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Single cell transcriptomics of human epidermis
identifies basal stem cell transition states
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How stem cells give rise to epidermis is unclear despite the crucial role the epidermis plays in

barrier and appendage formation. Here we use single cell-RNA sequencing to interrogate

basal stem cell heterogeneity of human interfollicular epidermis and find four spatially distinct

stem cell populations at the top and bottom of rete ridges and transitional positions between

the basal and suprabasal epidermal layers. Cell-cell communication modeling suggests that

basal cell populations serve as crucial signaling hubs to maintain epidermal communication.

Combining pseudotime, RNA velocity, and cellular entropy analyses point to a hierarchical

differentiation lineage supporting multi-stem cell interfollicular epidermal homeostasis

models and suggest that transitional basal stem cells are stable states essential for proper

stratification. Finally, alterations in differentially expressed transitional basal stem cell genes

result in severe thinning of human skin equivalents, validating their essential role in epidermal

homeostasis and reinforcing the critical nature of basal stem cell heterogeneity.
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Defining stem cell (SC) heterogeneity and its functional
consequences in tissue homeostasis remains an open
question in biology. In the skin, SCs reside in the basal

compartment of the interfollicular epidermis (IFE) and in discrete
compartments within ectodermal skin appendages–namely the
pilosebaceous unit and sweat gland1. Decades of work primarily
from mouse studies have demonstrated the presence of multiple
SC pools residing in various compartments of the pilosebaceous
unit, including the bulge, hair germ, isthmus, junctional zone,
upper portion of the infundibulum, and sebaceous gland2. In
contrast to the pilosebaceous unit, basal SCs in the IFE are
considered more homogenous and are thought to have one or two
distinct subpopulations depending on the body site in mouse or
human. However, a large degree of plasticity exists within the skin
SC populations. Bulge or IFE SCs can both form the pilosebac-
eous unit and sweat glands in response to inductive signals from
the underlying dermis3, suggesting that IFE SCs may be more
heterogenous than previously thought. Whether epidermal SCs
exist on a continuum and can equally respond to inductive signals
or whether they occupy more stable states is unclear.

IFE self-renewal is thought to be achieved under homeostatic
conditions by proliferation of SCs in the basal compartment,
followed by transit amplification and terminal differentiation of
the SC progeny2. Early pedigree studies in mouse dorsal skin
suggest that a single basal SC gives rise to transit amplifying (TA)
cells with limited proliferation capacity that are destined to
undergo terminal differentiation, coined the epidermal pro-
liferative unit (EPU)4,5. Other models suggest a single population
of committed progenitor cells that directly self-renew or
differentiate6,7, a slower cycling SC population that gives rise to
committed progenitor cells that directly differentiate8, or two
independent SC populations that regenerate at different rates9.

How human IFE self-renewal is achieved is unclear, primarily
because of its complex architecture and absence of genetic and
imaging tools. Using long-term fate mapping strategies enabled
by a lentivirus-mediated gene transfer approach10, basal SCs
appear to be dispersed along the basal compartment in human
foreskin epidermis and that EPUs are present and capable of
engaging in epidermal self-renewal in human xenografts11. This
gene transfer approach also enabled the observation that basal
SCs do not preferentially occupy specific regions along the basal
layer, but rather occupy locations throughout the basal com-
partment of human skin. However, whether each EPU arose from
similar or distinct SC populations remains unclear as the widths
and columns of the EPUs varied considerably depending on the
originating site.

The advent of single cell RNA-sequencing (scRNA-seq) tech-
nologies has enabled the study of cellular heterogeneity, recon-
struction of lineage hierarchies, inference of signaling networks,
and has partially enabled the dissemination of functional SC roles
in complex tissues. scRNA-seq has been successfully applied to
normal human tissues including skin epidermis12 and
dermis13,14, and skin-related pathologies such as nasal polyps15.
In mice, scRNA-seq has identified extensive functional hetero-
geneity in skin16–19, hair follicles20,21, and regenerative and non-
regenerative wounds22,23. Despite these studies, epidermal SC
heterogeneity of human IFE remains unresolved. To address this
issue, we interrogate epidermal cell heterogeneity within human
neonatal foreskin epidermis using droplet-enabled scRNA-seq
and identify four spatially distinct basal SC subpopulations.
Interrogation of the transitional basal subpopulations that spa-
tially occupy both the basal and suprabasal layers indicate their
essential role in epidermal homeostasis. Our findings argue
against a single population of progenitor cells and suggest a more
complex model of multiple epidermal SC transitions that main-
tain epidermal homeostasis.

Results
scRNA-seq identifies heterogeneity in human epidermis. To
define the cellular heterogeneity of human IFE, we isolated viable,
single cells from discarded and deidentified human neonatal
foreskin epidermis and subjected them to droplet-enabled scRNA-
seq to resolve their individual transcriptomes (Fig. 1a; Supple-
mentary Fig. 1; Supplementary Data 1; n= 5). We chose foreskin
epidermis because it is composed of mostly IFE and contains few
rudimentary skin appendages, such as hair follicles and sweat
glands24. We processed a total of 17,553 cells and performed
quality control analysis on individual libraries using Seurat
(Supplementary Fig. 2)25. We used Similarity matrix-based
OPtimization for Single Cell (SoptSC) to bioinformatically parse
and analyze our data26. We chose the SoptSC algorithm because it
is based on a cell-cell similarity matrix that coherently performs
many inference tasks under the same framework–including
unsupervised clustering, pseudotemporal ordering, cell lineage
inference, cell-cell communication, and network inference. SoptSC
clustered cells from all five libraries into seven distinct cell com-
munities in an unsupervised manner, corresponding to four dis-
tinct cellular cohorts, using Graph embedding (Fig. 1b). A cellular
cohort is defined as a group of cell communities expressing similar
known marker genes. No significant batch effects were observed
upon integration (Fig. 1c). Basal SC communities BAS-I – BAS-IV
represented ~4%, ~9%, ~7% and ~3% of the entire population
pool, respectively, and were enriched for known basal keratinocyte
marker genes including KRT14, KRT5, and CDH3 (Fig. 1d, e).
Although known basal marker genes were able to distinguish
between cellular identities (i.e., basal vs. granular keratinocytes),
they were not sufficient to distinguish between basal clusters
despite being clustered distinctly by SoptSC. The spinous com-
munity SPN, representing ~54% of the entire population pool,
showed heightened expression of KRT1, KRT10, DSG1, and CDH1
that continued to be expressed in granular keratinocytes (Fig. 1d,
e). Similarly, spinous marker genes alone were not sufficient to
distinguish between spinous clusters, even when they were clus-
tered distinctly by SoptSC. Differentiated granular keratinocytes
(GRN, ~16% of total cells) expressed the differentiation gene
markers DSC1, KRT2, IVL, and TGM3. SoptSC clustered mela-
nocytes into one single cluster (MEL, ~6% of total cells). This
cluster was enriched for the melanocytic markers MITF and
MLANA. These results are congruent with clustering of individual
libraries (Supplementary Figs. 3 and 4; Supplementary Data 1).

To further corroborate the robustness of SoptSC, we compared
its clustering performance with Seurat. To do this, we used the
supervised clustering method feature in Seurat, which identified
similar cell communities as SoptSC (Supplementary Figs. 3 and
4). For example, library 3 basal SC communities were grouped
into three distinct communities for both SoptSC and Seurat
(Supplementary Fig. 3A, E). Seurat clustered Langerhans cells
separately based on expression of CD207 and CD86 (LAN ~1%)
and identified a community composed of erythrocytes (ER ~1%)
based on expression of HBB, which were not distinctly resolved
using SoptSC (Supplementary Fig. 3a–c, e–g). Two other libraries
contained very small clusters of LAN cells but no other library
showed a cluster of ER, reinforcing the scarcity of these cells in
our dissociation conditions (Supplementary Fig. 4). Dimension-
ality reduction strategies employed by Seurat and SoptSC remain
generally congruent on clustering performance, cell type, and
distribution of cell communities (i.e., number of overlapped
markers between clusters) across all our individually sequenced
libraries (Supplementary Figs. 3e and 4a–h).

Spatial characterization of keratinocytes in human epidermis.
To define genes associated with basal keratinocytes and human
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epidermis as a whole, we analyzed differentially expressed genes
(DEGs) that define each cluster and found marker genes that
provide more specific resolution for each cluster than widely
used epidermal marker genes (Fig. 2a–d; Supplementary Data 1).
Some marker genes show slight discrepancies depending on the
read depth per cell. For instance, the integrated dataset has less
reads per cell because of the normalization during batch cor-
rection, causing the gap junction gene GJB2 and RHCG to cluster
into GRN, whereas they are both clustered into BAS-IV when
using library 3 (Fig. 2b, c; Supplementary Data 1). KRT14
immunofluorescence uniformly spans several layers in human
neonatal epidermis with KRT10 staining beginning in the second
layer and enriching in subsequent layers (Fig. 2e). Basal cluster
BAS-III is defined by expression of ASS1, COL17A1, and POSTN,
where ASS1 and COL17A1 immunofluorescence staining of
neonatal human epidermis shows enrichment between rete rid-
ges, suggesting a specific zone of basal SCs surrounding the
papillary dermis (Fig. 2f, l; Supplementary Fig. 5). The BAS-IV
basal cluster is defined by expression of GJB2, KRT6A, and
KRT16. Immunofluorescence staining of GJB2 shows enrichment
at the bottom of the rete ridges with some expression in the
upper strata, whereas BAS-III cluster gene KRT19 shows
enrichment at the bottom/side of the rete ridges (Fig. 2g, l;
Supplementary Fig. 5), reinforcing a specialized zone of basal SCs
that can be regenerated after partial-thickness wounding27. The
BAS-I and BAS-II basal clusters are enriched for cell cycle
marker genes but are maintained even after cell cycle regression
(Supplementary Fig. 6). The topology of the keratinocyte

subclusters was maintained and cell community gene expression
profiles remained congruent with one another, suggesting that
cell cycle genes do not profoundly influence keratinocyte sub-
clusters. BAS-I is defined by expression of PTTG1 and CDC20,
whereas BAS-II is defined by RRM2, HELLS, UHRF1, and
PCLAF expression. Immunofluorescence staining of PTTG1,
CDC20, PCLAF, and RRM2 show a transitional position within
the epidermis where the cells occupy space between the basal and
suprabasal layers (Fig. 2h, i, m). Many of these cells are still
adjacent to the basement membrane with the bulk of the cell
body and nucleus residing either in the basal or suprabasal layers.
These “transitional” basal cells appear to be in the process of
delaminating from the basal layer, are spread heterogeneously
across the epidermis, and may represent basal SCs with a fluid
cell fate.

We are also able to identify specific granular keratinocyte genes
such as ZNF750, SPINK5, and CALML5, with the latter two
showing robust protein enrichment in the granular layer of
human neonatal epidermis (Fig. 2j). Melanocyte (MLANA) and
Langerhans (CD74) gene expression signatures also present, with
protein expression highly restricted to these cell types (Fig. 2k).
However, we are not able to identify specific gene expression
signatures that are strongly enriched only in the spinous
keratinocytes or that spatially immunostain the spinous layer.
The SPN cluster appears to segregate based on lack of basal- or
granular-specific markers, suggesting they are at the beginning of
a differentiation trajectory that ends with the granular fate and
may not be a stable state by themselves.
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Fig. 1 Defining human neonatal epidermal cell populations using scRNA-seq. a Schematic of epidermal cell isolation from human neonatal foreskin.
b Clustering of 16,360 single cells isolated from Libraries 1-5 that passed quality control metrics using SoptSC and displayed using Graph embedding. Cell
proportions from putative cellular communities are quantified on the right. c Batch IDs for each library are superimposed onto the Graph embedded
clusters and show no substantial batch effects. d Violin plots of relative gene expression of known epidermal marker genes split by cell cohorts using
SoptSC. e Feature plots showing expression of keratinocyte markers from basal, spinous, and granular layers, including melanocytes.
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Cell-cell inference shows cross-talk between keratinocytes. A
feature of single cell analysis is the ability to infer signaling net-
works within a cell and reconstruct potential cell-cell signaling
interactions. Having defined major cell communities in human
neonatal epidermis, we sought to quantify potential cell-cell
interactions using the probabilistic cell-cell network inference

algorithm featured in SoptSC. Signaling relationships in SoptSC
are calculated based on differential gene expression and co-
variance of specific signaling pathway components. Signaling
probabilities between cells are then defined and quantified based
on the weighted expression of signaling pathway components
between sender-receiver cell pairs inferred via expression of
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ligand-receptor pairs and their downstream targets identified
from NetPath28. We used a reference of known, literature-
supported interactions from the WNT, JAK/STAT, NOTCH, and
TGF-β signaling pathways and scored interactions between single
cells (Supplementary Fig. 7 and Supplementary Data 2)29,30. We
used Library 3 to generate cell-cell interaction scores because of
the high cell count and the greater median gene number per cell
(3104 median genes per cell), allowing more ligand-receptor pairs
to be quantified than when all libraries are integrated because of
normalization from batch correction and showing high interac-
tion score consistency between ligand-receptor pairs among all
libraries (Supplementary Fig. 7).

A host of secreted WNT ligands differentially bind to ten
distinct Frizzled receptors during canonical WNT signaling to
activate Disheveled, subsequently leading to β-catenin stabiliza-
tion and translocation into the nucleus to turn on WNT-target
genes31. WNT signaling is a pleotropic signaling pathway heavily
involved from the earliest stages of skin development where it
helps specify the ectoderm down the skin epithelium lineage32

and skin appendages33. WNT signaling is also involved in adult
skin homeostasis where overexpression or loss of WNT/beta-
catenin results in a variety of intra- and IFE phenotypes34,35. To
parse through the cell-cell communication of WNT signaling, we
calculated the signaling probability of each ligand-receptor pair
and their downstream targets between each cell, averaged their
probabilities between each cluster, and hierarchically clustered the
aggregate scores to determine the similarity between the cluster-
to-cluster interactions associated with each specific pair (Fig. 3a,
b). The total cluster level interactions suggest that WNT signaling
appears to be active in most of the basal and spinous populations
(Fig. 3c). Separating ligand-receptor pairs based on similarity in
signaling probabilities identifies more specific signaling networks
(Fig. 3d). For instance, WNT4 is restricted to Cluster 7 where the
majority of the signaling is directed at BAS-I and SPN-II,
recapitulating its basal and suprabasal locations in murine
epidermis35. Basal SCs in IFE of glabrous skin form an autocrine
mechanism important for SC self-renewal, requiring WNT/β-
catenin signaling to proliferate and, at the same time, producing
and secreting long-range WNT inhibitors to promote differentia-
tion35. Deletion of β-catenin in the IFE of adult mice leads to a
significant decrease in proliferation, suggesting that the WNT/β-
catenin signaling contributes to progenitor cell proliferation
under homeostatic conditions34.

The JAK/STAT pathway is comprised of four nonreceptor
tyrosine kinases that are typically activated by cytokine receptors
and seven intracellular signaling substrates36. Abnormalities in
this pathway can cause a number of skin-associated inflammatory
disorders such as psoriasis, lupus erythematosus, atopic derma-
titis, and alopecia areata. Our predicted JAK/STAT signaling
interactions at the cluster level in epidermal keratinocytes show

overwhelming activation in granular cells for the Cluster 3 and
Cluster 4 signaling networks (Supplementary Fig. 8). Although
most of the aforementioned skin disorders are attributable to
disruption of JAK/STAT signaling in immune cells, adult
epidermis shows strong immunostaining for specific pathway
components (JAK3, TyK2, and STAT2/3/4/6) in the stratum
granulosum layer37. In addition, resident skin cells can produce
cytokines that help promote skin barrier through cornification
(IL-31), lipid envelope composition (IFN-g), and cell-cell
adhesion (IL-1a)38, all processes that predominantly occur in
the granular layer.

NOTCH signaling comprises heterodimeric transmembrane
receptors where cells expressing any of five NOTCH ligands bind
and activate up to four adjacent NOTCH receptors on
neighboring cells, thereby initiating cleavage of the intracellular
domain and subsequent translocation into the nucleus to help
facilitate target gene expression39. Psoriasis and all three major
skin cancers are associated with disruption of NOTCH signaling.
We observe robust activation of NOTCH4 signaling predomi-
nantly in granular cells for the Cluster 5 signaling network
(Supplementary Fig. 9), suggesting that the granular population
may be important receivers of NOTCH signaling and recapitulat-
ing known roles of NOTCH in cell fate specification, prolifera-
tion, and differentiation40,41.

The TGF-β family consists of ligands from TGF-β, BMP,
Activin, and GDF signaling pathways. These ligands bind to their
respective kinase receptors to phosphorylate and activate down-
stream SMAD effectors to allow their translocation into the
nucleus and help facilitate target gene expression42. TGF-β also
serves as a tumor suppressor, where disrupted TGF-β fuels tumor
heterogeneity and drug resistance in squamous cell carcinoma43.
We observe robust signaling out of the BAS-IV cells and into the
BAS-III cells for the Cluster 1, 5, and 6 signaling networks
(Supplementary Fig. 10), recapitulating known roles in suppres-
sing basal cell proliferation through the TGF-β and activin
ligands44,45 and suggesting that these populations are uniquely
responsive to the TGF-β family. In sum, our cell-cell network
inference suggests that epidermal cell communities in human
neonatal epidermis can communicate within and between clusters
and can recapitulate many of the reported skin-dependent roles
of these major signaling pathways. It should be noted that our
cell-cell network inference generates hypotheses based upon
predictive modeling and does not experimentally validate these
events.

Cell state transitions and pseudotemporal directionality. Basal
keratinocytes undergo terminal differentiation into granular
keratinocytes expressing the structural protein Involucrin. During
differentiation, keratinocytes progressively lose expression
of basal markers, while they concomitantly begin to express

Fig. 2 Differential gene expression highlight basal stem cell heterogeneity. a Heatmap showing top 300 differentially expressed genes per cluster.
Dotted lines outline differentially expressed genes. b Violin plots of relative expression of marker genes split by cell cohorts and color-coded by cell
community as in A. c Library 3 violin plots of relative expression of GJB2 and RHCG. d Feature plots showing expression of select basal and granular cell
marker genes. e Immunostaining of KRT14 (red), KRT10 (green), and DAPI (blue) in human neonatal skin. Scale bar 100 µm. n= 3. Immunostaining of
differentially expressed proteins (red) from the (f) BAS-III cluster (ASS1 [n= 6] and COL17A1 [n= 4]), (g) BAS-III/IV clusters (KRT19 [n= 3] and GJB2
[n= 4]), (h) BAS-I cluster (PTTG1 [n= 6] and CDC20 [n= 6]), (i) BAS-II cluster (RRM2 [n= 6] and PCLAF [n= 2]), (j) GRN cluster (SPINK5 [n= 3] and
CALML5 [n= 2]), and (k) the MEL (MLANA [n= 2]) and LAN (CD74 [n= 2]) clusters in human neonatal skin. COL7A1 (green) and DAPI (blue) are
costained. Dotted lines denote position of basement membrane where COL7A1 staining is absent. Scale bar 100 µm. l Quantification of ASS1 (n= 14
ridges) and KRT19 (n= 10 ridges) staining intensity at the top and bottom of Rete ridges. ***p < 0.0001. m Quantification of PTTG1 (n= 102 cells) and
RRM2 (n= 104 cells) distance from the basement membrane, with KRT14+ basal cell (n= 167 cells) or KRT10+ suprabasal cell (n= 142 cells) distance
shown as controls. Black stars represent significance compared with basal cell position whereas green stars represent significance compared with
suprabasal position. ***p < 0.0001. Box represents 25th to 75th percentiles. Whiskers represent minimum and maximum data points. Bar represents mean.
Significance was determined by unpaired two-tailed t test.
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suprabasal markers. This biological observation enabled us to
generate a pseudotime trajectory inferred by SoptSC. We
regressed out melanocytes and used the remaining epithelial
cohorts composed of BAS, SPN, and GRN communities to model
a pseudotemporal trajectory of basal keratinocyte differentiation
(Fig. 4a, Supplementary Data 3). SoptSC unbiasedly reconstructed
a putative BAS-SPN-GRN keratinocyte differentiation trajectory
(Fig. 4b, c). As expected, SoptSC placed basal keratinocytes
expressing KRT14 at the beginning, with average expression levels
of KRT14 declining towards the trajectory terminus, whereas cells
expressing the terminal differentiation gene TGM3 displaying
heightened average expression levels towards the trajectory ter-
minus (Supplementary Fig. 11). An alternative method of infer-
ring pseudotemporal trajectories, diffusion pseudotime, also

predicted a similar trajectory between BAS-SPN-GRN clusters
(Supplementary Fig. 12).

Next, we asked if the epithelial communities exist on a
continuum or have distinct cellular states. Previous studies have
suggested that in silico differentiation potency and plasticity of
single cells can be approximated by computing the signaling
promiscuity of a cell’s transcriptome46. We developed a similar
algorithm to calculate the Cellular Entropy (ξ) of single cells
called Cellular Entropy Estimator (CEE)–now a feature that has
been incorporated into SoptSC (see “Methods”). CEE allows us to
estimate the likelihood a single cell will transition from one
cellular state to another. We applied CEE to estimate the Cellular
Entropy in BAS, SPN, and GRN communities and represented
their transition likelihoods in a Waddington landscape, where a
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“valley” represents a region of low Cellular Entropy (i.e., low
likelihood of transition into a new state) and a “mountain”
represents a region of high Cellular Entropy (i.e., high likelihood
of transition into a new state) (Fig. 4d). Two transition
trajectories emerge that recapitulates the bifurcation in the
differentiation trajectory in Fig. 4b, suggesting that BAS-III and

BAS-IV cells can both directly differentiate into spinous cells.
Epidermal communities in aggregate displayed distinct entropy
values, with BAS-IV having the highest probability of transition-
ing to a new state (ξBAS-IV= ~0.60). As RNA velocity can estimate
the future state of cells by analyzing spliced and unspliced
variants of mRNA in single cell data47, we reasoned that
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combining Cellular Entropy with RNA velocity would predict the
transition potency and directionality of a cell or group of cells
(i.e., the likelihood of transitioning and its transition direction-
ality). Indeed, we observed that BAS-III and BAS-IV displayed
larger velocity vectors pointing toward the spinous clusters
(Fig. 4e; Supplementary Fig. 13). SPN-II, having a high entropy
value (ξSPN-II= ~0.5), also displayed refined velocity vectors
toward GRN. RRM2- and PTTG1-positive cells had low Cellular
Entropy values (ξBAS-I= ~0.1;ξBAS-II= ~0.2) and lacked refined
velocity vectors, suggesting that these cells may represent a
steady state.

BAS-II genes HELLS and UHRF1 affect epidermal home-
ostasis. To determine genes that changed along our modeled
pseudotime trajectory, we identified pseudotime-dependent gene
expression changes and discovered 700 DEGs along the putative
BAS-SPN-GRN differentiation trajectory (Fig. 4f and Supple-
mentary Data 4). These DEGs segregated differentially into six
distinct clusters according to their average gene expression
dynamics along pseudotime. We focused our attention on tran-
scription factors (TFs) and epigenetic modifiers (EpiGens), given
their roles in controlling cell states during differentiation of
keratinocytes48. Using this approach, we identified TFs previously
implicated in epidermal homeostasis and differentiation, includ-
ing MAFB, TP63, CEBPA/B, KLF4, GRHL3, GATA3, and OVOL1
(Fig. 4g, Supplementary Fig. 11, and Supplementary Data 4).
EpiGens included factors involved in DNA methylation such as
DNMT1 and its co-factor UHRF1, and covalent histone mod-
ifications such as KDM6B and HDAC1/2. We also identified
Polycomb component members, including EZH1/2, JMJ, and
CBX4; the ATP-dependent chromatin remodelers SMARCA4 and
CDH4; and the higher-order chromatin remodeler SATB1
(Fig. 4g, Supplementary Fig. 14, and Supplementary Data 4).

Our cell-cell signaling and pseudotime analysis identified the
WNT target gene UHRF149 with heightened expression at the
beginning and decreased expression along the pseudotime
trajectory. UHRF1, along with HELLS, are also target genes
downstream of the Retinoblastoma (RB) pathway, which is
mediated by E2F transcription factors, and have been implicated
in recruitment of DNMT1 and DNMT3, respectively50,51. HELLS
is a SNF2-like helicase, known for its role in silencing chromatin
regions via interaction with DNA methyltransferases52 and
functions during development and senescence53. Although their
role in epidermal homeostasis in unclear, HELLS and UHRF1 are
both differentially expressed in the transitional basal BAS-II
community (Fig. 4h). To assess the role of HELLS and UHRF1 in
epidermal homeostasis, we knocked down (KD) either transcripts
in primary human neonatal keratinocytes using viral transduction

and then seeded the genetically modified primary keratinocytes
on top of devitalized human dermis to generate human skin
equivalents (Supplementary Fig. 15). Histopathological assess-
ment of HELLS KD organotypic cultures show decreased
epidermal thickness, a significant reduction in total numbers of
cells per squared area, and a significant decrease in KI67-positive
cycling cells compared with SCRAMBLE control (Fig. 4i–k).
UHRF1 KD organotypic cultures also show decreased epidermal
thickness, reduced total number of cells, and concomitant
increase in KI67-positive cells (Fig. 4i–k). The UHRF1 KD
phenotype is similar to DNMT1 KD organotypic skin cultures,
where epidermal thickness is reduced and an increase in G2/M
phase cells is seen at the expense of S phase54. BAS-I marker
PTTG1 mRNA levels are significantly increased in UHRF1 KD
keratinocytes, with BAS-II marker RRM2 trending upwards,
recapitulating the increase in cycling cells seen in the UHRF1 KD
organotypic cultures (Fig. 4l). BAS-III marker ASS1 is also
significantly increased in UHRF1 KD keratinocytes. However, no
significant change in any of the BAS cluster markers are seen
upon HELLS KD (Fig. 4l). Taken together, our functional
experiments identify the importance of the epigenetic modifiers
HELLS and UHRF1 for the transitional basal cells to regulate
human epidermal homeostasis.

Hierarchically ordered stem cells promote differentiation.
Previous studies have suggested functional heterogeneity within
the IFE that has led to four distinct models of how this com-
partment is formed: (1) a single committed progenitor population
that directly self-renews or differentiates6,7, one SC population
that gives rise to (2) TA cells or (3) committed progenitors that
directly differentiate5,8, or (4) two SC populations that regenerate
at different rates9. To assess functional heterogeneity in the basal
compartment and address which model our data supports, we
subclustered the four main basal populations (Fig. 5a–c and
Supplementary Data 5). Subclustering the four main basal
populations provided better resolution of cells expressing differ-
entiation markers and thus likely transitioning into the differ-
entiation state, whereas subclustering KRT14-high expressing
cells resulted in sub-sampling the existing basal subpopulations
with an absence of differentiating cells (Supplementary Fig. 16).
After subclustering, 7 subpopulations emerged that split the BAS-
II, BAS-III, and BAS-IV clusters (Fig. 5c). The transitional BAS-I
cluster remained intact, further supporting its low Cellular
Entropy value and robust steady state (Fig. 4e). Pseudotime
analysis indicates a bifurcated differentiation trajectory that is
supported by RNA velocity (Fig. 5d, e; Supplementary Fig. 13).
The bifurcation in the pseudotime analysis seems to be the result
of cellular trajectories going from kBAS-II and kBAS-III to kBAS-

Fig. 4 Keratinocyte differentiation trajectories highlight epigenetic modifiers in epidermal homeostasis. a Epidermal keratinocyte subclustering using
SoptSC. b Pseudotime inference of epidermal keratinocytes. Cell lineage inference displayed on the right. Edge weights denote probability of transition to
each cluster. Dot size denotes number of cells. c Cell ID vs. pseudotime. Dot size denotes number of cells in pseudotime score. d Cellular Entropy (ξ) of
epidermal keratinocytes plotted in a Waddington landscape. Clusters color-coded as in A. Blue and black arrows show predicted low energy paths along
differentiation. e RNA velocity of epidermal keratinocytes using 2500 vectors. Quantification of Cellular Entropy displayed on the right. Cells or clusters
color-coded as in A. f Rolling wave plot showing pseudotime-dependent gene expression dynamics. Average gene expression dynamics of each cluster
pattern shown on the right and independently color-coded. g Rolling wave plots showing pseudotime-dependent gene expression dynamics of transcription
factors (TF) and epigenetic modifiers (EpiGen). h Feature plots showing expression of UHFR1 and HELLS and their expression along pseudotime. Expression
along epidermal cell lineage displayed at the bottom. i Knock-down (KD) of UHFR1 and HELLS, with a scramble control, in human skin equivalent organoids
grown for 16 days. Hematoxylin and eosin (H&E) staining shown at top. Scale bar 100 µm. KI67 (red) and DAPI staining shown at the bottom. Scale bar
50 µm. Dotted lines denote the position of the basement membrane. n= 6 experiments each condition. j Quantification of the total cells per squared area
(***p < 0.0001; n= 12 areas [HELLS] or 13 areas [UHRF1]), (k) KI67+ cells per 200 µm area along the basement membrane (**p= 0.0012; ***p < 0.0001;
n= 12 areas [HELLS] or 19 areas [UHRF1]), and (l) qPCR of the respective transcripts for each KD condition (*p < 0.0292; n= 2–4 experiments each
condition). For whisker and box plots: box represents 25th to 75th percentiles, whiskers represent minimum and maximum data points, and bar represents
mean. For scatter plot: data are presented as mean values ± SEM. Significance was determined by unpaired two-tailed t test.
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IV subpopulations as seen in the RNA velocity plot (Fig. 5e).
Tracking KRT14/KRT10 gene expression in the kBAS sub-
populations as a proxy for differentiation status shows a gradual
decrease in KRT14 gene expression from kBAS-III to kBAS-IV
with a concomitant increase KRT10 expression, further sup-
porting a linear temporal trajectory towards differentiation that
occurs before commitment to differentiation (Fig. 5f). When
pairing the KRT14/KRT10 expression with a differentiation score
that tracks expression of GRN-specific genes, we observe com-
mitment to differentiation occurring in the kBAS-IV sub-
population at the end of pseudotime (Fig. 5g).

Incidentally, the kBAS-IV.2 cluster most resembles the Ivl-
CreER+ committed progenitors in murine tail epidermis8, with

their Krt14-CreER+ SCs most resembling the kBAS-I cluster
(Supplementary Fig. 17). In addition, nonlabel retaining SCs with
high proliferative capacity in murine dorsal back epidermis from
Krt5-tTa; pTRE-H2B-GFP; Krt14-CreER; Rosa-tdTomato mice9

overlap with kBAS-I and Krt14-CreER+ SC datasets, whereas the
label retaining SCs with low proliferation capacity most resemble
the KBAS-III.1 subpopulation that is also enriched for the basal
SC marker ITGB1 (Supplementary Fig. 17). Although mouse tail
epidermis contain interscale (orthokeratotic; most similar to
dorsal back epidermis) and scale (parakeratotic; lack of granular
layer and retention of nuclei in cornified layers) IFE each with
their own proliferative capacity, clones originating in either
region can cross boundaries55, suggesting that they arise from
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mRNA expression of indicated genes along Ca2+-induced differentiation of primary human keratinocytes. n= 3 experiments each time point (n= 2 for
PCNA). j Coimmunostaining of PTTG1 (red) and RRM2 (green) in human neonatal skin. Green arrowheads highlight RRM2-only expressing cells; yellow
arrowheads point to PTTG1-RRM2 double-positive cells. White dotted line denotes basement membrane. Scale bar 50 µm. n= 3. k Knock-down (KD) of
PTTG1 and RRM2, with a scramble control, in human skin equivalent organoids grown for 16 days. Hematoxylin and eosin (H&E) staining shown. Dotted
lines denote basement membrane. Scale bar 100 µm. n= 4 experiments each condition. l Quantification of total cells per squared area (*p= 0.0104; ***p <
0.0001; n= 12 areas each [PTTG1 and RRM2 KD]), (m) KI67+ cells per 200 µm area along the basement membrane (*p= 0.0123; ***p < 0.0001; n= 26
areas [PTTG1] or n= 25 areas [RRM2]), and (n) qPCR of the respective transcripts for each KD condition (PTTG1: p= 0.0056, 0.0018; RRM2: p= 0.0485,
0.025; ASS1: p= 0.0025; GJB2: p= 0.0037; PCNA: p= 0.0339, 0.0295; n= 3 experiments each [PTTG1 and RRM2 KD]). For whisker and box plots: box
represents 25th to 75th percentiles, whiskers represent minimum and maximum data points, and bar represents mean. For bar graph: error bar represents
SEM. For scatter plot: data are presented as mean values ± SEM. Significance was determined by unpaired two-tailed t test.
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similar basal populations that are differentially regulated. In
addition, the segregation of label retaining and nonlabel retaining
SCs in dorsal back epidermis suggests structural similarities
between back and tail skin9. These data, coupled with pseudotime
and lineage inference indicating that the basal populations are
hierarchically ordered (Fig. 4b) and RNA velocity indicating BAS-
III and BAS-IV can both contribute to spinous cells (Fig. 4e),
suggest that multiple SC populations contribute to differentiation
and agree with models presented by the Blanpain and Tumbar
groups that describe multiple SC pools with different proliferation
capacities8,9.

We further profiled the kBAS subpopulations by assessing gene
expression markers that encompass both transitional basal
populations (BAS-I= kBAS-I and BAS-II= kBAS-II) and
encompass the Krt14-CreER+ SCs and nonlabel retaining cells
with high proliferative capacity. kBAS-I can be spatially defined
by expression of PTTG1 (Fig. 5h), a proto-oncogene that is
involved in controlling keratinocyte proliferation, early stages of
differentiation, cell growth, and is overexpressed in psoriasis56,57.
kBAS-II can be spatially defined by expression of RRM2 (Fig. 5h),
which controls the biogenesis of dNTPs and is overexpressed in
skin cancer58. Expression of PTTG1, RRM2, and fellow kBAS-II
gene PCNA decreased in keratinocytes during Ca2+-induced
differentiation (Fig. 5i). In addition, co-immunofluorescence
staining of the proteins showed RRM2-only expressing cells largely
restricted to the basal layer, whereas double-positive RRM2 and
PTTG1 cells occupying both basal and suprabasal positions, further
reinforcing our observation that these genes are expressed in
undifferentiated keratinocytes (Figs. 2m and 5j). To determine the
role of PTTG1 in epidermal maintenance, we performed PTTG1
KD in primary human neonatal keratinocytes using viral transduc-
tion and then seeded the genetically modified primary keratinocytes
on top of devitalized human dermis to generate human skin
equivalents (Supplementary Fig. 15). PTTG1 KD led to a severe
epidermal phenotype, primarily characterized by disruption of the
basal layer and differentiation program compared with scramble
shRNA controls, indicating its essential role in basal SC
maintenance and epidermal homeostasis (Fig. 5k, l). On the other
hand, RRM2 KD displayed a less severe but still significant
phenotype in epidermal homeostasis in human skin equivalents
(Fig. 5k, l). PTTG1 and RRM2 KD organotypic cultures both show a
significant decrease in KI67-positive cycling cells compared with
SCRAMBLE control, with PTTG1 KD cultures largely devoid of
KI67-positive cells (Fig. 5m). BAS-II markers RRM2 and PCNA
mRNA levels are significantly increased in PTTG1 KD keratino-
cytes, with BAS-IV marker GJB2 significantly increased (Fig. 5n).
Although RRM2 KD organotypic cultures show a less severe
epidermal thickness phenotype compared with PTTG1 KD, RRM2
KD cultures do show a significant decrease in most of the tested
BAS markers (Fig. 5n).

Discussion
Functional heterogeneity in human IFE has been largely unex-
plored compared with their murine counterparts. We made the
discovery of at least four basal SC populations in human neonatal
epidermis using scRNA-seq. Each population is spatially distinct,
with BAS-III cells occupying space between rete ridges and BAS-
IV residing at the tips or bottom of the rete ridges, whereas the
BAS-I and BAS-II populations showing sparse and heterogenous
distribution throughout the basal and suprabasal layers. Analyz-
ing cell-cell communication, gene profile dynamics, and genetic
loss-of-function experiments indicate that the WNT target gene
and epigenetic modifiers UHRF1 and HELLS and the proto-
oncogene PTTG1 are essential for epidermal homeostasis. Finally,
our results provide clarity in the various models of IFE

homeostasis and suggests that multiple SC pools with different
proliferation capacities contribute to differentiation and epi-
dermal homeostasis in humans.

The heterogeneity of basal SCs in human IFE should not be
surprising given that scRNA-seq studies have found robust het-
erogeneity in nearly all of the profiled tissues. However,
KRT14 staining and use of the Krt14-Cre murine reporter lines as
a proxy for the basal SC population lend to the inaccurate
assumption of homogeneity in the epidermal basal layer. Use of
mouse Cre reporter lines to untangle this homogeneity has led to
models of IFE homeostasis that suggest two potentially distinct
SC populations8,9, while others maintain one SC population6,7.
Instead of the one or two basal SC populations from other
models, our results indicate at least four spatially distinct basal
populations exist in human neonatal epidermis. Intriguing hints
in human studies point to this heterogeneity, where ITGB1
expression seemingly sits between rete ridges59, an observation we
confirm with our ASS1 and COL17A1 immunostaining (Fig. 2f).
In fact, this population also appears to express ITGA6 and TP63,
suggesting it is the classically defined human basal SC population
(Supplementary Fig. 17). In addition, ALP staining at the base of
rete ridges27 suggests another potentially unique basal population
we confirm with our GJB2 and KRT19 immunostaining (Fig. 2g).

Our data indicates a linear hierarchy of differentiation begin-
ning at the Krt14-CreER+ /nonlabel retaining SC population
(BAS-I), transitioning to the label retaining SC and ITGB1-high
populations (BAS-II and BAS-III), and committing to differ-
entiate in the Ivl-CreER+ committed progenitor population
(BAS-IV). Once committed, the spinous cell populations appear
to mature to terminally differentiated granular keratinocytes on a
continuum where no gene clearly marks the spinous layer despite
their respectively distinct morphologies. In practice, however,
both the BAS-III and BAS-IV clusters appear to contribute to the
spinous cell populations. The spatial positioning of BAS-III and
BAS-IV also suggest they both give rise to differentiated progeny
as we observe KRT10 immunostaining beginning in the second
layer along the rete ridges and flat portions of IFE (Fig. 2e). The
spatial positioning of the transitional basal populations (BAS-I
and BAS-II), so-called because of their unusual spatial position
where a significant percentage of the cells remain attached to the
underlying basement membrane while their cell body is in a
suprabasal position, suggest they may be delaminating from the
basal layer. However, these basal cells are still attached to the
basement membrane and may remain in the basal layer over time.
Live imaging of these fate transitions would help shed light on
their movements.

Why does interfollicular epidermal homeostasis need multiple
SC populations? Skin appendages originate from the epidermal
layer and it is possible that the epidermis actively responds to
inductive signals even in the adult. For instance, normal epithelial
cells are required for mutant epithelial cells resulting in aberrant
growths to regress and are either eliminated or converted into
functional skin appendages60, suggesting that basal cell hetero-
geneity may be protective against harmful insults. In addition,
basal SC self-renewal is not a constitutive driver of epidermal
homeostasis; rather, cells need the plasticity to respond to their
environment and coordinate divisions with stochastic loss of
neighboring cells to maintain homeostasis61. Our results suggest
that specific genes within the transitional basal populations (BAS-
I and BAS-II) are essential for epidermal homeostasis in human
skin equivalents. Disruption of PTTG1 expression (BAS-I marker
gene) results in severe loss of epidermal stratification, resembling
simple epithelium and displaying a more severe phenotype than
was previously reported56. And disruption of either HELLS or
UHRF1 expression (BAS-II marker genes) results in suppression
of epidermal homeostasis and a thinner epidermis. HELLS is
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thought to recruit UHRF1 and DNMT1 to sites of methylated
chromatin to facilitate demethylation and all three show strong
similarities when disrupted in human skin equivalents (HELLS
and UHRF1: Fig. 4i; DNMT154), in stark contrast to the mouse
phenotype where Krt14-Cre-mediated loss of Dnmt1 results in an
increase in IFE proliferation and aberrant differentiation62. Dif-
ferences in the frequency of KI67+ cells in HELLS and UHRF1
KD skin equivalents suggest distinct differences between their
functional roles in human epidermis despite their overlapping
role in DNA demethylation.

Overall, our findings illustrate the dynamic nature of basal
keratinocytes in human neonatal epidermis. The signaling and
lineage relationships between the basal SC populations and dif-
ferentiated keratinocytes warrants further characterization of the
factors influencing fate plasticity and may help uncover the
similarities and differences between vertebrate epidermal home-
ostasis and disease.

Methods
Ethics statements. Human clinical studies were approved by the Ethics Com-
mittee of the University of California, Irvine. All human studies were performed in
strict adherence to the Institutional Review Board (IRB) guidelines of the Uni-
versity of California, Irvine (2009-7083). We have obtained informed consent from
all participants.

Histology and immunohistochemistry. Frozen tissue sections (10 μm) were fixed
with 4% PFA in PBS for 15 min. Following fixation, tissue sections were stained
with Hematoxylin and Eosin following standard procedures. Sections were stained
with Gill’s III (Fisher Scientific; 22050203) for 5 min and Eosin-Y (Fisher Scientific;
22050197) for 1 min. Tissue sections were visualized under a light microscope
under 10x objective lens after mounting with Permount mounting media (Fisher
Scientific; SP15-100). For immunostaining, tissue sections were fixed with 4% PFA
in PBS for 15 min. 10% BSA in PBS was used for blocking. Following blocking, 5%
BSA and 0.1% Triton X-100 in PBS was used for permeabilization. The following
antibodies were used: chicken anti-KRT14 (1:500; BioLegend; SIG-3476), mouse
anti-KRT10 (1:500; Dako; M7002), rabbit anti-KI67 (1:500; Abcam; ab15580),
rabbit anti-PTTG1 (1:100; Sigma-Aldrich; HPA008890), mouse anti-ASS1 (1:100;
Santa Cruz; sc-365475), rabbit anti-COL17A1 (1:100; One World Labs; ap9099c),
rabbit anti-COL7A1 (1:500; abcam; ab93350), mouse anti-COL7A1 (1:100; Santa
Cruz; sc-33710), rabbit anti-GJB2 (1:250; ThermoFisher; 51-2800), rabbit anti-
KRT19 (1:250; Cell signaling; 13092), mouse anti-SPINK5 (1:100; Santa Cruz; sc-
137109), mouse anti-CALML5 (1:100; Santa Cruz; sc-393637), mouse anti-CDC20
(1:100; Santa Cruz; sc-13162), mouse anti-RRM2 (1:100; Santa Cruz; sc-398294, sc-
376973), mouse anti-PCLAF (1:100; Santa Cruz; sc-390515), mouse anti-MLANA
(1:100; Santa Cruz; sc-20032), and mouse anti-CD74 (1:100; Santa Cruz; sc-6262).
Secondary antibodies included Alexa Fluor 488 (1:500; Jackson ImmunoResearch;
715-545-150, 711-545-152) and Cy3 AffiniPure (1:500; Jackson ImmunoResearch;
711-165-152, 111-165-003). Slides were mounted with Prolong Diamond Antifade
Mountant containing DAPI (Molecular Probes;). Confocal images were acquired at
room temperature on a Zeiss LSM700 laser scanning microscope with Plan-
Apochromat 20x objective or 40x and 63x oil immersion objectives. Images were
arranged with ImageJ, Affinity Photo, and Affinity Designer.

Protein immunoblotting. Cells were lysed with 2X SDS sample buffer (100 mM
Tris HCl 6.8, 200 nM DTT, 4% SDS, 0.2% bromophenol blue, and 20% glycerol)
and boiled at 100 °C for 10 min. Samples were resolved on a 12.5% polyacrylamide
gel and transferred to nitrocellulose membrane by a wet transfer apparatus.
Membranes were blocked with 5% milk in TBS with 0.05% Tween-20 before
sequential addition of primary and secondary antibodies. Membranes were imaged
using Alexa Fluor secondary antibodies and the LI-COR Odyssey imaging system.
Secondary antibodies included Alexa Fluor 680 (1:2000; Jackson ImmunoResearch;
715-625-150, 711-625-152) and Alexa Fluor 790 (1:2000; Jackson ImmunoR-
esearch; 711-655-152).

Lentiviral knockdown. Either pSicoR or pGIPZ vectors were used for lentiviral
knockdown of specific genes. pSicoR was a gift from Tyler Jacks (Addgene; 11579).
For pSicoR, shRNA were designed using pSicoligomaker 3.0 (Ventura Lab) and
cloned using InFusion HD Cloning Plus Kit (Takara, 638911). The following
sequences were used: PTTG1 5′-GATGATGCCTATCCAGAAATTCAAGAGA
TTTCTGGATAGGCATCATC-3′; RRM2 5′-GCACTCTAATGAAGCAATATT
CAAGAGATATTGCTTCATTAGAGTGC-3′. Lentiviral pGIPZ vectors contained
shRNAs to UHRF1 (5′-TGACATTGCGCACCACCCT-3′) and HELLS (5′-
ACAGGCTGATGTGTACTTAACC-3′)63 (Dharmacon). Transduced cells were
selected via Puromycin (ThermoFisher; 50464455). Knockdown efficiency was
determined by protein levels on Western Blot or by quantitative RT-PCR where

fold change in mRNA expression was measured using ΔΔCT analysis with GAPDH
as an internal control. The following qPCR primers were used: PTTG1 forward
5′-CCCTTGAGTGGAGTGCCTCT-3′, reverse 5′-CACAGCAAACAGGTGGCAA
T-3′; RRM2 forward 5′-GCAGCAAGCGATGGCATAGT-3′, reverse 5′-GGGCTT
CTGTAATCTGAACTTC-3′; PCNA forward 5′-CGACACCTACCGCTGCGAC
C-3′, reverse 5′-TAGCGCCAAGGTATCCGCGT-3′; and GAPDH forward 5′-GC
ACCGTCAAGGCTGAGAAC-3′, reverse 5′-TGGTGAAGACGCCAGTGGA-3′.

Preparation of devitalized dermis. Cadaver human skin was acquired from the
New York Firefighters Skin Bank (New York, New York, USA). Upon arrival at UC
Irvine, the skin was allowed to thaw in a biosafety hood. Skin was then placed into
PBS supplemented with 4X Pen/Strep, shaken vigorously for 5 min, and transferred
to PBS supplemented with 4X Pen/Strep. This step was repeated two additional
times. The skin was then placed into a 37 °C incubator for 2 weeks. The epidermis
was removed from the dermis using using sterile watchmaker forceps. The dermis
was washed 3 times in PBS supplemented with 4X Pen/Strep with vigorous
shaking. The dermis was then stored in PBS supplemented with 4X Pen/Strep at
4 °C until needed.

Primary cell isolation. Discarded and deidentified neonatal foreskins were col-
lected during routine circumcision from UC Irvine Medical Center (Orange, CA,
US). The samples were either processed for histological staining, scRNA-seq, or
primary culture. No personal information was collected for this study. For primary
cell isolation, fat from discarded and deidentified neonatal foreskins were removed
using forceps and scissors and incubated with dispase epidermis side up for 2 h at
37 °C. The epidermis was peeled from the dermis, cut into fine pieces, and incu-
bated in 0.25% Trypsin-EDTA for 15 min at 37 °C and quenched with chelated
FBS. Cells were passed through a 40 µm filter, centrifuged at 1500 rpm for 5 min,
and the pellet resuspended in Keratinocyte Serum Free Media supplemented with
Epidermal Growth Factor 1-53 and Bovine Pituitary Extract (Life Technologies;
17005042). Cells were either live/dead sorted using SYTOX Blue Dead Cell Stain
(ThermoFisher; S34857) for scRNA-seq or incubated at 37 °C for culture.

Cell sorting. Following isolation, cells were resuspended in PBS free of Ca2+ and
Mg2+ and 1% BSA and stained with SYTOX Blue Dead Cell Stain (ThermoFisher;
S34857). Samples were bulk sorted at 4 °C on a BD FACSAria Fusion using a
100 µm nozzle (20 PSI) at a flow rate of 2.0 with a maximum threshold of
3000 events/s. Following exclusion of debris and singlet/doublet discrimination,
cells were gated on viability for downstream scRNA-seq.

Human organotypic skin culture. Primary human keratinocytes were cultured in
Keratinocyte Serum Free Media supplemented with Epidermal Growth Factor 1-53
and Bovine Pituitary Extract (Life Technologies; 17005042). For generating orga-
notypic skin cultures, ~500 K control or knockdown cells were seeded on devita-
lized human dermis and raised to an air/liquid interface in order to induce
differentiation and stratification over the indicated number of days with culture
changes every 2 days64.

Droplet-enabled single cell RNA-sequencing and processing. Cell counting,
suspension, GEM generation, barcoding, post GEM-RT cleanup, cDNA amplifi-
cation, library preparation, quality control, and sequencing was performed at the
Genomics High Throughput Sequencing Facility at the University of California,
Irvine. Transcripts were mapped to the human reference genome (GRCh38) using
Cell Ranger Version 2.1.0.

Quality control metrics post-Cell Ranger assessment. For downstream analyses,
we kept cells which met the following filtering criteria per biological replicate per
condition: >200 and <5000 genes/cell, and <10% mitochondrial gene expression.
Genes that were expressed in less than 3 cells were excluded. Data were normalized
with a scale factor of 10,000.

Analysis and visualization of processed sequencing data. Seurat and SoptSC26

were implemented for analysis of scRNA-seq data in this study. Seurat was per-
formed in R (version 2.2) and was applied to all the datasets in this study. To select
highly variable genes (HVGs) for initial clustering of cells, we performed Principal
Component Analysis on the scaled data for all genes included in the previous step.
For clustering, we used the function FindClusters that implements Shared Nearest
Neighbor modularity optimization-based clustering algorithm on 20 PC compo-
nents with resolution 0.6. Nonlinear dimensionality reduction methods, namely
tSNE and UMAP, were applied to the scaled matrix for visualization of cells in two-
dimensional space using first 10 PC components. The marker genes for every
cluster compared with all remaining cells were identified using the FindAllMarkers
function. For each cluster, genes were selected such that they were expressed in at
least 25% of cells with at least 0.25-fold difference.

SoptSC was performed in MATLAB (version 2017b). In order to make both
methods comparable for data clustering and downstream analysis, we used Seurat
for quality control and normalization and used the resulting data matrices as an
input for SoptSC. SoptSC selected 3000 HVGs for the downstream analysis where
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the genes with highest loading in the first k principal components were selected
(k is the index where the largest gap of the principal component variances occurs).
A cell-to-cell similarity matrix preserving both local and global structure of the
single-cell data was learned via SoptSC by solving an optimization problem. SoptSC
then perform clustering, marker gene identification, lineage inference through a
single mathematical framework. Visualization of single cell data in low-
dimensional space was implemented by applying Elastic Embedding (EE), a
nonlinear dimensionality reduction technique, to the cell-to-cell similarity matrix.
The number of common marker genes between clusters among the top 500 marker
genes for each cluster identified from two pipelines was compared with assess
clustering correlations between Seurat and SoptSC.

Pseudotime and lineage inference. Melanocytes and Langerhans cells were
regressed out for lineage and pseudotime analysis. The resulting data post-
melanocyte and Langerhans cell removal was reclustered using SoptSC, where the
number of HVGs was set to 10,000. Pseudotime and lineage analysis were per-
formed using SoptSC. Briefly, pseudotime was calculated as the shortest path
distance between cells and root cell on the cell-to-cell graph constructed based on
the similarity matrix. Root cell was identified by the user in SoptSC. Visualization
of the cell trajectories was obtained from EE with similarity matrix taken as an
input. Cell states were visualized using abstract lineage trees. Lineage trees are
obtained by computing the minimum spanning tree of the cluster-to-cluster graph
based on the shortest path distance between cells. Pseudotime was projected on the
lineage tree such that the order of each state (cluster) was defined as the average
distances between cells within the state and the root cell.

Diffusion pseudotime (DPT), which measures transitions between cells using
diffusion-like random walks, was also used to infer pseudotime65. The matlab-
version of DPT was used. We took gene expression matrices with overall 700 DEGs
(top 100—DEGs for each cluster) identified from SoptSC as input for DPT. The
root cell for DPT was selected from the BAS-I cluster.

RNA velocity. RNA velocity was estimated based on the spliced and unspliced
transcript reads from the single-cell data47. We followed the standard process of
the velocyto pipeline to generate the spliced and unspliced matrices by applying
velocyto.py to the data from the Cell Ranger output (outs) folder. We remove
melanocytes and Langerhans cells for the velocity analysis and only epithelial cells
included in pseudotime were used to calculate velocity vectors. RNA velocity was
estimated using a gene-relative model with 25 nearest neighbors and then the
velocity fields were projected onto the EE space produced by SoptSC. We set the
parameter n sight as 2500, which defines the size of the neighborhood used for
projecting velocity. We also applied the RNA velocity analysis for basal cells using
the similar procedure where the parameter n was set as 500. Default settings were
used for the rest of the parameters.

Probabilistic cell-cell signaling networks. Cell-cell communication was deter-
mined in SoptSC via signaling networks for JAK/STAT, NOTCH, TGF-β, and
WNT signaling pathways. In such networks, the probability between two cells is
quantified by interactions between specific ligand-receptor pairs and their down-
stream target genes26. Prior calculation of the cell-cell interaction probability, we
performed nature log normalization of the input count matrix. The lists of ligand-
receptor pairs were determined before29,30 and with a survey of current literature.
The target genes for each pathway were identified from NetPath28. Circos plots
(R Studio Version)66 are utilized as a visualization of cell-cell signaling networks.
Edges between cells represent an interaction between them, and the width of each
edge represents the interaction probability. Arrows start from ligand and points to
receptor. We set a threshold (φ= 0.1) such that the probability is restricted to zero
if its value is less than φ. Cluster-level communications were naturally employed by
calculating the average value of probabilities between cell-cell interactions from two
clusters. In the cluster-to-cluster signaling network plots for each specific pathway,
the width of the edge represents the probability value between clusters. Arrows
start from ligand and points to receptor. Ligand-receptor pairs and their targets
genes among all inferred cell populations are also presented as heatmaps. For each
gene, the average expression within each population was calculated.

In order to identify similar patterns for ligand-receptor pairs with respect to
cluster-to-cluster interactions, we clustered the ligand-receptor pairs by comparing
the similarity between the cluster-to-cluster interactions associated with each
specific pair. The clustering procedure includes two steps: projecting the ligand-
receptor pairs into two-dimensional space via tSNE in MATLAB and then applying
a hierarchical clustering method to the projected data. Ligand-receptor pairs with
similar cluster-to-cluster interactions were grouped together and a circos plot of
cluster-level interaction was produced for each group of pairs by taking the average
of all the interactions within the group.

To determine consistency scores for signaling interactions between libraries, we
sum all the differences between the overlapped cluster-cluster interaction
probabilities in the reference library (library 3) and target library and divided by
the number of nonzero cluster-cluster interactions in the reference library. The
consistency score is defined as one minus the above value. Higher scores indicate
better consistency between the two libraries.

Gene ontology analysis. Top 100 DEGs from each basal cluster were used for
gene ontology and pathway analyses using Enrichr67.

Cellular entropy estimation. Cellular Entropy (ξ) measures the likelihood that a
cell will transition to a new state (i.e., from one cluster to another). Lower entropy
values indicate that the cell remains in a steady state, while higher entropy values
imply the cell inherits multiple state properties and is more likely to transition to a
new state. Via the non-negative matric factorization step in SoptSC, the probability
of each cell assigned to each cluster is calculated (i.e., Pi,j for cell i and cluster j). The
entropy for each cell is then defined as:

ξi ¼ �
XK

j

Pi;j logðPi;jÞ; ð1Þ

where K represents the number of clusters. To visualize the trajectory of cells and
their likelihood of transition along a transition valley, we constructed a Wad-
dington landscape and overlaid the cell states on it. The Waddington landscape is
constructed by integrating the low-dimensional representation of our data (via
applying EE to similarity matrix) and the cellular entropy estimation for each cell.
This feature has been extended to the current methods employed by SoptSC.

Data availability
The authors declare that all data supporting the findings of this study are available within
the article and its supplementary information files or from the corresponding author
upon reasonable request.

The datasets generated during the current study have been deposited in the GEO
database under accession code GSE147482. Source data are provided with this paper.

Code availability
Source code to reproduce data analysis is available on github [https://github.com/
WangShuxiong/Human_Epi].
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