonies in T24 cells after treatment with vinflunine, curcumin or their combination for 72 h
at the indicated doses. * p < 0.05 relative to vinflunine treatment. (h) Bar graph representing the percentage (mean ± SEM)
of late apoptotic cells after treatment with vinflunine, curcumin or the combination for 72 h. * p < 0.05 relative to vinflunine
treatment. All results were obtained from at least 3 independent experiments. Veh: vehicle; Vinf: vinflunine; Curc: curcumin.

4. Discussion

Vinflunine, a third-generation semi-synthetic vinca alkaloid, is currently a third-line
treatment option for aUCC patients who have progressed to immunotherapy and/or
combination chemotherapy [45]. The mechanisms mediating its cytotoxic effect are well
known, but limited knowledge is available on the potential mechanisms underlying re-
sistance. In the present study, we have performed an exploratory functional enrichment
analysis through GSEA and found that EMT and the IL6/JAK/STAT3 pathway were
downregulated in patients with good outcome compared to those with poor outcome
to vinflunine treatment, suggesting a role for these factors on the primary resistance to
vinflunine. Furthermore, the results of our in vitro analysis suggest reversing the EMT
phenotype with the combination of vinflunine and curcumin (an EMT inhibitor) could
overcome vinflunine resistance.

Despite differences between patients with good and poor outcome in gene expression
in our microarray analysis, we were unable to detect significant differences by qRT-PCR,
possibly due to the low number of samples analyzed. However, there was a clear trend
towards overexpression of TM4SF1 and IGFBP3 in patients with poor outcome.

TM4SF1 is upregulated in several epithelial cancers [46], including bladder cancer [47],
and promotes the proliferation, migration and invasion of cancer cells by inducing EMT and
cancer stemness [46,48,49]. Importantly, several studies have shown that TM4SF1 expres-
sion is positively correlated with chemotherapy resistance in multiple cancers [46,50,51].
IGFBP3 plays a key role in esophageal tumor progression and metastasis by facilitating
EMT [52]. In addition, in metastatic prostate cancer cells, the pharmacological inhibition
of IGFBP3 enhanced response to enzalutamide, an antiandrogen therapy, through EMT
reversion [53]. These promising findings in other cancers, together with our findings in the
present study, lead us to suggest that the potential role of TM4SF1 and IGFBP3 as predictive
biomarkers of response to vinflunine treatment in aUCC merits further study in a larger
cohort of patients.

In line with our results, several studies have demonstrated that EMT is a key event in
the development of chemoresistance in several tumors [39,54,55], including prostate [56]
and bladder cancer [57]. In a previous study by our group, EMT was positively enriched in
colorectal cancer cells with acquired resistance to oxaliplatin compared to their parental
cell lines [33]. Interestingly, as occurs in cancer stem cells, cells undergoing EMT show
an increase in drug efflux pumps and anti-apoptotic effects [39]. The important role of
the overexpression of cell membrane transporter proteins, such as P-gp, in resistance to
therapeutic agents [58], including vinflunine [22], is widely known.

Several signaling pathways that promote EMT are known to contribute to drug
resistance [59]. For example, hyperactivation of the IL6/JAK/STAT3 pathway promotes
tumor metastasis and chemoresistance via induction of EMT through the upregulation of
EMT-inducing transcription factors, such as Snail, Twist-1 and ZEB1 [60]. Interestingly,
both curcumin [61] and metformin, an anti-diabetic drug [62], were found to inhibit EMT
by blocking the IL-6/STAT3 axis–curcumin in hepatocellular carcinoma [61] and metformin
in lung cancer [62]. Curcumin inhibits EMT through the modulation of several signaling
pathways [40,41], thereby overcoming chemoresistance and enhancing the antiproliferative
effects of chemotherapeutic agents in preclinical models.

Loss of E-cadherin expression is a hallmark of EMT [35]. A study analyzing E-cadherin
promoter by chromatin immunoprecipitation found that a repressive histone methylation
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mark is present at higher levels in T24 cells than in other epithelial bladder cancer cells,
leading to repression of E-cadherin [57]. In the present study, we used the T24 cell line for
our in vitro analyses based on its lack of E-cadherin expression as well as on the described
overexpression of several EMT markers, as reported by Aparicio and colleagues [37]. In line
with other studies [41], we found that levels of N-cadherin, Fibronectin and ZEB1 decreased
when T24 cells were treated with curcumin. Additionally, curcumin acted synergistically
to sensitize cells to vinflunine and the combination of curcumin and vinflunine led to an
increase in apoptosis.

To the best of our knowledge, this is the first study to demonstrate that the com-
bination of vinflunine with an EMT inhibitor could be a promising strategy in aUCC.
However, the treatment of aUCC has improved significantly in recent years with the in-
corporation of immune-checkpoint inhibitors [63] as well as with targeted therapies like
erdafitinib, the first anti-FGFR treatment targeting mutations/fusions in FGFR2/3 [64], and
enfortumab vedotin, a fully humanized monoclonal antibody against Nectin-4 [65]. Fur-
thermore, avelumab, an anti-PD-L1 drug, has recently demonstrated a significant benefit
as maintenance therapy in aUCC [66], thereby limiting the role of vinflunine in this setting.

Nevertheless, less than 25% of patients respond to immunotherapy [63], and the bene-
fit of targeted therapies has limited duration in a small percentage of patients. Therefore,
agents like vinflunine continue to be a valuable therapeutic option in aUCC, highlighting
the need to identify mechanisms of resistance, which will allow us to determine new
synergistic vinflunine-based combinations. Targeting EMT is a known strategy to over-
come chemotherapy resistance [39] and our in vitro findings confirm that curcumin acts
through EMT reversion. These results could form the basis to translate this hypothesis to
the clinic with the goal of enhancing vinflunine activity and delaying or overcoming its
resistance mechanisms.

5. Conclusions

Our results provide confirmation that EMT mediates resistance to maintenance treat-
ment with vinflunine in aUCC. Moreover, the findings of our in vitro analysis suggest that
the combination of vinflunine with an EMT inhibitor, such as curcumin, shows potential
promise as a synergistic therapy to be explored for aUCC patients.
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10.3390/cancers13246235/s1, Figure S1: Non-cropped Western blots from Figures 4 and 5; Figure S2:
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for the Western blot from Figure 4a.
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