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Abstract 

Background: Kidney disease progression rates vary among patients. Rapid and accurate prediction of kidney disease 
outcomes is crucial for disease management. In recent years, various prediction models using Machine Learning 
(ML) algorithms have been established in nephrology. However, their accuracy have been inconsistent. Therefore, we 
conducted a systematic review and meta-analysis to investigate the diagnostic accuracy of ML algorithms for kidney 
disease progression.

Methods: We searched PubMed, EMBASE, Cochrane Central Register of Controlled Trials, the Chinese Biomedi-
cine Literature Database, Chinese National Knowledge Infrastructure, Wanfang Database, and the VIP Database for 
diagnostic studies on ML algorithms’ accuracy in predicting kidney disease prognosis, from the establishment of 
these databases until October 2020. Two investigators independently evaluate study quality by QUADAS-2 tool and 
extracted data from single ML algorithm for data synthesis using the bivariate model and the hierarchical summary 
receiver operating characteristic (HSROC) model.

Results: Fifteen studies were left after screening, only 6 studies were eligible for data synthesis. The sample size of 
these 6 studies was 12,534, and the kidney disease types could be divided into chronic kidney disease (CKD) and 
Immunoglobulin A Nephropathy, with 5 articles using end-stage renal diseases occurrence as the primary outcome. 
The main results indicated that the area under curve (AUC) of the HSROC was 0.87 (0.84–0.90) and ML algorithm 
exhibited a strong specificity, 95% confidence interval and heterogeneity  (I2) of (0.87, 0.84–0.90,  [I2 99.0%]) and a weak 
sensitivity of (0.68, 0.58–0.77,  [I2 99.7%]) in predicting kidney disease deterioration. And the the results of subgroup 
analysis indicated that ML algorithm’s AUC for predicting CKD prognosis was 0.82 (0.79–0.85), with the pool sensitivity 
of (0.64, 0.49–0.77,  [I2 99.20%]) and pool specificity of (0.84, 0.74–0.91,  [I2 99.84%]). The ML algorithm’s AUC for predict-
ing IgA nephropathy prognosis was 0.78 (0.74–0.81), with the pool sensitivity of (0.74, 0.71–0.77,  [I2 7.10%]) and pool 
specificity of (0.93, 0.91–0.95,  [I2 83.92%]).
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Background
Chronic kidney disease (CKD) affects 8–16% of the 
world’s population, and has become a global public 
health problem as its prevalence has increased [1, 2]. As 
the 10th leading cause of death in the world [3], 1.2 mil-
lion people died from CKD in 2017 globally [4]. Kidney 
injury is an irreversible process, any form of kidney dis-
ease can progress to end-stage renal diseases (ESRD), 
and may require Renal Replacement Therapy (RRT) for 
residual renal function damage [5, 6]. Patients who finally 
progress to ESRD or undertake RRT suffer from heavy 
economic pressure [7]. However, observational studies 
have shown that the speed and severity of kidney disease 
progression varies [8, 9]. Therefore, early identification of 
groups at high-risk of kidney disease progression accu-
rately and delaying kidney function deterioration, have 
become an important focus in kidney disease manage-
ment [10–12].

Considering the increasing prevalence and variegated 
severity of disease progression, kidney disease patients 
must be managed through stratification. An accurate 
disease prognosis prediction model may assist medical 
staff in early intervention for high-risk patients with poor 
prognosis. Management strategies should be adopted 
based on the predictable outcome. In order to promote 
early identification of patients at high risk of kidney func-
tion deterioration, researchers have conducted numerous 
studies exploring the risk factors, and have established 
several risk prediction models [13, 14].

These models have performed well in internal valida-
tion, but their capacity for generalization is uncertain 
because only a portion of the studies have been externally 
validated. As a new tool for big data analysis, machine 
learning (ML) has emerged in the field of medicine in 
recent years [15]. ML allows the construction of an algo-
rithm that can learn, predict, and improve with experi-
ence [16] based on big data. It has immense potential in 
exploring risk factors for disease progression and pre-
dicting patients’ prognosis. Several ML algorithm-based 
prediction models have been successful in predicting kid-
ney function during a specific period of time, and shown 
greater capacity for generalization than previous statisti-
cal models.

Though ML algorithms can extract meaningful pat-
terns from big data, several problems remain in clinical 

practice. Firstly, selecting suitable models in clinical prac-
tice is challenging, due to the lack of evidence. Because 
previous systematic reviews pertaining to prognostic 
prediction models have neither focused on ML algo-
rithms, nor have they extracted data for further analysis. 
Secondly, researchers have used an array of ML algo-
rithms, predictors, and outcome indicators to construct 
prediction models. Finally, there is a dearth of high qual-
ity research demonstrating the accuracy and reliability 
of ML algorithm-based prediction models. Thus, experi-
enced clinicians rely more on their own knowledge and 
experience when judging patients’ prognosis.

Considering the potentiality and problems pertain-
ing to ML algorithms in the field of nephrology, there 
is a need for a summary of current research on ML 
algorithm-based prognostic prediction models for the 
deterioration of various kidney diseases. Therefore, we 
conducted this systematic review by reviewing relevant 
studies and extracting data for a meta-analysis. In doing 
so, we investigated ML algorithms’ accuracy in predicting 
kidney disease progression.

Methods
The methods and results of this review are presented 
according to the Preferred Reporting Items for System-
atic reviews and Meta-analyses statement (PRISMA). 
The review protocol was previously registered on PROS-
PERO (International Prospective Register of Systematic 
Reviews) with the CRD (Centre of Reviews and Dissemi-
nation), report number CRD42020156213.

Eligibility criteria
The inclusion criteria were:

1. Clinical studies of diagnostic tests of accuracy.
2. Participants with kidney disease, aged 18  years or 

older.
3. Studies that used ML algorithms.
4. Study outcome reflected kidney disease deteriora-

tion, including the doubling of serum creatinine, 
sudden estimated Glomerular Filtration Rate (eGFR) 
deterioration, urinary protein level aggravation, 
ESRD occurrence, RRT initiation, cardiovascular 
events and all-cause mortality.

Conclusion: Taking advantage of big data, ML algorithm-based prediction models have high accuracy in predicting 
kidney disease progression, we recommend ML algorithms as an auxiliary tool for clinicians to determine proper treat-
ment and disease management strategies.

Keywords: Artificial intelligence, Machine learning algorithm, Prediction models, Chronic kidney disease, CKD 
progression, Immunoglobulin A nephropathy
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5. Studies from which indicators could be extracted that 
pertained to diagnostic test accuracy, such as accu-
racy, specificity, sensitivity, true positive (TP), false 
positive (FP), true negative (TN), false negative (FN), 
Area Under Curve(AUC) and C-statistic.

6. Studies published in either English or Chinese.

Search strategy
We searched PubMed, EMBASE, Cochrane Central 
Register of Controlled Trials, the Chinese Biomedi-
cine Literature Database, Chinese National Knowledge 
Infrastructure, Wanfang Database, and VIP Database by 
using both free-text terms and Medical Subject Headings 
(MeSH) terms for studies limited to humans, without any 
language restrictions, from the establishment of these 
databases until October 2020. The detailed search strate-
gies are listed in the Additional file 1. The last search was 
performed on October 31, 2020.

Study selection
The records retrieved from the search were imported to 
NoteExpress 3.2.0. Two authors (M. T. Wei and N. L.) 
independently screened the records by title and abstract 
after deduplication. Then, the full texts of the selected 
records were read independently by two researchers 
(M. T. Wei and N. L.). At each stage of selection, disa-
greements were arbitrated by a third reviewer (X. L. 
Zhang) and resolved by consensus. After that, each 
researcher created an Excel spreadsheet of the articles to 
be excluded, and their exclusion reasons, before we com-
piled a final list of included articles.

Data extraction
Two independent reviewers (M. T. Wei and N. L.) 
extracted data using a customized extraction form. 
Considering an individual article may use several ML 
algorithms to build prediction models separately or in 
combination, in order to explicate the performance of 
a single ML algorithm, we extracted data in the unit of 
a single ML algorithm rather than a single article. The 
extracted data included the TP, FP, FN and TN numbers 
of patients with kidney disease progression predicted by 
an ML algorithm, and the ML algorithm’s accuracy, sen-
sitivity, specificity, positive predictive value (PPV) and 
negative predictive value (NPV). During the data extrac-
tion process, we used RevMan 5.2 for data conversion.

Assessment methodology quality
We used the Quality Assessment of Diagnostic Accuracy 
Studies 2 (QUADAS-2) tool to assess the quality of the 
included studies. Two reviewers adjusted both the sign-
aling questions and the assessment questions to build 

a specific version of the tool, according to our study’s 
objective. We then tested the tool, and when we achieved 
good agreement, we determined that it would be the final 
version of the review tool. Both authors then used it to 
independently assess the risk of bias and the applicability 
of all included studies. Disagreements were resolved by 
consensus.

Data synthesis
Considering the bivariate nature of the data, we used 
both the bivariate model and the hierarchical summary 
receiver operating characteristic (HSROC) method for 
data synthesis. The bivariate model, which preserved the 
bivariate nature of the data, was used to summarize the 
index tests’ hierarchical sensitivity and specificity. The 
HSROC model, which could convert the bivariate data 
into univariate data, was used to determine the index 
tests’ overall accuracy. In the absence of covariates, the 
bivariate model was equivalent to the HSROC model 
[17].

To judge whether there was a threshold effect between 
the studies, we used the correlation coefficient between 
the logit transformed sensitivity and specificity generated 
by the bivariate model, and the asymmetry parameter β 
generated by the HSROC model. Where a negative cor-
relation coefficient or β = 0 showed an expected trade-off 
between sensitivity and specificity across thresholds, test 
accuracy could be represented by the expected accuracy 
(logDOR) [18]. Then we used the bivariate model to esti-
mate the pool sensitivity and specificity, and generated a 
forest plot. After that, we generated the HSROC curves 
and their 95% prediction intervals via the HSROC model. 
We also calculated the HSROC’s AUC and diagnostic 
odds ratios (DORs) to evaluate the overall accuracy.

An  I2 statistic was used to explore the heterogeneity. 
There is potential heterogeneity when the  I2 is greater 
than 50%. Heterogeneity was also examined visually 
through HSROC plots. In order to identify any sources 
of heterogeneity, we conducted a meta regression when 
there were more than 10 single ML algorithms included. 
Then, we followed with a subgroup analysis after identi-
fying any sources of heterogeneity. Finally, we conducted 
sensitivity analysis, and combined the data after eliminat-
ing outliers and data with small sample sizes to assess the 
index test’s stability. We used Deeks’ funnel plot asym-
metry test to evaluate publication bias. And the data syn-
thesis was conducted with RevMan 5.2 and Stata (version 
15.0), using the "Metandi" and "Midas" packages.

Results
We retrieved a total of 184,052 articles from the litera-
ture databases. After removing duplicates, we screened 
180,958 records by title and abstract, and excluded 
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180,612. Then, we evaluated the full texts of the remain-
ing 188 articles based on the study eligibility criteria. 
Ultimately, 15 studies were included in our systematic 
review. However, we were unable to extract the specific 
TP, FP, FN and TN data from 9 of the articles. Therefore, 
only 6 articles were eligible for data synthesis. A detailed 

flow diagram with the study selection process and rea-
sons for exclusion is shown in Fig. 1.

Clinical application
The total sample size of the 15 articles was 115,155, and 
the mean age was 59.28  years old. 23 ML algorithms 

Fig. 1 PRISMA flow diagram of study selection process
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were used to construct progression models with 6 types 
of predictors—demographics, comorbidities, laboratory 
data from blood and urine samples, renal biopsy pathol-
ogy, and therapeutic regimen. These algorithms’ accuracy 
varied, as did the evaluation indexes used to evaluate the 
accuracy (see Table 1).

Kidney disease types
The various kidney diseases in the included articles could 
be classified into 3 categories: CKD, Immunoglobulin A 
Nephropathy (IgAN) and diabetic nephropathy. Studies 
on CKD (43.75%) and IgAN (37.5%) accounted for the 
largest proportions.

The CKD sample size was 17,862, with a mean age of 
61.93 years old and stage 3–4 in 7 articles. Utilization of 
the Logistics Regression (LR), Support Vector Machine 
(SVM) and Random Forest (RF) algorithm accounted for 
proportions of 15.3%, 10.7% and 9.2%, respectively. The 
RF algorithm was the most accurate algorithm for pre-
dicting CKD prognosis and its AUC was 0.878.

The IgAN sample size was 6127 with a mean age of 
34.7  years old in 6 articles. Utilization of the Artificial 
Neural Network (ANN), LR and Decision Tree (DT) 
algorithms accounted for proportions of 29.0%, 19.3% 
and 16.1%, respectively. The ANN algorithm was the 
most accurate algorithm for predicting IgAN prognosis, 
with an AUC of 0.933.

Predictors in the models
Most of the included ML algorithms used demography, 
comorbidities, and laboratory data from blood and urine 
samples as predictors, among which, age, sex, hyperten-
sion, serum creatinine and 24-h urinary protein were 
common predictors. However, Dovgan [28] only used 
comorbidities to construct prediction models. Chen [26] 
and Schena [30] applied renal biopsy pathology and types 
of drug therapy as predictors of ML algorithms to estab-
lish accurate prediction models. See Additional file 1 for 
details.

Outcome indicators
In 12 studies, ESRD was the primary outcome and was 
defined as such, (1) eGFR < 15  ml/min/1.73   m2; (2) the 
initiation of RRT; (3) renal transplantation. In addition, 
Xiao et al. [25] used the severity of proteinuria, Feng et al. 
[23] and Masaki et al. [27] used the progression of CKD 
stages as outcome indicators for renal disease progres-
sion, respectively.

Makeup of the 6 eligible articles
The 6 eligible articles for data synthesis mainly focus on 
CKD and IgAN with a total sample size of 12, 534 and 
a mean age of 42.77  years old. 18 ML algorithms were 

used to construct progression models with 6 types of 
predictors mentioned above. Except for Xiao et  al. [25], 
the other 5 researchers took ESRD/RRT as the primary 
outcomes. Utilization of the ANN, LR, and RF algo-
rithm accounted for proportions of 22.5%, 6.4% and 6.4%, 
respectively. The optimal prognosis model for predict-
ing IgAN progression was constructed by ANN algo-
rithm. And the optimal prognosis model for predicting 
CKD progression was constructed by LR algorithm (see 
Table 1).

Quality assessment
We assessed the studies’ quality with the QUADAS-2 
tool. Figure 2 depicts the risk of bias graph, while Fig. 3 
presents the risk of bias summary. Bias of the included 
studies comes primarily from the domains of Index test 
and Flow and timing. Bias of application concerns per-
tained primarily to the Index test. Of all the included 
primary studies, none of the articles were judged as “low 
risk” on all bias-related domains; 5 (33.3%) were judged 
as “low concern” on all applicability domains.

Results of data synthesis
Extracted data was synthesized using the bivariate model 
and the HSROC model without accounting for possi-
ble covariates explaining heterogeneity. The correlation 
coefficient was—0.53 and asymmetrical parameter β 
was 0.015 (P > 0.05) which indicated a trade-off between 
sensitivity and specificity. The ML algorithms exhibited 
a pool sensitivity of 0.68 (0.58–0.77) and a pool specific-
ity of 0.87 (0.84–0.90) (Fig. 4A). The AUC of the HSROC 
curve was 0.87 (0.84–0.90) (Fig.  5A), and the DOR was 
16.34.

The  I2 for pool sensitivity and specificity were 99.0% 
and 99.7%, respectively, which indicated the poten-
tial heterogeneity. Considering that there were multiple 
sources of heterogeneity, we conducted a META regres-
sion and determined that kidney disease types, algorithm 
and parameters, dataset, predictors and race were the 
influential factors (See Fig. 6). After that, we conducted a 
subgroup analysis.

According to the results of subgroup analysis based 
on kidney disease types, the ML algorithm’s AUC and 
DOR for predicting CKD prognosis was 0.82 (0.79–0.85) 
and 9.31, respectively. The pool sensitivity was 0.64 
(0.49–0.77) with an  I2 of 99.20%, and the pool specific-
ity was 0.84 (0.74–0.91) with an  I2 of 99.84% (Figs.  4B, 
5B). The ML algorithm’s AUC and DOR for predicting 
IgA nephropathy prognosis was 0.78 (0.74–0.81) and 
39.27,respectively. The pool sensitivity was 0.74 (0.71–
0.77) with an  I2 of 7.10%, and the pool specificity was 
0.93 (0.91–0.95) with an  I2 of 83.92% (Figs. 4C, 5C). See 
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Table 2, Additional file 2 and Additional file 3 for more 
details of subgroup analysis.

We found outliers by observing the forest plot and 
HSROC curve. We performed sensitivity analysis and 
reapplied the bivariate and HSROC model after exclud-
ing the outliers. Which showed that ML algorithm’s AUC 
and DOR was 0.83 (0.80–0.90) and 16.80, respectively. 
The pool sensitivity was 0.74 (0.70–0.77) with an  I2 of 
74.93%, and the pool specificity was 0.86 (0.80–0.90) with 
an  I2 of 99.84% (see Figs. 4D, 5D). Additionally, we found 
that Deek’s funnel plot (Fig.  7) was symmetrical, and 
there was no evidence of publication bias in asymmetric 
tests (P = 0.07).

Discussion
Our study indicates that ML algorithms did not pool a 
balance between sensitivity and specificity, which had 
exceptional accuracy, with an AUC of 0.87, and strong 
specificity (0.88), but weak sensitivity (0.68) in predict-
ing adverse outcomes, progress to ESRD or initiation of 
RRT, among both CKD and IgAN patients. This result 
indicates that recent ML algorithms have low misdiag-
nosis rates, but significant probability of missed diagno-
sis, which means that its ability to detect patients with 
kidney function progression is not strong enough. ML 
algorithms need optimization because we aim to iden-
tify patients at risk. The main reason for the decrease in 
sensitivity may be the low end-point incidence rate with 
insufficient follow up time. As shown in the results, only 
16.3% of patients reached the end point. In previous stud-
ies, a mean follow-up time of at least 5  years has been 
required to project whether patients with CKD would 
progress to ESRD [32]. However, in the studies included 
for data synthesis, the mean follow up times were just 1.5 
and 3.0  years, in Cheng’ s and Xiao’ s research, respec-
tively. Sufficient follow-up time is needed to establish 
prediction models.

The technical superiority of ML algorithm-based pre-
diction models over traditional models is well estab-
lished. Most previous models have performed well in 
internal validation, but their capacity for generalization is 
uncertain because only a portion of the studies have been 
externally validated. As shown in the subgroup analy-
sis, we found that in the test set group, the pool sensi-
tivity was 0.79 and the pool specificity was 0.86, which 
indicated an exceptional accuracy in external verifica-
tion. This is because the goal of machine learning is to fit 
the models with new samples [33]. Furthermore, in the 
process of using ML algorithms, it is necessary to first 
divide the data into a training set and a test set. After 
learning some potential rules from the training set, the 
rudimentary model can be verified on the test set. In the 
included studies, the validation set was used for verifica-
tion in modeling. However, not all articles reported the 
results of ML algorithms performed on validation sets, as 
there is no unified standard for reporting [34]. In order 
to standardize the research reporting process, and to gain 
a more comprehensive understanding of ML algorithms, 
we suggest that future research report the results of both 
training sets and validation sets. They also show a greater 
capacity for generalization than traditional statistical 
methods. However, the small sample size in Pesce’s study’ 
s test set may have led to high accuracy.

However, when modeling, ML algorithm type should 
be chosen deliberately. Our study focused on CKD and 
IgAN, ANN and XGBoost algorithm have been utilized 
successfully in the field of IgAN [14]. However, regard-
less of the studies on early stage CKD diagnosis [35–38], 
there is a lack of studies predicting its outcome. Our 
study has shown that it is feasible to use ML algorithms 
to build progression models for CKD. Recent studies have 
focused on the RF, LR and SVM algorithms which can 
produce accurate predictions and deserve further study. 
As for the strengths, the RF and SVM are classification 

Fig. 2 Risk of bias and application concerns graph for the included studies.Red, yellow and green frames correspond to high, unclear and low risk 
of bias, respectively
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algorithms can produce a qualitative index which can 
intuitively reflect the occurrence of an outcome event 
by summarizing and classifying the data characteris-
tics. However, the LR algorithm can utilize as regression 
algorithm and can predict the probability of an outcome 
event. But they also have weaknesses. The probability 
cannot be known when using the classification algorithm, 
while the regression algorithm-based prediction models 

cannot produce direct conclusions. Thus, it is necessary 
to determine the cut-off point.

Additionally, which predictors to use to construct 
prediction models is undergoing debate. As shown in 
our subgroup analysis, renal biopsy pathology plays an 
important role in prognosis predicting. Studies that used 
pathology had a pool sensitivity of 0.71 (0.66–0.76) and a 
pool specificity of 0.89 (0.80–0.94). While those without 

Fig. 3 Risk of bias and application concerns summary for the included studies. (+) indicates low risk of bias, (?) indicates unclear risk of bias, (−) 
indicates high risk of bias
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pathology had a pool sensitivity of 0.65 (0.46–0.81) and 
a pool specificity of 0.87 (0.78–0.93). Which indicate 
that high quality pathology data optimized the accuracy 
of prediction models. However, only a small minority of 
patients can provide pathology data. Because renal biopsy 
is an invasive manipulation, for which not all patients 
have indication. Furthermore, there are great differences 

in renal biopsy specimen preparation and diagnosis for 
there is no unified or standardized pathological diagnosis 
mode.

However, there are evidences indicated that CKD 
prognostic ML prediction models using laboratory data 
from blood and urine samples are also accurate [22]. 
Moreover, CKD patients have the most comorbidities 

Fig. 4 Coupled forest plots for sensitivity and specificity. A All single-unit ML algorithms. B CKD subgroup. C IgAN subgroup. D Sensitivity analysis 
after eliminating outliers and data with small sample sizes. The gray square with a black point in the center showed study specific estimates of 
sensitivity and specificity. The width of solid black line showed their 95% confidence intervals. The diamond at the bottom of the figure was a 
combination of single-unit ML algorithm.The center of diamond represented the point estimates, and the width of diamond represented 95% 
confidence intervals

(See figure on next page.)
Fig. 5 HSROC curve with 95% confidence region and prediction region. A All single-unit ML algorithms with AUC of 0.87. B CKD subgroup with 
AUC of 0.82. C IgAN subgroup with AUC of 0.78. D Sensitivity analysis after eliminating outliers and data with small sample sizes with AUC of 0.83. 
Each circle represents a single-unit ML algorithm. The curve represents the summary receiver operating characteristic curve for all single-unit 
ML algorithm. The red square represents the summary estimate of test performance. The zone outlines represent the 95% confidence and 95% 
prediction regions of the summary estimate, respectively
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Fig. 5 (See legend on previous page.)
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[39] correlated with disease prognosis, and there is evi-
dence of comorbidities’ effectiveness for modeling [9, 40]. 
We believe that with the development of the electronic 

medical record (EMR) system, [15] the quantity of 
comorbidity data will grow with its quality improves. 
Therefore, exploring the use of laboratory data from 

Fig. 6 Univariate meta-regression plot of all single-unit ML algorithms. The red point represents the result of the individual combination of the 
subgroup into which each independent variable is divided. The width of solid black line showed their 95% confidence intervals. “*” means that the 
effects of independent variables on the pool sensitivity and specificity were statistically significant
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blood and urine samples and comorbidities as the predic-
tors for modeling.

As for the outcomes, ESRD occurrence and the time 
to start RRT were the end points which caught the most 
attention from researchers. Researchers seem to have 

Table 2 Summary of meta-analysis and subgroup analysis

DTA diagnostic test accuracy, KD kidney disease, CKD chronic kidney disease, IgAN Immunoglobulin A Nephropathy, ML machine learning, Y Yes, N No
a P < 0.01

Subgroup Number of ML 
algorithms

Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI) Correlation 
coefficient

β DOR

Total DTA 23 0.68 (0.58–0.77) 0.88 (0.83–0.92) 0.87 (0.84–0.90) − 0.53 0.015 16.34

Type of KD

CKD 15 0.64 (0.49–0.77) 0.84 (0.74–0.91) 0.82 (0.79–0.85) − 0.77 − 0.036 9.31

IgAN 8 0.74 (0.71–0.77) 0.93 (0.91–0.95) 0.78 (0.74–0.81) − 1.0 3.781 39.27

ML algorithm type

Classification 16 0.64 (0.50–0.76) 0.87 (0.79–0.92) 0.84 (0.81–0.87) − 0.66 0.021 11.75

Regression 7 0.80 (0.74–0.84) 0.91 (0.86–0.95) N/A 1.0 6.044 41.09

Dataset type

Training set 11 0.56 (0.37–0.73) 0.90 (0.80–0.95) 0.83 (0.80–0.86) − 0.57 0.074 11.40

Testing set 12 0.79 (0.76–0.82) 0.86 (0.81–0.90) 0.81 (0.77–0.84) − 1.0 3.693 23.33

Pathology

Y 11 0.71 (0.66–0.76) 0.89 (0.80–0.94) N/A 1 1.086a 19.46

N 12 0.65 (0.46–0.81) 0.87 (0.78–0.93) 0.86 (0.83–0.89) − 0.53 − 0.172 12.92

Race

Asian 16 0.64 (0.49–0.77) 0.84 (0.75–0.91) 0.82 (0.79–0.86) − 0.76 − 0.042 9.53

Not Asian 7 0.74 (0.71–0.77) 0.93 (0.91–0.95) 0.78 (0.74–0.81) − 1 3.806 10.95

Fig. 7 Deek’s funnel plot of all single-unit ML algorithms. Each circle represents a single-unit ML algorithm
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been less concerned about Major Adverse Cardiovascu-
lar Events (MACE) and all-cause mortality. Considering 
that MACE is the leading cause of death in kidney dis-
ease patients [7], we believe that using ML algorithms to 
predict risk MACE occurrence is also meaningful.

After data synthesis, we found significant heterogeneity 
between the studies. This may have been due to hetero-
geneity of kidney diseases, algorithms and parameters, 
datasets, predictors or race. Thus, we should be cautious 
when interpreting the results.

The 15 studies in our systematic review have a mod-
erate to severe risk of bias in methodology. This was 
because we did not have enough information to deter-
mine whether the researchers had interpreted the results 
knowing patients’ outcome. And in some articles, some 
data was left out of the analysis because the dataset 
needed to be divided into a training set and a test set (see 
Additional file 1 for more details).

However, we also found studies with low risk of bias. 
From these, we found several prediction models with 
high accuracy which had used common clinical data as 
predictors. These included Diciolla’ s ANN model whose 
accuracy was 0.901, Liu’ s RF model whose AUC was 
0.9729, Chen’s XGBoost model whose C-Statistic was 
0.89 and Yuan’ s RF model whose AUC was 0.878. Based 
on the results above, we offer several recommendations 
for clinicians. When predicting whether IgAN patients 
will progress to ESRD, we recommend either Diciolla’s 
ANN model or Chen’s XGBoost model, assuming we 
can obtain patients’ renal biopsy pathology data. How-
ever, when this data is unavailable, we recommend Liu’s 
RF model. When predicting whether CKD patients will 
progress to ESRD, we suggest Yuan’s RF model. However, 
note that Yuan’s model is only suitable for CKD stage 3 
patients.

Limitations

(1) We found that the sources of heterogeneity were 
multifaceted, and the high heterogeneity persisted 
after subgroup analysis. Furthermore, the covari-
ate had a significant influence on the pool specific-
ity. We also believe that ML algorithm type is an 
important source of heterogeneity. We found that 
multiple types of ML algorithms were utilized, but 
few studies focused on one. This makes it impos-
sible to collect enough data to evaluate the perfor-
mance of a specific type of ML algorithm. There-
fore, we cannot eliminate the heterogeneity, and 
further studies are needed.

(2) We utilized data transformation during data extrac-
tion. This may have resulted in bias because most 
of the included studies reported a mean accuracy 
index without specific TP, FP, FN or TN data.

(3) Considering the difference in generalizability, our 
results might not reflect the actual power of ML 
algorithms. This is because we synthesized data 
extracted from the training set and test set, which 
need improvement in future studies.

(4) The combination of multiple ML algorithms is 
superior to utilizing a single ML algorithm. How-
ever, we only synthesized data extracted from a 
single ML algorithm. This may have caused us to 
underestimate the accuracy. This is because we can-
not get enough data, since few studies have com-
bined more than two ML algorithms during mod-
eling. Furthermore, the type of ML algorithms they 
utilized for combination varied.

(5) The last search was performed on October 31, 2020. 
After that, we spent almost 10  months screening 
the retrieved studies, which could affect the timeli-
ness of this study.

Conclusion
ML algorithms are a tool for unearthing the rules of big 
data, and prediction models which incorporate them 
have exceptional accuracy in predicting kidney disease 
patients’ poor prognosis during clinical practice. The 
use of ML algorithms can help clinicians detect patients 
at high risk of kidney function progression in the early 
stages. In this way, they can receive treatment and man-
agement in time. In sum, we suggest the gradual incor-
poration of ML algorithm-based prediction models into 
clinical practice.
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