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Abstract: Mitochondria are multifunctional cellular organelles that are major producers of reactive
oxygen species (ROS) in eukaryotes; to maintain the redox balance, they are supplemented with
different ROS scavengers, including mitochondrial peroxiredoxins (Prdxs). Mitochondrial Prdxs have
physiological and pathological significance and are associated with the initiation and progression of
various cancer types. In this review, we have focused on signaling involving ROS and mitochondrial
Prdxs that is associated with cancer development and progression. An upregulated expression of
Prdx3 and Prdx5 has been reported in different cancer types, such as breast, ovarian, endometrial,
and lung cancers, as well as in Hodgkin’s lymphoma and hepatocellular carcinoma. The expression
of Prdx3 and Prdx5 in different types of malignancies involves their association with different factors,
such as transcription factors, micro RNAs, tumor suppressors, response elements, and oncogenic
genes. The microenvironment of mitochondrial Prdxs plays an important role in cancer development,
as cancerous cells are equipped with a high level of antioxidants to overcome excessive ROS
production. However, an increased production of Prdx3 and Prdx5 is associated with the development
of chemoresistance in certain types of cancers and it leads to further complications in cancer treatment.
Understanding the interplay between mitochondrial Prdxs and ROS in carcinogenesis can be useful
in the development of anticancer drugs with better proficiency and decreased resistance. However,
more targeted studies are required for exploring the tumor microenvironment in association with
mitochondrial Prdxs to improve the existing cancer therapies and drug development.
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1. Introduction

Mitochondria, with their multifaceted roles, are recognized as indispensable organelles in
eukaryotic cells and are considered as the energy currency of the cell because of adenosine triphosphate
(ATP) production [1]. In addition to being energy sources, they are involved in heme synthesis,
metabolism of amino acids, and the regulation of the redox state of cells [2,3]. These multiple functions
of mitochondria make them prerequisites for cellular life of eukaryotes [4]. Apart from these functions
that are related to cell survival, a large body of evidence has exhibited that this subcellular organelle also
has crucial functions in the cell death program [5,6]. Mitochondria play significant roles in apoptosis
by regulating the release of pro-apoptotic factors [7]. In addition, they are also critical participants in
necrosis and autophagy [8,9].

Mitochondria continuously communicate with other cells by signal transduction to carry out
this diverse array of functions [10,11]. The generation of reactive oxygen species (ROS) is one of
the way of mitochondrial signal transduction and these generated (ROS) function as secondary
messengers [12,13] and play a significant role in cellular signal transduction [14]. ROS are basically
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short-lived species having unpaired electrons [15,16], and they are endogenously generated as a
byproduct during mitochondrial energy production as well as produced as a consequence of fatty
acid β-oxidation and exposure to radiation, light, metals, and redox drugs [17]. Mitochondria being
the largest contributors of ROS in mammalian cells convert approximately 1% of their consumed
oxygen to superoxide anion (O2−) [18], and they have up to ten sites with ROS generation ability [19].
ROS serve as secondary messengers by interacting with a variety of molecules; they are important for
many biologically significant processes, such as adaptive immunity, cell differentiation, and oxygen
cell sensing [13,15,16,20,21]. Mitochondrial ROS, in addition to their cellular signaling properties,
also have cell damaging roles [22].

Therefore, ROS homeostasis is essential for steady state functions of cells [23,24]. The accumulation
of ROS resulting from any imbalance in ROS production and metabolism induces oxidative stress [25].
In other words, oxidative stress is the result of imbalance between two opposite and opposing forces,
i.e., ROS production and antioxidation, and it can lead to pathological defects in living organisms,
such as cancer, atherosclerosis, neurological diseases, aging, and diabetes, as well as can harm the
cellular components, such as DNA, RNA, lipids, and proteins [26,27]. To protect cells from the
oxidative stress, there are many enzymatic and non-enzymatic defense systems in mitochondria [28,29].
The non-enzymatic defense system includes flavonoids, vitamins (A, C, and E), and glutathione [28].
Superoxide dismutase (SOD), superoxide reductase, catalase, glutathione peroxidase, glutathione
reductase, peroxiredoxins (Prdxs), and thioredoxins (Trx) are important enzymatic antioxidants that
are involved in the regulation of mitochondrial ROS [30,31]. ROS production in mitochondria and
their subsequent fate involve interactions between various molecules in normal and pathological
conditions [32] (Figure 1).
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Figure 1. Mitochondrial reactive oxygen species (ROS) scavengers and cancer development. Eukaryotic
cells depend upon the mitochondria for energy production, and reactive oxygen species (ROS)
are produced as byproducts during adenosine triphosphate (ATP) generation by the mitochondria.
The amount of mitochondrial ROS is balanced by ROS scavengers in the mitochondria of normal
eukaryotic cells and these ROS regulate different cellular processes such as cell proliferation and
differentiation by acting as signaling molecules. The loss of this specific balance between ROS and ROS
scavengers leads to an outburst growth of cells, resulting in cancer initiation and development.

The aim of the present review is to focus on the signaling for ROS regulation involving
mitochondrial Prdxs in normal as well as disease conditions. Mitochondrial Prdxs are recently
discovered antioxidants presenting a variety of roles in eukaryotic organisms. Recently, mitochondrial
Prdxs have gathered much interest due to their diversified functions and interactions in living organisms.
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In the present review, we describe the factors that are associated with mitochondrial Prdxs in ROS
scavenging, as well as its signaling pattern in normal and pathological cellular conditions.

2. Mitochondrial Prdxs

Prdxs denote the family of proteins having the ability to efficiently scavenge peroxides in the
form of hydrogen peroxide, alkyl hydro peroxide, and peroxynitrite [33]. Prdxs are classified into six
subfamilies, according to PeroxiRedoxin classification index (PREX) and, in mammals, there are six
Prdxs, among which Prdx 1–4 belongs to Prdx1 subfamily, Prdx5 is a member of Prdx5 subfamily,
and Prdx6 represent Prdx6 subfamily [34,35]. Prdxs are also classified as 1-Cys containing only Prdx6,
while typical 2-Cys comprised of Prdx1–4 and Prdx5 belongs to atypical 2-Cys on the basis of their
cysteine residues and their catalytic mechanism [36]. The catalytic activity of Prdxs is highly dependent
upon the conserved peroxidatic cysteine (Cp) in the amino terminal region of the protein. In addition
to this conserved Cp, there is an additional conserved cysteine residue that is present in the carboxyl
terminal portion of the five out of six mammalian Prdxs, termed as resolving cysteine (Cr). [37]. Prdxs
belonging to typical 2-Cys class are typical homodimers containing two identical active sites that brings
peroxidatic and resolving cysteines (Cp and Cr) into juxtaposition. Peroxidatic cysteine of typical 2-Cys
is oxidized by peroxide, resulting in the formation of sulfenic acid (C-SOH), which in turn condenses
with Cr of opposite subunit, and results in the formation of intermolecular disulfide bond. The oxidized
Prdxs are reduced by appropriate electron donor to complete the catalytic cycle. The oxidized Cp of
atypical 2-Cys condenses with Cr within same polypeptide to form intramolecular disulfide bond and
in turn reduced by the Trx2. In contrast to typical and atypical 2-Cys Prdxs, 1-Cys Prdxs has only one
cysteine residue and depends on glutathione (GSH) to complete the catalytic peroxidatic cycle [38].
Members of typical 2-Cys class have the ability to form decamers and do-decamers in their reduced or
hyperoxidized state. This feature enables them to function as chaperons, enzyme activators, and redox
sensors, in addition to their antioxidative abilities [39]. While, atypical 2-Cys Prdxs can undergo
protein-protein interaction in combination with their antioxidative properties [40]. In contrast, 1-Cys
Prdxs cannot form decamers, and mainly functions as antioxidant rather than molecular chaperons,
although their antioxidation catalytic mechanism is similar to typical 2-Cys [41].

Mammalian Prdxs also differ in their cellular location and are distributed in cytosol, mitochondria,
endoplasmic reticulum, peroxisomes, and nuclei [42]. Based on subcellular distribution, Prdx3 and 5
are categorized as mitochondrial Prdxs [43]. Studies on mitochondrial Prdxs were initiated in 1989 with
the cloning of the mer5 gene [44]. This gene is expressed in murine erythroleukemia [45]. Prdx3 was
thought to play a significant role in erythrocyte differentiation [46]. This gene was further investigated
to have considerable sequence identity with bacterial alkyl hydroperoxide reductase (AhpC) [47].
Meanwhile, substrates of mitochondrial ATP-dependent protease, later identified as Lon protease,
were investigated, leading to the discovery of a 22-kDa substrate named as SP-22 [48]. This SP-22 was
found to be a highly abundant protein in the mitochondrial matrix, sharing a sequence homology of 90%
with Mer5 and having considerable identity with AhpC. It is now recognized as “Prdx3”. Prdx3 was
also termed as an antioxidant protein 1 (AoP1) [48]. Simultaneously, when the mer5 gene was cloned,
a novel gene, PMP20, was identified in Candida boidinii, encoding a peroxisomal membrane-associated
protein [49]. The homologue of PMP20 was discovered 10 years later in humans with thiol-specific
antioxidant properties [50]. In the same year, a novel gene, named “AEB166”, having a sequence
identity of 65% with bacterial Prdx, was identified [51]. This gene was later termed as “Prdx5” [52].

3. Characteristics of mitochondrial Prdxs

Prdx3 is located on chromosome 10 (q25–q26) and it is transcribed from seven exons in humans.
It is a 256-amino acid containing protein with a 61-amino acid long mitochondrial targeting sequence
at the N-terminal. The cleavage of this mitochondrial sequence results in a 21.5-kDa protein that
resides in the mitochondrial matrix [37]. Peroxidatic cysteine (Cp) is located at the residue 47 and it is
a highly conserved region of the protein. Prdx3 belongs to “typical 2-Cys” class of Prdxs, i.e., it is a
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homodimer organized in a head to tail manner and during catalysis, utilizes Cp and resolving cysteine
(Cr) residues on opposite subunits [43] (Figure 2).
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Figure 2. Structural comparison of mitochondrial peroxiredoxins (Prdxs). Peroxiredoxin 3 (Prdx3) and
Peroxiredoxin 5 (Prdx5) contain a mitochondrial targeting sequence (MTS) at their amino terminal
(N-terminal) and this enables them to reside in the mitochondria. Prdx5 in addition to MTS also
contains a peroxisomal targeting sequence (PTS) at its carboxyl terminal (C-terminal) that is responsible
for the entry of Prdx5 in the peroxisomes. Both mitochondrial Prdxs comprise peroxidatic cysteine (Cp)
and resolving cysteine (Cr) which play an essential role in their catalytic mechanisms. In Prdx3, Cp is
located at residue 47, whereas, in Prdx5, it is located at residue 48 [35].

In contrast to Prdx3, human Prdx5 is located on chromosome 11 (q13) and it is transcribed from six
exons. It contains a 52-amino acid-long mitochondrial targeting leader sequence at its N-terminal and
it also has a C-terminal SQL sequence that is specific for peroxisomes [52] (Figure 2). This peroxisomal
targeting sequence enables this protein to localize in both peroxisomes and mitochondria [53].
The cleavage of mitochondrial targeting sequence yields a 17-kDa protein having Cp at residue 48 of
the mature protein. The active site of Prdx5 has several sequences in common with other Prdx family
members [54]. The human Prdx5 has a divergent sequence sharing a sequence homology of 28–30%
with Prdx1, Prdx2, and Prdx3. Prdx5 is the only mammalian Prdx that belongs to “atypical 2-Cys”
subfamily of Prdxs [55](Figure 2).

4. ROS and Mitochondrial Prdxs

ROS are extraordinarily active oxygen species involving superoxide anion (O2−), hydroxyl radical
(OH·), and hydrogen peroxide (H2O2) [56]. They are generated by the partial reduction of oxygen,
and comprise radical and non-radical oxygen species [56]. Endogenous sources of ROS include
mitochondrial electron transport linked phosphorylation, P450 metabolism, peroxisome metabolism,
and activation of inflammatory cells [13]. Mitochondrial ROS are produced in mitochondrial electron
transport chain during ATP generation [13,15].

Previously, ROS were considered to be damaging to cells because of their association with oxidative
stress, which leads to the induction of pathological responses [14]. However, in the past few decades,
ROS have been recognized as signaling molecules that regulate different processes of biological and
physiological importance [57]. H2O2 is the ROS that directly serves as a secondary messenger and is
majorly produced by the mitochondria [58,59]. Redox signal transduction involves the oxidation of
Cys residues in the proteins that is mediated by H2O2 [58]. At physiological pH, Cys residues exist in
the form of thiolate anions (Cys-S−) and are more receptive to oxidation as compared to protonated
Cys thiols (Cys-SH) [60]. During the process of redox signaling, Cys-S− is oxidized to its sulfenic form
(Cys-SOH) by H2O2, which leads to allosteric alterations in the protein, and ultimately changes its
function [61,62]. Thioredoxin and glutaredoxins can reduce back this sulfenic form of Cys to thiolate
anion and bring back the protein to its original form [63]. Thus, the oxidation of Cys residues in proteins
involves a reversible signal transduction mechanism that mostly occurs at nanomolar concentrations of
H2O2, whereas at higher H2O2 concentrations, thiolate anions are further oxidized to sulfinic (SO2H)
and sulfonic (SO3H) species [62,63]. Sulfiredoxin (Srx) can slowly reduce back the SO2H form of Prdxs
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to its native enzyme [64]. In contrast to Cys-SOH and SO2H species, the oxidation to sulfonic species
can be irreversible, which results in damage to the protein (oxidative stress) [61,65]. Mitochondria and
cells are equipped with professional enzymes to prevent the accumulation of H2O2, particularly Prdxs
and glutaredoxins [66].

Mitochondrial Prdxs play a significant role in H2O2 scavanging and to maintain a tight balance of
H2O2 [67]. Mitochondrial Prdxs that belong to the typical and atypical 2-Cys subfamilies contain a
redox sensitive cysteine at the active site that is oxidized by H2O2 and then reduced by thioredoxins to
complete the catalytic cycle [68]. The oxidized thioredoxins are reduced by thioredoxin reductase at
expense of NADPH [69]. The discriminative characteristic of Prdxs is their ability to undergo reversible
hyperoxidation by a second molecule of H2O2, which results in the formation of sulfinic acid that
consequently leads to the transient inactivation of the protein [70]. The reduction of the hyperoxidized
form of Prdxs to SO− is catalyzed by sulfredoxins through an ATP-dependent mechanism [70].

5. ROS and Mitochondrial Antioxidants in Oncogenic Signaling

Many vital biological processes, such as cellular signaling, metabolism, and epigenetics,
are significantly regulated by ROS and, consequently, these biologically active oxygen species are
involved in disease initiation and progression [15,30]. Mitochondria being one of the major source of
ROS are associated with the roles of ROS in the living organisms and are significantly involved in the
regulation of ROS to maintain a steady state cellular environment and prevent cells from oxidative
damage [71]. ROS, particularly H2O2, is a byproduct of mitochondrial energy generation and is
regulated by mitochondrial antioxidants [72]. Altered cellular metabolism is associated with the
production of cancerous cells [73]. Cancerous cells are characterized by a high rate of proliferation
and active metabolism [73]. These cancerous cells require higher energy levels for aberrant cellular
proliferation and to maintain the high growth rate, these cells hijack the machinery of normal
cells [74–76]. Growth-related pathways are constitutively activated in cancer cells and, consequently,
these cells take up excess amount of nutrients, endure stress, and multiply rapidly [77,78]. This results
in hyper metabolism, which leads to an excessive generation of ROS by the mitochondria, endoplasmic
reticulum, and the action of NADPH oxidases [79]. Mitochondrial ROS are required for the proliferation
of cancerous cells driven by K-ras oncogenes [80,81]. Mutations in the mitochondria that result in
dysfunctions of TCA cycle/electron transport chain produce excess amount of ROS to trigger tumor
associated signaling pathways, such as PI3K and MAP kinase signaling pathways [82–84]. In addition
to these signaling pathways, ROS also target the transcription factor NF-kB (earliest discovered
transcription factor responsive to ROS) that is associated with the survival of tumor cells [85,86]
(Figure 3).

Studies have shown that the association of ROS with cancer progression and suppression is
dependent on their intracellular levels [87]. At low levels, ROS augment cancer proliferation by working
as signal transducers or by prompting the genomic DNA alteration or damage to DNA [88]. For example,
ROS can stimulate cyclin D1 expression [89,90], lead to the promotion of extracellular-signal-related
kinase (ERK) Jun N–terminal kinase (JNK) phosphorylation [91,92], and trigger mitogen-activated
protein kinase (MAPK) activation [93], all of which are associated with carcinogenesis and the survival
of cancerous cells [94]. In addition to the functions of ROS in the pathways associated with cell
proliferation, ROS have been recognized to inversely debilitate tumor suppressors, such as protein
tyrosine phosphatases (PTPs) and phosphatase and tensin homolog (PTEN), because of the presence of
redox-sensitive cysteine in their catalytic sites [95]. PTPs also function to regulate signaling pathways
by inducing antioxidant enzyme expression and decreasing ROS levels [96,97]. Moreover, ROS act as
regulators of normal stem cell renewal and differentiation. Cancerous stem cells (CSCs) exhibit similar
characteristics; however, there is limited knowledge regarding their association with maintenance of
cellular redox balance [98]. Recent studies have exhibited low ROS levels in liver and breast cancer stem
cells, consequently resulting in the upregulation of ROS-scavenging signaling proteins expression [99].
If growth of CSCs is indispensable for tumor induction, maintenance of low ROS levels might be a
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prerequisite for pre-neoplastic foci tolerance [98]. Chemo and radiotherapies stimulate ROS production
and they are useful for demolishing most cancerous cells [98,99]. Certain patients are unable to cure
by the chemo and radio therapies because of increased endurance of CSCs to conditions of high ROS
levels by augmented antioxidant levels [100]. Some adverse effects of anticancer drugs are debatably
mediated by ROS; thus, CSCs may be appropriately released and vigorously chosen by the factors,
depending on increased ROS levels [101]. Moreover, further oxidative stress that is mediated by
these factors may result in additional mutations and DNA damage, ultimately leading to enlargement
of drug-resistant cancer cells [98,101]. Previously, it was assumed that increased ROS generation
in cancerous cells leads to genomic instability, and consequently promotes tumor formation [102].
However, genomic instability is associated with a loss of p53 and other processes that are related to
aneuploidy [103,104]. ROS-dependent oncogenesis driven by Myc oncogenes in cancer cells exhibits
no chromosomal instability [105,106].
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Figure 3. Role of antioxidants in cancerous cells. Mutations in mitochondria and mitochondrial
dysfunctions lead to the production of increased amount of ROS by the activation of c-Myc and K-ras
factors. The increased production of ROS leads to an imbalance between ROS and its scavengers.
This imbalance activates a number of signaling pathways such as PI3K and mitogen-activated protein
kinase (MAPK), resulting in tumor initiation and progression. The increased amount of ROS in cancerous
cells requires an upregulated expression of antioxidants to prevent cell death. Thus, the activation of
certain transcription factors (NRF2 and FOXO) and tumor suppressors (p53) induces the upregulation
of mitochondrial Prdxs to compensate the increased production of ROS. Thus, mitochondrial Prdxs
along with other scavengers act to protect the cancerous cells from ROS-mediated cell death.

ROS at high levels mediate cell death and cause adverse damage to the cells [107]. Therefore,
cancerous cells must control increased ROS levels, specifically during the initial stages of cellular
proliferation [108]. In cancerous cells with elevated ROS levels, redox balance is maintained by
equally high amounts of antioxidants [109]. These antioxidants control the ROS levels and prevent
the cells from cell death mediated by oxidative stress [110]. Recently, it has been discovered that
conditions that facilitate oxidative stress also induce particular pressure on pre-neoplastic cells to
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trigger effective antioxidant mechanisms [111]. This characteristic is relevant, particularly during
metastasis, which is characterized by the spread of cancer cells to distant organs [112]. Thus, cancer
cells have extraordinary antioxidant capabilities to circumvent elevated ROS levels and they are
accustomed to the diverse biological functions of cells [113]. The antioxidant capabilities of cancer cells
are quite high when compared with those of normal cells [21,73,114]. The elevated antioxidant level in
cancerous cells is achieved by the activation of transcription factors, such as nuclear factor erythroid 2
related factor 2 (NRF2) [115,116], that interacts with kelch-like ECH-associated proteins (KEAP1) and
targets proteosomal degradation [117]. ROS sensitive Cys residues of KEAP1 are oxidized by elevated
ROS levels, leading to KEAP1 dissociation from NRF2 [118]. The translocation of dissociated NRF2
to nucleus and its heterodimerization occurs with a small MAF protein [119]. Subsequently, it binds
with antioxidant-responsive elements (AREs) of various antioxidative genes [119,120]. Although
NRF2 protects the cells from cancer causing agents, it also stimulates tumor formation and cancer
development by safeguarding cancer cells from ROS and the resulting DNA damage [108,115,121].
In some tumor cells, KEAP1 mutations lead to the constitutive NRF2 activation [122]. The loss of NRF2
induces oxidative stress in cancerous cells, and ultimately inhibits tumor formation [123]. The loss of
NRF2 inhibits multiple antioxidant signaling pathways, resulting in damage to the cancer cells [124]
(Figure 3).

Elevated ROS are associated with tumor formation and progression. The tumor suppressive
genes can serve as antioxidants for scavenging ROS and to maintain them at the levels that do not
promote tumor formation [125]. Tumor suppressor p53 regulates the expression of many antioxidant
genes [126,127]. Moreover, mice that are deficient in p53 have demonstrated a reduction in tumor
formation by dietary supplement NAC, which suggests that, in certain cancers, the primary suppressive
function of p53 is to reduce ROS levels [128]. However, it is also suggested that a major tumor
suppressive function of p53 is to regulate the antioxidative and metabolic genes [129]. One mechanism
by which p53 regulates the metabolism to control antioxidant function is the induction of p53 target
TIGAR expression [130]. TIGAR, also known as 2, 6-fructose bisphosphatase, reduces the levels of
fructose 2, 6-bisphosphate (a positive regulator of phosphofructokinase 1) [131]. Consequently, it leads
to a reduction in glycolytic flux by shunting the glycolytic carbons to the pentose phosphate pathway
to generate NADPH and the generated NADPH is required for the maintenance of the antioxidant
system [132]. Other tumor suppressor genes such as FOXO transcription factors, function by activating
many antioxidant genes, such as Prdx3 and Prdx5 [133,134].

ROS also regulate mitogenic signals to promote cancer cell proliferation and also play a role
in adapting to metabolic stress condition when a highly proliferative tumor tissue outstrips its
blood supply [135,136]. Hypoxia-inducible factors (HIFs) are stabilized in the resulting hypoxic
tissue [137,138]. Prolyl hydroxylases (PHDs) hydroxylate proline residues of HIF1α that are recognized
by E3 ubiquitin ligase von Hippel-Landau (pVHL) protein [139]. This causes HIF1α to proteasome
degradation [140]. Non-hydroxylated HIF1α is not recognized by pVHL and translocates to the
nucleus [139,141]. In the nucleus, it dimerizes with HIF1β and then regulates the metabolic adaption to
hypoxia and the expression of pro-oncogenes, such as vascular endothelial growth factor (VEGF) [142].
HIFs that are induced by ROS promote tumorigenesis in certain cancer cells [143]. Moreover, sirtuin
proteins (SIRT3) upregulate the antioxidant system to prevent HIF activation [144,145].

In summary, two counter signaling mechanisms operate in cancerous cells to maintain tumor
proliferation and tumor survival. One type of signaling is associated with excessive ROS generation
that results from the highly active metabolism of cancerous cells and the other is to counter balance this
excessive ROS and to prevent the cancerous cells from oxidative damage that involves the activation
of the antioxidant defense system. Furthermore, increased ROS levels by endogenous sources are
dangerous for cancerous cells, as well as for cancer development [109]. Thus, these antioxidant
protective mechanisms can be targeted to kill cancer cells along with CSCs while protecting the normal
cells and considered to be a better approach for cancer treatment and therapy [146,147].
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6. Prdx3 and Carcinogenesis

As mentioned in Section 5, the cancer cells are endowed with extraordinarily high antioxidant
capabilities; thus, it is not surprising that cancer cells contain upregulated levels of mitochondrial
Prdxs [148]. Prdx3 is highly sensitive to oxidative stress, and is regulated by sirtuin1, a class III
histone deacetylase (SIRT1). SIRT1 regulates the expression of Prdx3 by enhancing the formation
of PGC-1α/FoxO3a transcriptional complex [149]. The signaling and regulation of Prdx3 varies,
depending on the type of cancer and its interacting partners [150] (Figure 4). The debatable issue is
whether these Prdxs function as cancer promoters or suppressors. Multiple lines of studies have shown
that Prdx3 is upregulated in different types of cancerous cells [151–153]. The overexpression of Prdx3
is observed in colon cancer stem cells (CSCs) having elevated mitochondrial functions [150]. A positive
correlation for upregulated expression of Prdx3 and CD133 is reported along with FOXM1 regulating
the expression of Prdx3 and CD133 by binding to the promoter regions of both Prdx3 and CD133. Prdx3
knock out mice have shown a reduction in tumor volume and metastasis giving a clue for association
of Prdx3 with FOXM1 associated pathways for cancer development [150]. FOXM1 is associated with
cancer cell proliferation and the FOXM1/Prdx3 pathway plays a role in the survival of cells, so they can
be specifically targeted to develop the efficient drugs. This study is significant in that both in vitro and
in vivo results showed that Prdx3 is regulating the survival and metastasis of cancer stem cells through
mitochondrial stabilization and the depletion of Prdx3 can lead to reduce tumor size and promote
cell death by mitochondrial dysfunctions. The upregulated expression of Prdx3 is also observed in
medulloblastoma (MB), along with the decreased expression of miR-383 [154]. RNA and protein levels
of Prdx3 are both considerably reduced upon miR-383 restoration. This study provides clear evidence
for the interaction of miR-383 with Prdx3 through miR-383 seed region in 3′ UTR of Prdx3 and reported
the inverse relationship between miR-383 and Prdx3 in MB cells. However, this inverse relationship
was not observed in MB samples [154,155]. This difference between Prdx3 and miR-383 relationship in
MB cells and MB samples implies the need for in-vivo studies to further enhance the understanding of
Prdx3 roles in cancer cell survival and metastasis. In addition to miR-383, the association of Prdx3
with miR-23b is also observed in prostate cancer (PCa). The PCa-cell line studies showed that Prdx3 is
regulated by miR-23b in normal as well as in hypoxic conditions. miR-23b itself regulated by c-Myc
in-turn regulates the expression of Prdx3 at both RNA and protein levels [156].

The association of Prdx3 with JunD is also observed in PCa, which indicates that JunD regulates
cellular proliferation in PCa by regulating the expression of its associated genes, including Prdx3 with
Myc family genes, as crucial downstream regulators [157]. These studies show that the involvement
of Prdx3 in cancer is for more complicated as in PCa, the Prdx3 expression is regulated by miR-23b
as well as by JunD. It is clear that Prdx3 is regulated by multiple factors and there is a dire need to
analyze the co-relational regulation of Prdx3 by transcriptional factors and micro RNAs to identify the
associated changes on the tumor microenvironment.

The involvement of Prdx3 with hypoxia is also established and it is interesting to note that
the overexpression of Prdx3 suppressed the hypoxia mediated apoptosis of thymoma cells in vitro,
but with regard to the role of von Hippel-Laundau protein (pVHL) in clear-cell renal cell carcinoma,
the protein level of Prdx3 is downregulated and HIF-1α stabilization is induced by pVHL deficiency in
conditions of normoxia or hypoxia; this leads to decrease in Prdx3 expression and is associated with
cellular proliferation of clear cell renal cell carcinoma (CCRCC) [158]. Taken together, these studies
demonstrate the important role of Prdx3 in hypoxia, which is associated with cancer development and
the response to cancer therapies.
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Figure 4. Microenvironment of mitochondrial Prdxs in cancer. The involvement of mitochondrial Prdxs
in cancer depends on their interaction with different factors including transcription factors, different
response elements, micro RNAs, and cancer-related genes. The microenvironment of Prdx3 involves its
regulation by various transcription factors such as FOXO family transcription factors, Jun-D, and TIMP1
in colon, prostate, and hepatocellular carcinomas. These factors are associated with the upregulation
of Prdx3 in the cancerous cells for the abovementioned cancer types. Prdx3 interacts with miR-383
and miR-23b in medulloblastoma and prostate cancer, further regulated by c-Myc in breast cancer
and hypoxia-inducible factors in renal cell carcinoma. Similarly, the expression of Prdx5 in different
malignancies depends on its regulation by a variety of interacting partners such as c-Myc and GATA1
in breast cancer, Snail in gastric cancer, and Ets1/2 and HMGB1 in prostate cancer. Additionally, Prdx5
interacts with transcription factors AP-1 and NF-κB, insulin and glucocorticoid response elements for
the initiation of tumorigenesis and tumor progression.

The upregulated expression of Prdx3 is associated with an enhanced expression of ATP synthase
and increased ATP production in hepatocellular carcinoma, and it plays a role in tumor growth
and progression. However, at the same time, the downregulation of Prdx3 results in enhanced
invasive properties of HepG2 cells through the downregulation of TIMP metallopeptidase inhibitor 1
(TIMP-1) and causes increased extracellular matrix (ECM) degradation [159–161]. This implies that the
differential response of Prdx3 expression is regulated by diverse signaling pathways that are associated
with cancer progression.

Breast cancer is one of the most common cancer among females with many subtypes and it is
associated with a high mortality rate if not diagnosed at early stages [162]. Proteomic analysis of
invasive ductal carcinoma of the breast with luminal B human epidermal growth factor receptor
2-positive (HER2-positive LB) and HER2-enriched (HE) subtypes have shown that Prdx3 with an
upregulated expression of luminal B HER2 can serve as a promising bio-signature for LB subtype and it
can also serve as potential biomarker for the diagnosis of early- and late-stage disease [163]. Enhanced
expression of Prdx3 is also observed in MCF-7 cells [162,164,165]. In cervical cancer, single nucleotide
polymorphism of Prdx3 leads to significant increased risk of cervical cancer and progression [166].
In addition, gene expression analysis has revealed the increase in the expression of Prdx3 in cervical
cancer [166]. Endometrial cancer is among the common cancers in females that affect the genital tract.
The expression of Prdx3 is upregulated in the endometrium of patients that suffer from this type of
cancer as compared to that in normal endometrium [167]. A high expression of Prdx3 is associated
with endometrial cancer and it has the potential to serve as a prognostic marker for endometrial cancer;
thus, it can be targeted for the development of better therapeutic strategies [151,168]. The upregulated
expression of Prdx3 is also observed in malignant mesothelioma (MM) cells and an overexpression of
Prdx3 in MM cells maintains a redox set point that enables these cells to survive in conditions with
elevated levels of mitochondrial ROS [169]. Any disturbance in this Prdx3 regulated redox set point
impairs cellular proliferation by affecting the cell cycle dynamics operating between energy metabolism
and mitochondrial network [170]. Taken together, the upregulated expression of Prdx3 is observed in
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different cancerous cell lines but the mechanistic details are lacking in how the upregulated expression
affects the environment in cancerous cells.

Our survey of studies analyzing the expression of Prdx3 in human cancers clearly shows that
Prdx3 is upregulated in many cancers and it is associated with cell proliferation. Hence, Prdx3 can be
considered as pro-cell survival, either in healthy or diseased cells, and it can be targeted for cancer
treatment. The cancerous cells have significantly high levels of ROS, irrespective of the upregulated
expression of Prdxs as compared to the normal cell and these cancerous cells cannot respond to the
increased ROS levels, like normal cells having many compensatory mechanisms to respond to ROS.
Therefore, Prdxs inhibition can lead to a further increase in ROS and consequently can promote cell
death of cancerous cells but not the normal cells having protective mechanisms [171]. However, there
is evidence that downregulation of Prdx3 led to enhancing the tumor malignancies and invasiveness
in certain cancers, so the targeting of Prdx3 for effective drug development requires further research
and it will be beneficial to target the signaling pathway instead of a single factor.

7. Prdx5 and Carcinogenesis

Mitochondrial oxidants are produced in significantly large amounts in cancerous cells due to
oncogenic transformation and metabolic reorganization [172]. Like Prdx3, the up- and downregulation
of Prdx5 is also observed in many types of cancers (Figure 4). The expression of Prdx5 is regulated
by different transcription factors, including AP-1, nuclear factor-κB (NF-κB), antioxidant response
element (ARE), insulin response element (IRE), glucocorticoid response element (GRE), and c-Myc;
further, c-Myc might directly regulate Prdx5 expression by interacting with putative responsive
elements in the 5’-flanking region of the gene [54,173]. Despite these other transcription factors,
such as nuclear respiratory factor 1 (NRF1) and nuclear respiratory factor 2 (NRF2; GABPA), which
are associated with the mammalian cells, response to oxidative stress and mitochondrial biogenesis
are also capable of indirectly regulating Prdx5 expression [53,174]. c-Myc not only directly regulates
Prdx5 transcription, but also participates in the establishment of ROS homeostasis by selectively
inducing the transcription of specific Prdxs when the function of one of the Prdxs is compromised [175].
In microenvironmental stress conditions, such as hypoxia, E-twenty-six transcription factor 1 and 2
(Ets1/2), and high-mobility-group protein B1 (HMGB1), mediate the upregulation Prdx5 in cancer
cells, particularly in human prostate and epidermoid cancer cells exposed to H2O2 or hypoxia [176].
The interaction of Prdx5 with a variety of regulators complicates its functions in cell survival during
normal and pathological conditions.

The expression of Prdx5 is closely related to the tumor size, depth, and lymphatic invasion in
patients suffering from gastric cancer [177]. Moreover, the enhanced expression of Prdx5 leads to
augmented carcinogenicity by increasing the proliferation and invasiveness of gastric cancer cells
through the upregulation of Snail [177]. The treatment of Hodgkin’s lymphomas is based on targeting
ROS, but the increased expression of mitochondrial Prdxs leads to chemoresistance [178]. Increased
levels of Prdx5 have been observed in aggressive Hodgkin’s lymphomas [178]. In breast cancer,
Prdx5 is upregulated in the mammary tissues and it is associated with poor prognosis. GATA1
transcription factor binds to the promoter region of Prdx5 in breast cancer cells and downregulates
the transcription of Prdx5 [179]. The overexpression of Prdx5 protects cancerous cells from oxidative
stress-induced apoptosis in a GATA1-regulated manner [165,179]. This implies that GATA1-regulated
Prdx5 transcription can be targeted to treat breast cancer, but it requires further analysis involving
the overexpression of GATA1 and its effects on tumor production and metastasis. Like Prdx3,
the expression of Prdx5 is upregulated in endometrial cancer and this enhanced expression of Prdx5
in the endometrium of females with endometrial tumor can serve as a prognostic marker [167].
Mitochondrial Prdxs are overexpressed in ovarian cancer cells, and Prdx5 serves as a negative predictor
of survival in patients suffering from ovarian cancer [180–182]. The upregulated expression of Prdx5 is
also observed in malignant mesothelioma cells [169], while a reduction in Prdx5 expression has only
been described in adrenocortical carcinoma [183].
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In summary, the Prdx5 is upregulated in different cancers, except for adrenocortical carcinoma,
but which factors are controlling the upregulation of Prdx5, the pathways associated with Prdx5
upregulation and cancer cell survival are lacking and need further investigation to demonstrate
the exact mechanism of action of Prdx5 in different cancers and to develop strategies for effective
drug designing.

8. Mitochondrial Prdxs and Chemoresistance

Cancerous cells are unique when compared with normal cells, in that they include elevated ROS
levels as well as an increased level of antioxidants to counterbalance the ROS [111]. This distinctive
feature of cancerous cells is attributable to the development of resistance in cancerous cells against
chemo and radiotherapy, as these therapies are highly dependent on ROS-developed cytotoxicity [114].
A plethora of literature has described the association of elevated levels of Prdxs with chemo- or
radioresistance to various drugs [184–188].

In breast cancer, the upregulated expression of Prdx3 is associated with the development of
resistance to the drug doxorubicin [189]. Prdx3 regulates the apoptotic signaling pathway by controlling
the release of cytochrome c from the mitochondria, along with establishing the linkage with leucine
zipper kinase and IKB kinase [165]. Therefore, it will be a good strategy to develop drugs that target
Prdx3 and mitochondrion specific electron suppliers, i.e., thioredoxin2 (Trx2), thioredoxin reductase2
(TrxR2), and sulfiredoxin (Srx), for response improvement of different chemotherapeutic agents, such as
cisplatin, paclitaxel, and etoposide [189,190]. In many other cancers, such as breast cancer, ovarian
cancer, and erythroleukemia, chemoresistance is developed by the upregulated expression of Prdx1,
Prdx3, and Prdx6 [191]. In addition, there is evidence that Prdx5 is also involved in chemoresistance to
adriamycin, bleomycin, vinblastine, and dacarbazine in patients of Hodgkin’s lymphoma and in vitro
lung carcinoma U1810 cell lines [192].

Chemoresistance is a complicated process that involves different factors and numerous modes
of action affected by the tumor microenvironment as well as tumor biology [193,194]. Alterations in
endogenous antioxidants play a determining role in the development of chemoresistance, as well as
can serve as promising targets to design new drugs with better efficacy [195] (Figure 5).
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9. Concluding Remarks

Mitochondrial Prdxs, the multifunctional proteins of the cells, are well known for their
physiological as well as pathological significance based on their interplay with ROS. The crosstalk
between ROS and mitochondrial Prdxs is critical for the initiation and progression of various types
of cancers. The targeting of mitochondrial Prdxs for developing drugs against cancer is a good
strategy. However, because these Prdxs are associated with chemoresistance in certain cancers, it is
conceivable that, instead of targeting mitochondrial Prdxs, it will be better to diagnose the signaling
pathways and microenvironments of these Prdxs in particular cancer types and then develop a drug
that can target the root, leading to the activation of these Prdxs in response to the elevated ROS levels.

10. Future Directions

Our survey of studies analyzing the involvement of mitochondrial Prdxs in human cancers shows
that most of the conducted studies are based on the expression analysis of Prdx3 and Prdx5. It is
depicted that mitochondrial Prdxs are upregulated in variety of cancer types and directly or indirectly
regulated by transcription factors, microRNAs, and oncogenes. Further, the interaction of Prdx5 with
response elements is also reported, but current studies for analyzing the roles of mitochondrial Prdxs
and ROS in cancer need more in depth analyses, as described below

1. Most of the studies reporting the upregulation of mitochondrial Prdxs in human cancers are
cell-line specific, it will be more advantageous to design in-vivo studies to explore the interaction
of these Prdxs in cellular environment.

2. Mitochondrial Prdxs have the ability to function as molecular chaperons, enzyme activators,
and can be involved in protein-protein interactions beyond their enzymatic peroxidase functions.
Accordingly, the transgenic animal (mouse) models should be used to demonstrate the role
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of mitochondrial Prdxs in oncogenic signaling. It will be beneficial to understand the exact
mechanism of action of these Prdxs in cancer and to design effective drugs targeting a particular
pathway associated with cancer survival and progression.

3. Although a plethora of studies describe the regulation of mitochondrial Prdxs by different
transcription factors, oncogenes, and microRNAs in different types of cancer, but the
exact mechanism of mitochondrial Prdxs in different types of cancers and their upstream
and downstream regulators is lacking. Incorporation of variety of omics techniques i.e.,
transcriptomics, proteomics, and metabolomics into the in vitro and in vivo studies of
mitochondrial Prdxs in cancer development can help to elucidate signaling mechanism in
future studies.

4. More clinical investigations are needed to evaluate the differences in the expression of Prdx3
and Prdx5 between normal and diseased state. In addition, the expression of mitochondrial
Prdxs during the early and late stage of cancer should be analyzed to demonstrate their role as
anti-oncogenic or pro-oncogenic in different cellular context.

5. The upregulated expression of Prdx3 and Prdx5 is associated with the development of
chemoresistance in different cancers and selective targeting of these mitochondrial Prdxs can
lead to sensitization of cancer cells to chemotherapy. This fact should be investigated in detail to
unveil the underlying mechanisms.

Author Contributions: T.I. and Y.K. wrote the manuscript and prepared figures. H.L. and D-S.L. revised and
proofread the manuscript. T.I. and H-S.L. developed the central idea for the paper. H-S.L. critically analyzed it,
and revised the manuscript to its final form.

Funding: This study was funded by the Ministry of Science, ICT, and Future Planning (MSIP) [grant no.
2015R1A4A1042271], the Republic of Korea.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ROS Reactive oxygen species
Prdxs Peroxiredoxins
ATP Adenosine triphosphate
SOD Superoxide dismutase
Cys Cysteine
Cp Peroxidatic cysteine
Cr Resolving cysteine
ERK Extracellular signal related kinase
JNK Jun N-terminal kinase
MAPK Mitogen activated protein kinase
PTP Protein tyrosine phosphatases
PTEN Phosphatase and tensin homologues
CSCs Cancerous stem cells
NRF2 Nuclear factor erythroid 2 related factor
KEAP1 Kelch like ECH associated proteins
AREs Antioxidant responsive elements
HIFs Hypoxia inducible factors
PHDs Prolyl hydroxylases
pVHL von Hippel-Laundau protein
CCRCC Clear cell renal cell carcinoma
FOXM1 Forkhead box protein 1
LNCaP Lymph node carcinoma of prostate
TIMP1 TIMP metallopeptidase inhibitor 1
ECM Extracellular matrix
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HepG2 Human hepatocellular carcinoma/hepatoma cell lines
MCF-7 Mitichigan cancer foundation-7 cancerous cell lines
HER2 Human epithelial growth factor receptor 2
Trx2 Thioredoxin 2
TrxR2 Thioredoxin reductase 2
Srx Sulfiredoxin
MM Malignant mesothelioma
NF-κB Nuclear factor κB
ARE Antioxidant responsive element
IRE Insulin responsive element
GRE Glucocorticoid responsive element
Ets 1

2 E twenty six transcription factor 1 and 2
HMGB1 High mobility group protein B1
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