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Abstract: Autophagy is a cell survival process which is related to breaking down and reusing
cytoplasm components. Moreover, autophagy regulates cell death under certain conditions.
Apoptosis has the characteristics of chromatin agglutination and the shrinking of nuclear and
apoptosis body form. Even if the mechanisms of autophagy and apoptosis have differences,
some proteins modulate both autophagy and apoptosis. Crosstalk between them exists. This review
highlights recent advances in the interaction of autophagy and apoptosis and its importance in the
development of cardiovascular diseases.
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1. Molecular Mechanisms of Autophagy

Autophagy is a complex and evolutionarily conserved process. It is involved in the degrading of
abnormal proteins and organelles [1]. Autophagy is significant for maintaining cellular homeostasis
under regular conditions, and is rapidly triggered by different stimuli such as nutrient starvation [2],
hypoxia [3], oxidative stress [4], pathogen infection [5] and endoplasmic reticulum stress [6].
There are mainly three kinds of autophagy: (1) microautophagy, which directly sequesters and
engulfs the cytoplasmic constituents via indentation inwards of the lysosome membrane [7];
(2) chaperone-controlled autophagy, where cytosolic proteins with the KFERQ-like motif are recognized
by chaperones, then unfold and translocate into the lysosome through the lysosomal-associated
membrane protein type 2A [8]; and (3) macroautophagy, which is characterized by formation of the
autophagosome (a double-membrane sequestering compartment) and fusing with the lysosome to
deliver the cytoplasmic cargo. The process of macroautophagy (hereinafter referred to as autophagy)
is as follows: induction, nucleation of the autophagosome precursor (phagophore), phagophore
expansion and autophagosome maturation, fusing with the lysosome, and recycling of the degraded
cargo [9,10].

Autophagy Induction: The mammalian target of rapamycin (mTOR) integrates nutrient
signals and cytokines from different pathways to inhibit autophagy and promote cell growth [11].
Under stress or nutrient starvation conditions, mTOR is inhibited, which initiates autophagy by
formation of the Unc-51-Like Kinase (ULK) complex including ULK, Autophagy-related Protein 13
(Atg13) and FAK-family Interacting Protein of 200 kDa (FIP200) [12,13]. Then the ULK complex
phosphorylates Activating Molecule in Beclin-1-Regulated Autophagy (AMBRA1), which activates the
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phosphatidylinositol-3-kinase (PI3K) complex composed of Vacuolar Protein Sorting 15 (VPS15), VPS34,
Beclin-1 and AMBRA1 [14,15]. During autophagy initiation, Beclin-1 is phosphorylated. Then Beclin-1
is separated from the dynein motor complexes, which are positively regulated by AMBRA1 [16].

Autophagosome Formation: Once autophagy is induced, phagophore assembling is initiated by
membrane nucleation [17]. The membranes mostly originate from the mitochondria [18], endoplasmic
reticulum [19], trans-Golgi network [20], late endosomes [21], and plasma membrane [22]. Elongation
and expansion of the phagophore membrane is an important stage in autophagosome formation. It is
modulated by two inter-related systems of Atg12-Atg5-Atg16 and Atg8 [23]. In Atg12-Atg5-Atg16,
Atg12 is initially triggered by the Atg7 in an ATP-dependent way. Then Atg12 is transferred to
the E2-like conjugating enzyme Atg10 and forms the Atg12-Atg10 intermediate. Finally, Atg12 is
covalently attached to Atg5. Further interplay between Atg5-Atg12 and the Atg16 homodimer leads to
formation of the Atg12-Atg5-Atg16 complex. This complex locating to the phagophore is essential for
autophagy. The second ubiquitin-like system induces the conjugation of phosphatidylethanolamine
to Atg8/microtubule-associated protein 1 light chain 3 (LC3), which is subsequently processed by
Atg4, Atg7 and Atg3 [24,25]. LC3-I is transformed into LC3-II. LC3-II is a special marker for the
autophagosome [26].

Autolysosome Formation and Recycling of the Degraded Cargo: Autolysosome formation
originates from the transmitting and fusion of the autophagosome to lysosome. It is regulated by
cytoskeleton and lysosomal membrane proteins [27]. LAMP1/2 regulates autophagosome maturation.
Gene mutation of LAMP2 causes Danon disease. Autophagosome accumulation and cardiomyocyte
hypertrophy are characteristics of Danon disease. [28,29]. Once the autolysosome forms, the inner
cargoes are degraded by lysosomal hydrolases. Catabolic products such as amino acids release into
the cytoplasm for recycling and can be used as new resources [30] (Figure 1).

2. Molecular Mechanisms of Apoptosis

Apoptosis is a process characterized by chromatin condensation, nuclear shrinkage and apoptosis
body production [31]. The apoptotic signaling cascade mainly includes two pathways, intrinsic
and extrinsic, and it gets triggered by different mitochondrial stimuli or by molecules binding to
the cell-membrane receptor [32,33]. The intrinsic apoptosis signaling is induced by various stimuli,
such as hypoxia [34], DNA damage [35], oxidative stress [36] and deprivation of growth factor [37].
It leads to mitochondrial membrane permeabilization. The integrity of mitochondria is regulated by
different Bcl-2 superfamily members. They have the feature of the BH3 (Bcl-2 Homology) domain.
Bcl-2 proteins are divided into two subcategories: pro-apoptotic and anti-apoptotic. Pro-apoptotic
family members contain Bak, Bax, Bid, Bad, Noxa and PUMA. The anti-apoptotic family members
include Bcl-2, Bcl-XL, Mcl-1, Bcl-W and A1/Bfl-1 [38]. The multi-domain pro-apoptotic proteins
Bax and Bak are essential for inducing apoptosis. In response to stimulation of apoptosis, these
proteins undergo conformational changes. It leads to their oligomerization on the outer membrane
of mitochondria [39]. Bcl-2 proteins block this pathway by interacting with Bax and Bak. It inhibits
mitochondria permeabilization and cell death [40]. After mitochondrial permeabilization, cytochrome
c is released into the cytoplasm. Then cytochrome c binds to apoptotic protease-activating factor-1
(Apaf-1). It induces the conformational change and oligomerization of Apaf-1. This leads to the forming
of a caspase-activating platform called the apoptosome. The apoptosome is comprised of Apaf-1,
caspase-9 and cytochrome c. The apoptosome recruits, dimerizes and triggers caspase-9. Successively,
it cleaves and induces caspase-3 and caspase-7 [41]. The last step of apoptosis is degrading DNA.
The process is regulated by Endonuclease G. Endonuclease G is translocated from mitochondria to the
nucleus and cleaves DNA [42].

The extrinsic apoptosis pathway is initiated through activating the death receptors. Death
receptors bind to ligands and deliver apoptosis signaling. The cognate extracellular death ligands refer
to soluble molecules of tumor necrosis factor (TNF). They are released as homotrimers and bind to
the TNF-receptor (TNF-R). The TNF-R family is comprised of Fas/CD95, TNF-R1, TRAIL receptors-1
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(TRAIL-R1), TRAIL-R2, DR-3 and DR-6. Ligand-binding makes the cell membrane receptors trimerize
and activate [43]. TNF-Rs have a death domain (DD) that can recruit other DD-associated proteins.
The DD-associated proteins include the Fas-associated protein with death domain (FADD) and TNF-R
type 1-associated death domain protein (TRADD) [44,45]. These proteins bind to caspase-8 and -10.
Then the death-inducing signaling complex (DISC) is activated. DISC primarily activates caspase-8
and promotes the cell death outcome. Caspase-3 and -7 are cleaved after induction of caspase-8 and
-10, which causes cell degradation [46,47] (Figure 2).
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Figure 1. Autophagy Induction: Under stress or nutrient starvation conditions, mTOR is
inhibited, which initiates autophagy by formation of the ULK complex including ULK, Atg13
and FIP200. Then the ULK complex phosphorylates AMBRA1, which activates the PI3K complex
composed of VPS15, VPS34, Beclin-1 and AMBRA1. During autophagy initiation, Beclin-1 is
phosphorylated and released from the dynein motor complex, which is positively regulated by
AMBRA1. Autophagosome Formation: Elongation and expansion of the phagophore membrane
is regulated by the two inter-related ubiquitin-like conjugation systems of Atg12-Atg5-Atg16 and Atg8.
In the Atg12-Atg5-Atg16 system, Atg12 is initially activated by the E1-like activating enzyme Atg7 in
an ATP-dependent way; then Atg12 is transferred to the E2-like conjugating enzyme Atg10 and forms
the Atg12-Atg10 intermediate; finally, Atg12 is covalently attached to Atg5. Further interaction between
the Atg5-Atg12 heterodimer and Atg16 homodimer leads to the formation of the Atg12-Atg5-Atg16
complex. The second ubiquitin-like system induces the conjugation of phosphatidylethanolamine
to Atg8/microtubule-associated protein 1 light chain 3 (LC3), which is subsequently processed by
Atg4, Atg7 and Atg3. LC3-I is transformed into LC3-II. Autolysosome Formation and Recycling
of the Degraded Cargo: autolysosome formation originates from the delivery and fusion of the
autophagosome to lysosome.
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Figure 2. The intrinsic apoptotic pathway is triggered by various stimuli inducing mitochondrial
membrane permeabilization. In response to apoptotic stimuli, these proteins undergo conformational
changes, which lead to their oligomerization on the outer mitochondrial membrane. Anti-apoptotic
Bcl-2 proteins block this process by interacting with Bax and Bak, which inhibits mitochondria
permeabilization and subsequent cell death. After mitochondrial permeabilization, cytochrome c
released into the cytosol binds to Apaf-1. It induces the conformational change and oligomerization of
Apaf-1. This promotes apoptosome formation. The apoptosome is composed of Apaf-1, caspase-9 and
cytochrome c. The apoptosome can recruit, dimerize and induce caspase-9. Successively, it leads to
cleaving and inducing of caspase-3 and caspase-7. The last step of apoptosis is DNA degradation. The
extrinsic apoptosis signal is triggered by activation of death receptors. The cognate extracellular death
ligands refer to soluble molecules of the TNF family. They are released as homotrimers and bind to
the TNF-R family. Ligand-binding makes the cell membrane receptors trimerize and activate. TNF-Rs
have a death domain (DD) that can recruit other DD-containing proteins. These proteins include
Fas-associated protein with death domain (FADD) and TNF-R type 1-associated death domain protein
(TRADD). These proteins bind to caspase-8 and caspase-10, and then activate DISC. DISC primarily
activates caspase-8 and promotes the cell death outcome. After the activation of caspase-8 and -10,
caspase-3 and -7 are cleaved, which causes cell degradation.

3. Crosstalk between Autophagy and Apoptosis

Emerging evidence suggests interactions among the crucial proteins of autophagy and apoptosis,
which underlie the molecular mechanism of the crosstalk between them. The essential factors
connecting autophagy and apoptosis are depicted in Table 1.
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Table 1. Proteins with a dual role in autophagy and apoptosis.

Protein Condition Autophagy Apoptosis Molecular Event References

Bcl-2/Beclin-1 Normal Ó Ó Beclin-1 binding to Bcl-2 [48–56]

Starvation Ò Ó Bcl-2-Beclin-1 complex disruption; promoting autophagosome formation [57–61]

Long-term starvation Ò Ó
Phosphorylated Bcl-2 binding to Bax; preserving the mitochondrial membrane integrity; preventing
pro-apoptotic proteins releasing into cytoplasm [62]

Extreme starvation Ó Ò Hyper-phosphorylated Bcl-2 dissociation from Bax; caspase 3 cleavage [62]

ATG4 Normal Ò Ó Covalent attachment ATG8 to PE and delipidation of ATG8 at the lysosomal fusion stage [63]

Drug intervention Ó Ò

The N-terminal fragment of ATG4D cleaving and delipidating GABARAP-L1, decreasing
autophagosome formation; the C-terminal fragment recruiting to mitochondrial matrix, promoting
mitochondria-mediated apoptosis

[64,65]

ATG5 Normal Ò Ó Promoting autophagosome formation [66]

Apoptotic stimuli Ó Ò
Calpains cleaving ATG5 and truncated ATG5 interacting with Bcl-XL and triggering cytochrome c
release and caspase activation [67]

ATG12 Normal Ò Ó Promoting autophagosome formation [66]

Apoptotic stimuli Ó Ò

Non-conjugated ATG12 binding to and inhibiting Mcl-1 and Bcl-2, promoting mitochondrial
apoptosis; ATG12 could be directly ubiquitinated, promoting its proteasomal degradation and
proteasome inhibitor-mediated apoptosis

[68,69]

Caspase-2 Lack of caspase-2 Ò Ó Inhibiting caspase-2-dependent apoptosis [70,71]

Caspase-3 Staurosporine inducing Ó Ò Caspase-3 cleaving Beclin-1 [72]

IL-3 withdrawal from culture medium Ó Ò C-terminal fragment of Beclin-1 localizing at mitochondria and sensitizing cells to apoptosis [73]

Caspase-6 Apoptotic stimuli Ó Ò Caspase-6 cleaving p62 and ATG3 [74]

Arginine deprivation Ó Ò Caspase-6 cleaving ATG5 and Beclin-1 [75]

Caspase-8 Death receptor-triggered apoptosis Ó Ò Caspase-8 cleaving ATG3 [76]

Caspase-9 Interaction with Atg7 Ò Ó
Caspase-9 interacting with ATG7 and promoting the ATG7-dependent formation of autophagosomal
LC3-II; hindering the recruitment and processing of caspase-9 in apoptosome [77]

Inhibition of caspase-9 Ó Ò Blocking autophagic flux and inducing cell death [78]

p53 Normal Ó Ò

In cytoplasm, p53 promoting the pro-apoptotic proteins and inhibiting Bcl-2, triggering the intrinsic
apoptotic pathway; inactivating AMPK and mTOR signaling; in nucleus, p53 increasing TRAIL and
Fas receptor, initiating the extrinsic apoptotic pathway; p53 activating Apaf-1 of the apoptosome

[79–81]

Genotoxic stress Ò Ó Transcriptional activation of DRAM, promoting autolysosome formation [82]

Nutrient deprivation Ó Ò p53 post-transcriptionally down-regulating LC3 and controlling autophagic flux [83]

FLIP Virus infection Ó Ò FLIP competing with LC3 for binding of ATG3 and inhibiting LC3 lipidation, suppressing autophagy [84]
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3.1. Bcl-2/Beclin-1

The B-cell lymphoma 2 (Bcl-2) family proteins inhibit cytochrome c releasing from the
mitochondria. It plays a critical role in the apoptosis process [48]. Beclin-1 is a component of the class
III PI3K/Vps34 complex and is necessary for forming the autophagy vesicle [49]. Bcl-2 binds to Beclin-1
and segregates Beclin-1 away from class III PI3K, leading to an inhibition of autophagic response [50].
In contrast, mutations of either Beclin-1’s domain or the BH3 receptor domain within Bcl-2 will disrupt
the Bcl-2-Beclin-1 complex, which promotes autophagic activity [51,52]. The interplay between Bcl-2
and Beclin-1 is essential to regulate the crosstalk between autophagy and apoptosis [53,54].

Under the condition of sufficient nutrition, Beclin-1 and Bax/Bak bind to Bcl-2 or Bcl-XL. It inhibits
activation of autophagy and apoptosis, respectively [55,56]. Under conditions of starvation, autophagy
is essential to guarantee cell survival. C-Jun N-terminal protein kinase 1 (JNK1) is activated and
phosphorylates various residuum (Thr69, Ser70, and Ser87) of Bcl-2’s regulatory loop. It leads
to Bcl-2-Beclin-1 complex destruction, which induces autophagy [57]. After autophagy activation,
death-associated protein kinase (DAPK) phosphorylates the Thr119 of Beclin-1. It induces Beclin-1
separating from Bcl-2 [58]. Moreover, phosphorylating Beclin-1 on Thr119 decreases the Bcl-XL-Beclin-1
combining. It promotes autophagosome formation [59]. The cytosolic translocation of high mobility
group box 1 (HMGB1) is another factor promoting Bcl-2/Bcl-XL separation from Beclin-1. The
intramolecular disulphide bridge (C23/45) of HMGB1 interacts with Beclin-1, which causes HMGB-1
to replace Bcl-2 [60,61]. Undergoing a long period of starvation cannot be relieved by autophagy.
Phosphorylated Bcl-2 combines with Bax and inhibits apoptosis. The phosphorylated Bcl-2 protects
cells against apoptosis through preserving the mitochondrial membrane completeness and preventing
the pro-apoptosis proteins from releasing into the cytoplasm. However, in the situation of extreme
starvation, JNK1 promotes hyper-phosphorylation of Bcl-2. It promotes Bcl-2 separating from Bax.
Then it induces apoptosis via caspase-3-dependent pathways and, subsequently, a safe cell death [62].

3.2. Atgs

Autophagy-related proteins (Atgs) involved in various stages of autophagy have also been shown
to regulate the apoptotic pathway [85]. Gene mutation or inhibition of these specific Atgs may affect the
apoptosis process [86]. Atg3 is a non-canonical ubiquitination E2 enzyme regulating the conjugation
of ubiquitin-like Atg8 to phosphatidylethanolamine in the autophagy process [25]. In addition, recent
studies have shown that Atg12 covalently conjugates to Atg3. The Atg3-Atg12 complex localizes
to the mitochondrial outer membrane, regulating mitochondrial homeostasis and cell death. Atg12
conjugation to Atg3 sensitizes cells to mitochondria-mediated apoptosis. However, it has no effect on
death receptor–mediated apoptosis [87]. Disturbing the complex formation, selective mitochondrial
autophagy (also called mitophagy) is reduced significantly, but it has no effect upon non-selective
autophagy [88].

Atg4 is a cysteine protease cleaving the C-terminus of LC3, which has an effect on the covalent
attachment of newly synthesized Atg8 to PE and on the delipidation of Atg8 at the lysosomal fusion
stage [64]. Atg4D, a human Atg4 member, is cleaved by caspase3 and generates two fragments in
the apoptosis cell. The N-terminal fragment of Atg4D cleaves and delipidates the Atg8 paralogue
γ-aminobutyric acid receptor-associated protein-like 1 (GABARAP-L1), which leads to the decrease of
autophagosome formation. The C-terminal fragment with a putative BH3 domain is recruited to the
mitochondrial matrix, promoting the mitochondria-mediated apoptosis [63,89].

Covalent conjugation of the autophagy-related proteins Atg5 and Atg12 involved in an
ubiquitylation-like process is essential to autophagosome formation. Atg5 and Atg12 are, therefore,
integral parts of the autophagic machinery and are required for the induction of autophagy [65].
Hence, Atg5 and Atg12 are absolutely necessary for autophagic activity. Interestingly, it has been
found that Atg5 and Atg12 also participate in apoptosis initiation in response to various stress signals.
Moreover, non-conjugated forms of Atg5 and Atg12 have an effect on the induction of apoptosis, which
indicates that their effect on apoptosis is likely to be independent of their effect on autophagy. Atg5 has
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a double role in regulating autophagy and apoptosis. One study reported that over-expression of Atg5
made the tumor cells sensitive to chemotherapy, while silencing the Atg5 gene with short interfering
RNA made the cells partially resistant to chemotherapy. This study showed that, during apoptosis,
Atg5 was cleaved by calpains, producing an amino-terminal cleavage product. Truncated Atg5 moved
from the cytoplasm to mitochondria. Then it interacted with Bcl-XL and promoted cytochrome c
release and caspase activation [66]. Atg5 cleavage was found independent of the apoptotic stimulus
and cell type. It was indicated that calpain induction and Atg5 cleavage were universal phenomena in
apoptotic cells. On the contrary, without Atg5 in mitochondria, autophagy takes place [67].

Atg12 has a dual function, participating in autophagy and apoptosis, which connects both of the
processes. Non-conjugated Atg12 can combine with and inhibit Mcl-1 and Bcl-2 by a BH3-like motif,
which positively regulates mitochondrial apoptosis. In the apoptosis cell, knockout of Atg12 inhibits
Bax induction and cytochrome c release. On the contrary, aberrant expression of Atg12 represses
the anti-apoptotic activity of Mcl-1 [90]. In addition, a recent study demonstrated that free Atg12
was unstable. It could be broken down in a proteasome-dependent way. Atg12 could be directly
ubiquitinated, which promotes the proteasomal degradation. Free Atg12 could cause proteasome
inhibitor–regulated apoptosis, indicating proteasome inhibitors might be potential anticancer agents
in clinical practice [68].

3.3. Caspases

Caspases are both the initiators and effectors participating in apoptotic cascades [69]. Recently,
it has been found that caspases participate in regulating the crosstalk between autophagy and
apoptosis [91]. Various pro-apoptosis pathways can induce caspases to trigger apoptosis. Moreover,
activated caspases could cleave and break down the critical autophagic proteins (such as Beclin-1,
p62, Atg3, Atg4D, Atg5, Atg7, and AMBRA1). It leads to an inactivation of their autophagic
function [73,75,76,92–94]. Surprisingly, some pro-autophagic proteins can even be transformed into
pro-apoptotic proteins to initiate apoptosis cell death after being cleaved by caspases. In addition,
autophagy can have an effect on apoptotic cascades through modulating the caspases [94].

Caspase-2 is an important regulator of cascades in a context-dependent way [77]. Recent research
reported that mice neurons in the absence of caspase-2 cannot execute apoptosis, while autophagy
is activated at an early stage. It causes a response to rotenone-regulated mitochondrial oxidative
stress [95]. It has also been found that, in mouse embryonic fibroblasts, a lack of caspase-2 contributes
to an enhanced autophagy [96].

Caspase-3 is a predominant effector caspase in apoptosis [70]. However, accumulating studies
have shown that caspase-3 is essential to autophagic activity. A study reported that, during
staurosporine-induced apoptosis, caspase-3 could cleave Beclin-1 on 124 and 149. It inhibited
autophagy and activated apoptosis in HeLa cells [71]. Another study found that caspase-3, together
with other caspases, cleaved Beclin-1 in the apoptosis process. It regulated by IL-3 deprivation in
culture medium, blocking autophagic activity and promoting the pro-apoptotic stimulus. The Beclin-1
C-terminal fragment localized at the mitochondria. Subsequently, it sensitized the cell to apoptosis [92].

Caspase-6 is also an effector caspase in apoptosis [97]. It has been demonstrated that caspase-6
cleaves p62 and Atg3, which suggests its importance in mediating autophagy [72]. Moreover,
when melanoma cell lines suffer arginine withdrawal, TRAIL-induced caspase-6 activation disrupts
autophagy by cleavage of two crucial autophagy proteins, Atg5 and Beclin-1 [76].

Caspase-8 is an essential trigger involved in death receptor–induced apoptosis [98]. The increasing
evidence indicates that caspase-8 also participates in regulating autophagy. During the death
receptor–triggered apoptosis, caspase-8 cleaves Atg3, targeting the conserved LETD sequence (Atg3
amino acids 166–169), which inactivates the pro-autophagic activity. In addition, caspase-8 could
prevent T cells from hyperactive autophagy [93].

Caspase-9 is also a key triggering caspase participating in intrinsic apoptosis [74]. It has been
reported that caspase-9 interacts with Atg7 at the C-terminal region. It promotes LC3-II formation and
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autophagy activity. The interplay between caspase-9 and Atg7 hinders the recruiting and processing
of caspase-9 in apoptosomes, inhibiting caspase-9 activation and apoptosis [94]. Moreover, in breast
cancer MCF-7 cells, suppression of caspase-9 can block the autophagic flux and induce the cell death
by inhibiting cytoprotective autophagy [99].

3.4. p53

p53, a signal transduction integrator, can be induced by diverse abnormal conditions, including
hypoxia [100], DNA damage [78], nutrient stress [101], and ischemia-reperfusion [102]. p53 has an
effect on regulating apoptosis both through the intrinsic and extrinsic pathways. In the nucleus,
p53 promotes the pro-apoptotic proteins (such as Bax, Bid, PUMA, and Noxa) and inhibits Bcl-2
expression, which triggers the intrinsic apoptotic pathway. In the cytoplasm, p53 promotes the TRAIL
receptor and Fas receptor, causing the initiation of the extrinsic apoptotic pathway [103]. In addition,
p53 can activate Apaf-1 of the apoptosome [104]. Recently, an increasing number of studies have
indicated that p53 is also involved in the regulation of autophagy. It is reported that genotoxic stress
induces autophagy through transcriptional activation of a direct p53 target gene, damage-regulated
autophagy modulator (DRAM), whose signaling cascade promotes autolysosome formation. DRAM
is essential for the network regulating p53-regulated apoptosis and autophagy [79]. Another study
showed cytoplasmic p53 suppressed autophagy by inactivating AMP activated protein kinase (AMPK)
and subsequently activating mTOR signaling [80]. It also has been investigated that, under the
nutrient deprivation condition, p53 post-transcriptionally downregulates LC3, which controls the
autophagic flux and prevents the cells from “autophagic burst” [82]. Moreover, inhibition of p53
triggers autophagy mostly in the G1 phase and less in S phase, but never in the G2/M phases. It is
strictly cell cycle–dependent [81].

3.5. FLIP

FADD-like IL-1β-converting enzyme-inhibitory protein (FLIP) is an anti-apoptotic protein,
suppressing death receptor–mediated apoptosis [83]. Recently, it has been shown that FLIP
competes with LC3 for the binding of Atg3 and inhibits LC3 lipidation, which suppresses autophagy.
On the contrary, once the autophagy is triggered, the interaction of FLIP and Atg3 is significantly
decreased [105] (Figure 3).

3.6. Mitoptosis

Mitoptosis is an apoptotic-like process inside mitochondria. It occurs mainly as an outcome of
mitochondrial outer membrane permeabilization (MOMP) and potential loss. It has been demonstrated
that dysfunction of the mitochondria and production of ROS are essential for inducing mitoptosis [106].
It also has been reported that following the Bax/Bak-regulated MOMP, DDP/TIMM8a, a mitochondrial
intermembrane space (IMS) protein, is released into the cytoplasm where it binds to and promotes the
mitochondrial redistribution of Drp1. The interplay promotes Drp1-regulated fission of mitochondria
and, subsequently, mitoptosis [84]. An increasing number of studies indicate that disruption of
mitochondria can cause promotion of autophagy. Indeed, a study reported activation of mitoptosis
and the subsequent destruction of ATP was followed by the induction of autophagy to maintain the
energy [107]. Another study found that clearing away abnormal mitochondria may be either be done
through autophagosome formation via selective mitochondrial autophagy (mitophagy) or through
the formation of mitoptotic bodies. Then they are released into the extracellular space via atypical
exocytosis [108].
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Figure 3. Crosstalk between Autophagy and Apoptosis. Bcl-2/Beclin-1: The interaction between the
anti-apoptotic protein Bcl-2 and the autophagy protein Beclin-1 is essential to regulate the switch
between autophagy and apoptosis. Bcl-2 binds to Beclin-1 and segregates Beclin-1 away from class III
PI3K, leading to an inhibition of autophagic response. Atgs: Atg12 has a dual function of participating
in autophagy and apoptosis, which connects both of the processes. Non-conjugated Atg12 can bind to
Bcl-2 through a unique BH3-like motif, which positively regulates mitochondrial apoptosis. Caspases:
caspases, a family of cysteine proteases, are both the initiators and effectors participating in apoptotic
cascades. Caspase-3 can cleave Beclin-1 and inhibit autophagy. Caspase-6 can cleave Atg3, Atg5
and Beclin-1, which regulates autophagy. Caspase-9 can promote the Atg7-dependent formation of
autophagosomal LC3-II and autophagic activity. p53: In nucleus, p53 promotes the expression of
pro-apoptotic proteins (such as Bax, Bid, PUMA, and Noxa), which triggers the intrinsic apoptotic
pathway; in cytoplasm, p53 increases the expression of TRAIL receptor and Fas receptor, causing
the initiation of the extrinsic apoptotic pathway. p53 is also involved in the regulation of autophagy.
Autophagy can be induced by transcriptional activation of DRAM, promoting autolysosome formation.
DRAM seems to be a critical component of the network regulating p53-mediated apoptosis and
autophagy. Cytoplasmic p53 suppresses autophagy by activating mTOR signaling. Under the nutrient
deprivation condition, p53 post-transcriptionally downregulates LC3, which controls the autophagic
flux and prevents the cells from “autophagic burst”. FLIP: FLIP is an anti-apoptotic protein, suppressing
the death receptor–mediated apoptosis. FLIP competes with LC3 for binding of Atg3 and inhibits LC3
lipidation, which suppresses autophagy. Red arrows indicate stimulatory inputs. Blue bars indicate
inhibitory interactions. For clarity, some of the signaling connections between autophagy and apoptosis
are not shown. See text for details.

3.7. Mitophagy

Mitophagy is the process of recognizing and removing abnormal mitochondria via
autophagy-regulated degradation [109]. Recent research has demonstrated that mitochondrial
dynamics are essential to mitophagy. Mitochondrial fission is regulated by the GTPase dynamin-related
protein 1 (Drp1). Mitochondrial fusion includes three GTPases: optic atrophy 1 (OPA1) induces
inner membrane fusion and mitofusins 1 and 2 (Mfn1 and Mfn2) regulate outer membrane
fusion [110]. Mitochondria are divided into depolarized and polarized mitochondria after fission.
Depolarized daughter mitochondria are targeted by mitophagy, while polarized mitochondria undergo
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fusion [111,112]. Interestingly, accumulating evidence suggests that mitophagy undergoes extensive
crosstalk with apoptosis pathways. Mitochondrial dynamics are crucial for the crosstalk between
mitophagy and apoptosis. A study reported that Parkin underwent extensive crosstalk with apoptosis
pathways. Mitochondrial translocation of Parkin was inhibited by pro-survival Bcl-2 proteins. It was
triggered by BH3-only proteins under conditions of inhibited caspase activity [113]. Undergoing this
condition for a long time, Parkin could promote apoptosis by degrading anti-apoptosis Mcl-1 [114].
Another study also found that the mitochondrial deubiquitinase USP30 opposed parkin-regulated
mitophagy [115]. Knockdown of USP30 could induce the mitochondrial apoptosis pathway [116].
These findings indicated that USP30 would make mitochondria induce mitophagy rather than
apoptosis. Furthermore, pre-promotion of Bnip3-mediated mitophagy by constitutively activating the
Bnip3 receptor ahead of tumor necrosis factor (TNF) treatment inhibited effector caspase activation
significantly [117]. It suggested that the activation of mitophagy or delayed induction of membrane
permeabilization inhibited apoptosis. However, diverse feedback between individual mitophagy
programs and both pro-survival and pro-death apoptosis pathways occurred at different time scales
and underwent crosstalk [118].

4. The Relationship between Autophagy and Apoptosis in Cardiac Diseases

In physiological conditions, autophagy and apoptosis play essential roles in cardiac health
and integrity. The structure and function of cardiac myocytes is closely related to autophagic flux.
Cardiac myocytes retain a limited ability to enter the cell cycle again. It leads to a limited capacity
for regeneration in the adult heart. As a consequence, there exists a continuous process of cell
renovation. It includes removal and replacement of damaged tissue. In addition, autophagy is
necessary for continual heart contraction. It is also critical for large cytoplasmic calcium transients
without disturbing cardiac function [119]. During heart development, apoptosis participates in
the development of the embryonic outflow tract, cardiac valves, conducting system, and coronary
vasculature [120]. In pathological conditions, the interplay between autophagy and apoptosis are
closely related to some cardiac diseases involving ischemic heart disease, pressure overload-induced
cardiac disease and diabetic cardiomyopathy.

4.1. Ischemic Heart Disease

Programmed cell death of cardiac myocytes takes place following ischemia/reperfusion (I/R),
leading to cardiac dysfunction. It has been proposed that I/R causes cell death via apoptosis and
necrosis. Currently, it was reported that autophagy was an essential regulator of programmed cell
death, either inhibiting or promoting apoptosis, or acting as a programmed cell death distinct from
apoptosis. It is generally believed that promotion of autophagy is protective during myocardium
ischemia. The myocardial ischemia swine models were induced by one, three, or six episodes of 90 min
of left anterior descending coronary stenosis (30% decrease in baseline coronary flow) followed by
reperfusion every 12 h, while the non-ischemic regions were the control. This study indicated that a
chronically ischemic myocardium activated autophagy and inhibited apoptosis, which could limit the
deleterious effects of chronic ischemia and protect against further ischemia [121]. It also has been shown
that autophagy is activated by ischemia and reperfusion in the mouse heart in vivo. Under the condition
of prolonged ischemia, inhibition of autophagy was accompanied by the expansion of myocardial
infarction size, which suggested that the activation of autophagy protected the cardiac cells during
ischemia. Moreover, it was found that ischemia induced autophagy through the AMPK-dependent
signaling pathway, while reperfusion stimulated autophagy by the upregulation of Beclin-1 and
BNIP3, but without AMPK activation [122,123]. In cardiac myocytes, the reduction of Beclin-1
expression by RNA interference inhibited I/R-induced autophagy, which involves enhanced cell
survival [124]. The inhibition of NF-κB suppressed Beclin-1 expression and autophagy. It reduced
the extent of the cardiac area at risk for ischemia [121]. It also reported that mitochondrial c-Jun
N-terminal kinase (JNK) activation induced autophagy and apoptosis, aggravating myocardial I/R
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injury. Insulin selectively inhibited mitochondrial JNK activation, protecting cardiocytes against I/R
injury. Recently, one study was aimed at investigating the effects of berberine, a natural extract from
Rhizoma coptidis, on ischemia/reperfusion-induced excessive autophagy. Autophagy was induced both
in H9c2 myocardial cells under the hypoxia/reoxygenation (H/R) condition, and in mouse hearts
exposed to I/R. The results showed that berberine treatment significantly strengthened the viability
of H/R-induced cells, decreased the I/R-induced myocardial infarct size, and improved the heart
function. The therapeutic effect of berberine is associated with downregulating the expression of
autophagy-associated proteins such as SIRT1, BNIP3, and Beclin-1, and suppressing autophagy activity.
Furthermore, the levels of p-AMPK and p-mTORC2 (Ser2481) in H9c2 cardiomyocytes exposed to H/R
were downregulated by berberine [125]. One study suggested that vitamin D receptor was a potential
endogenous self-defensive and cardioprotective receptor protecting against myocardial I/R injury via
inhibiting autophagy dysfunction–regulated cell death and apoptosis [126]. Another study indicated
that sphingosylphosphorylcholine protected cardiomyocytes against ischemic apoptosis by promoting
lipid raft/PTEN/Akt1/mTOR-regulated autophagy [127]. In addition, a recent work demonstrated
Mst1, a crucial protein of Hippo signaling, improved the heart disorder in mice suffering myocardial
infarction via suppressing autophagy. The mechanism was that Mst1 phosphorylated the Thr108
residue in the BH3 domain of Beclin1. It enhanced the interplay between Beclin1 and Bcl-2 and/or
Bcl-xL, and stabilized the Beclin1 homodimer. It also suppressed the phosphatidylinositide 3-kinase
activity of the Atg14L-Beclin1-Vps34 complex and subsequently inhibited autophagy. Mst1-mediated
sequestration of Bcl-2 and Bcl-xL by Beclin1 activated Bax and promoted apoptosis [128]. Taken
together, autophagy is activated during myocardial ischemia and further enhanced by reperfusion.
Autophagy is protective during the ischemic phase, while it is harmful in reperfusion. It is supposed
that activation of regular autophagy and inhibition of abnormal autophagy and apoptosis can rescue
myocardial cells against death during ischemia/reperfusion.

4.2. Pressure Overload–Induced Cardiac Disease

Although accumulating research has paid close attention to the role of autophagy and apoptosis
in pressure overload–induced cardiac disease, it is still unclear whether they play positive or negative
roles in cardiac disease. A study reported that in adult mice, knockout of cardiac-specific Atg5
led to cardiac hypertrophy. It also caused left ventricular expansion one week after treatment with
thoracic transverse aortic constriction (TAC). These results suggested that under baseline conditions,
regular autophagy was a homeostatic mechanism for maintaining the structure and function of
the heart. Autophagy activation was an adaptable reaction for preventing hemodynamic stress in
heart failure [129]. Another study found that berberine could effectively attenuate cardiomyocyte
apoptosis and left ventricular remodeling through an autophagy-dependent mechanism in rat cardiac
hypertrophy models induced by TAC. The potential mechanism was related to inducing autophagy
by the suppression of mTOR activity and its upstream p38 and extracellular signal-regulated kinase
(ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathways [130]. In contrast, some
research suggests that autophagy has a detrimental effect on pressure overload–induced cardiac
disease. A study reported that pressure overload induced by aortic banding significantly enhanced
cardiac autophagy and led to heart failure. Pressure overload–induced autophagy reached the peak at
48 h. It kept rising for at least three weeks. Heterozygous disruption of Beclin-1 gene coding inhibited
cardiomyocyte autophagy and alleviated pathological remodeling induced by TAC. On the contrary,
Beclin-1 over-expression increased autophagy and pathological remodeling. Nevertheless, it was
ambiguous if apoptosis participated in later stages of pathological remodeling [131]. Another research
found that in the renal artery stenosis–induced experimental hypertensive swine model, activation of
autophagy and apoptosis participated in left ventricular hypertrophy and pathological remodeling.
It indicated that autophagy could portend the level of cardiac hypertrophy [132]. One study also
showed that activated transcription factor 3 (ATF3) protected against pressure overload–induced heart
failure. The mechanism was bound to the ATF/cAMP response element of the Beclin-1 promoter and
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inhibited autophagic activity by inhibition of the Beclin-1–dependent pathways [133]. In addition, the
crosstalk between apoptosis and autophagy regulates proliferation and death of cells in pulmonary
hypertension pathogenesis, especially in pulmonary vascular remodeling involving endothelial cells
and smooth muscle cells [134].

4.3. Diabetic Cardiomyopathy

Diabetic cardiomyopathy has the feature of ventricular dysfunction. It turns up in many
diabetic patients without coronary artery disease or hypertension. Cardiomyocytes are exposed
to hyperglycemia, dyslipidemia, and oxidative stress, which can trigger both autophagy and
apoptosis [135]. Accumulating research has reported that the interaction of autophagy and apoptosis
is essential in diabetic cardiomyopathy. It has been found that diabetic cardiomyopathy is related
to inhibition of cardiac autophagy. Induction of AMPK resumes cardiac autophagy and prevents
against cardiomyopathy in diabetic mice [136]. However the exact mechanism is unclear. Digging
deeper, it was reported that under the high glucose condition, AMPK activity was inhibited,
JNK1-Bcl-2 signaling was suppressed, and Beclin-1 combining with Bcl-2 was promoted. On the
contrary, metformin promoted AMPK and induced the JNK1-Bcl-2 pathway. Then the Beclin-1-Bcl-2
complex was destroyed. AMPK induction normalized cardiac autophagy. It also inhibited high
glucose–induced apoptosis in cultured H9c2 cardiac myoblast cells. Moreover, chronic administration
of metformin in diabetic mice resumed cardiac autophagy by inducing JNK1-Bcl-2 signals and
separating the Beclin-1-Bcl-2 complex [137]. Another research also reported that diabetes induced
apoptosis and suppressed autophagy of cardiomyocytes through inhibiting AMPK, suppressing the
MAPK8/JNK1-Bcl-2 signaling pathway, and subsequently promoting the interaction between Beclin-1
and Bcl-2 [138]. Furthermore, one study showed that in streptozotocin-diabetic mice, heme oxygenase-1
prevented cardiac dysfunction via inhibiting apoptosis, inflammation, oxidative stress, and promoting
autophagy [139].

5. Conclusions

The multiple layers of crosstalk between autophagy and apoptosis present themselves as
a seamless state between survival and death in response to diverse cellular stress. Recently, emphasis
has been laid on identifying and investigating of the direct protein-protein interactions between
autophagic and apoptotic proteins. In this respect, an interesting question relating to the evolutionary
advantage of utilizing an autophagy protein to regulate apoptosis (and vice versa) remains to be further
studied. It is unclear whether the interactions are a true crosstalk between autophagy and apoptosis,
or simply dual functional proteins mediating each process respectively. The possible mechanism for
autophagy proteins regulating apoptosis is that activating the apoptotic effect of these autophagy
proteins can suppress their autophagic function, leading to a decrease of pro-survival autophagy and an
increase of apoptosis. Another possibility is that under severe damage conditions, specific autophagy
proteins act as rheostats which can perceive the metabolic state of cells and induce apoptosis.

Furthermore, in this field the major challenge is to develop the identification of individual
interactions towards a more integrative and global investigation of how they (autophagy, apoptosis
or even necrosis) come together to determine the fate of cells. Special attention is also paid to the
importance of the crosstalk between autophagy and apoptosis in diverse pathological progresses.
A growing number of research has paid attention to the interactions of autophagy and apoptosis in the
development of cancer and neurodegeneration. However, their roles in cardiovascular diseases are
still under debate and have great research potential. In the future, the crosstalk between autophagy
and apoptosis may be a novel and potential target for cardiovascular disease therapy.
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acid receptor-associated protein-like 1; DRAM: damage-regulated autophagy modulator; AMPK:
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