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Background: Healthcare-associated infections by carbapenem-resistant Klebsiella
pneumoniae are difficult to control. Virulence and antibiotic resistance genes contribute
to infection, but the mechanisms associated with the transition from colonization to
infection remain unclear.

Objective: We investigated the transition from carriage to infection by K. pneumoniae
isolates carrying the K. pneumoniae carbapenemase–encoding gene blaKPC (KpKPC).

Methods: KpKPC isolates detected within a 10-year period in a single tertiary-care
hospital were characterized by pulsed-field gel electrophoresis (PFGE), multilocus
sequencing typing, capsular lipopolysaccharide and polysaccharide typing,
antimicrobial susceptibility profiles, and the presence of virulence genes. The
gastrointestinal load of carbapenem-resistant Enterobacteriaceae and of blaKPC-
carrying bacteria was estimated by relative quantification in rectal swabs. Results were
evaluated as contributors to the progression from carriage to infection.

Results: No PGFE type; ST-, K-, or O-serotypes; antimicrobial susceptibility profiles; or
the presence of virulence markers, such yersiniabactin and colibactin, were associated
with carriage or infection, with ST437 and ST11 being the most prevalent clones.
Admission to intensive and semi-intensive care units was a risk factor for the
development of infections (OR 2.79, 95% CI 1.375 to 5.687, P=0.005), but higher
intestinal loads of carbapenem-resistant Enterobacteriaceae or of blaKPC-carrying
bacteria were the only factors associated with the transition from colonization to
infection in this cohort (OR 8.601, 95% CI 2.44 to 30.352, P<0.001).
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Conclusion: The presence of resistance and virulence mechanisms were not associated
with progression from colonization to infection, while intestinal colonization by carbapenem-
resistant Enterobacteriacea and, more specifically, the load of gastrointestinal carriage
emerged as an important determinant of infection.
Keywords: gastrointestinal carriage, Klebsiella pneumoniae, bla KPC gene, Carbapenem-resistant Enterobacteriaceae
(CRE), virulence factors
INTRODUCTION

Klebsiella pneumoniae is an important microorganism in
healthcare-associated infections and also known as a primary
dissemination source of resistance mechanisms, among which are
K. pneumoniae carbapenemase (KPC) and New Delhi
metalobetalactamase (NDM) (Nordmann et al., 2009; Nordmann
et al., 2011; Sampaio and Gales, 2016).

The spread of multidrug (MDR) and hypervirulent (Hv) K.
pneumoniae lineages impacts mortality rates, reaching 95% for Hv
strains, and 42% versus 21% for MDR and susceptible strains,
respectively (Xu et al., 2017; Andrey et al., 2020). These lineages
may be associated with specific sequence types (STs), such as ST16,
ST11, ST437, ST258, and ST512 (Andrey et al., 2020). In Brazil,
KPC-carrying K. pneumoniae (KpKPC), mainly ST437 and ST11,
are epidemic and considered a public health threat (Nicoletti et al.,
2012; Sampaio andGales, 2016; Andrey et al., 2020;Migliorini et al.,
2021). Due to the restricted antibiotic options to treat KpKPC
infections, identifying the risks and preventing infections are
considered a promising therapeutic approach.

Gastrointestinal carriage contributes to the spread of K.
pneumoniae lineages in the hospital environment and to the
development of infections (Lerner et al., 2015; Joseph et al., 2021;
Lázaro-Perona et al., 2021; Falcone et al., 2022). Although virulence
factors arenecessary for the establishmentof infections, they alonedo
not explain the progression fromcolonization to infection as recently
reported (Joseph et al., 2021). For instance, siderophore
yersiniobactin, encoded by ybt genes, are commonly present in
strains involved with infections but their presence does not explain
this progression (Joseph et al., 2021). Recently, the extent of intestinal
colonization has emerged as a risk factor for the transition from
colonization to infection (Tacconelli et al., 2019; Ramos-Ramos
et al., 2020).

Aiming to investigate the transition from intestinal colonization
by Carbapenem-resistant Enterobacteriaceae (CRE) to infection by
carbapenem-resistant KpKPC, we characterized epidemiologically
unrelated KpKPC carriage and infection isolates detected within a
10-year period in a single tertiary hospital and results were
interpreted together with the intestinal load of CRE and of
blaKPC-carrying bacteria.
MATERIALS AND METHODS

Isolates and Clinical Samples
Between 2011 and 2021, 651 patients admitted to the semi-
and intensive care units were carriers of KpKPC according to
obiology | www.frontiersin.org 2
rectal swab analysis (carriage isolates). Infection isolates were
those obtained from blood, bronchial lavage, ascitic fluid,
abdomen secretion, tracheal secretion, and urine, and out of
the 651 carriers, 128 developed a KpKPC infection after 30
days of carriage detection (i.e., positive rectal swab sample for
KpKPC). The viable bacterial samples that could be
reactivated in culture media and corresponded to the first
KpKPC-positive carriage and/or infection sample of non-
repeated patients were considered for the study. Considering
these criteria, both carriage and infection isolates from 54
patients who had infection following colonization (n = 108
isolates) and 68 carriers (n = 68 isolates) were selected. A total
of 176 isolates from 122 different patients were evaluated in
this study. All 176 isolates were characterized by PFGE, and
124 were sequenced, corresponding to at least one isolate per
patient included in the study. For patients who developed an
infection associated with the same KpKPC isolate according to
PFGE analyses (≥90% similarity), only the infection isolate
was sequenced.

For the relative quantification of the intestinal load, rectal
swabs from KpKPC carriers admitted to the hospital between
June 2020 and December 2021 were selected. In this period,
165 patients were KpKPC carriers, from which 58 developed
an infection associated with the presence of KpKPC within 30
days of the KpKPC-positive rectal swab. Only one sample per
patient was included in the study, corresponding to the first
KpKPC-positive rectal swab.

This study was approved by the Institutional Review Board
(CAAE: 98373618.0.0000.0071).
Microbiological Analysis
K. pneumoniae isolates were identified by Matrix Assisted Laser
Desorption Ionization Time Of Flight Mass Spectrometry
(MALDI-TOF MS) (Bruker Daltonics, Billerica, MA, USA).
Antibiotic susceptibility was determined using the Vitek 2 XL
System (bioMérieux, Craponne, France) and confirmed by the
epsilometric (Etest®) method for carbapenems (imipenem or
meropenem). Antimicrobial susceptibility results were
interpreted according to the most recent Brazilian Committee
on Antimicrobial Susceptibility Testing/European Committee
on Antimicrobial Susceptibility Testing (BrCAST/EUCAST)
guidelines (BrCAST, 2020). Carriage isolates were tested for
imipenem and meropenem (n = 122). Infection isolates (n = 54)
were tested for imipenem and meropenem and also for
cephalosporins (ceftazidime and cefepime), aminoglycosides
(amikacin and gentamicin), and ciprofloxacin.
July 2022 | Volume 12 | Article 928578
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Molecular Detection of the blaKPC Gene
Real-time PCR was used to detect the blaKPC gene in isolates
showing reduced susceptibility to carbapenem. For this protocol,
DNA extraction was performed using the PrepMan™ kit (Thermo
Fisher Scientific, Waltham, Massachusetts, United States). DNA (10
ng) was added to the TaqMan master mix containing specific
probes for blaKPC (FAM fluorophore – 5´ TG ATA ACG CCG
CCGCCAATT TGT 3´) and 16S rRNA (CY5 fluorophore – 5´ CA
CGA GCT GAC GAC AR*C CAT GCA 3’), as well as specific
primers for blaKPC (Forward: 5´ GGCCGCCGTGCAATAC 3´ and
Reverse: 5’ GCCGCCCAACTCCTTCA 3’) and 16S rRNA
(Forward: 5’ TGGAGCATGTGGTTTAATTCGA 3’ and Reverse:
5’ TGCGGGACTTAACCCAACA 3’). The mixture was inserted in
a microfluidic cartridge and processed by the BD MAX™

equipment using the PCR Only module. Results were released
qualitatively: the presence or absence of the gene.

Pulsed-Field Gel Electrophoresis
The genetic relatedness was established by pulsed-field gel
electrophoresis (PFGE) as previously described (Han et al.,
2013). For the PFGE result interpretation, the Dice similarity
coefficient was used and isolates were considered identical when
patterns showed ≥ 90% similarity (Koroglu et al., 2015).

Whole Genome Sequencing
Genomic DNA isolation for whole-genome sequencing (WGS)
was performed as previously described (Salvà Serra et al., 2018).
The concentration and purity of genomic DNAwas assessed with
a NanoDrop™ One Spectrophotometer (Thermo Fisher
Scientific). DNA fragmentation for library construction was
performed using the Ion Shear Plus reagents kit, and libraries
were constructed using the Ion Plus Fragment Library Kit
(Thermo Fisher Scientific). Barcoded libraries were quantified
using the Bioanalyzer 2100 andHigh SensitivityDNAkit (Agilent,
Santa Clara, California, United States). Clonal amplification of the
libraries was carried out using Ion PI™Hi-Q™Chef Kit (Thermo
Fisher Scientific) and sequenced using the Ion PI™ Chip Kit v3
and Ion PI™ Hi-Q™ Sequencing 200 Kit (Thermo Fisher
Scientific) in the Ion Proton Sequencer. Quality filtering was
done with cutadapt v3.4 (Martin, 2011). Assembly was
performed with SPAdes genome assembler software (v3.15.0)
using the "iontorrent" and "careful" options (Prjibelski et al., 2020).

Multilocus Sequencing Typing, O:K-
Typing, Resistance, and Virulence
Gene Analysis
MLST, the detection of virulence and antibiotic resistance genes,
and lipopolysaccharide (O) and capsular polysaccharide (K)
characterization were based on the analysis of WGS data.
Sequence types (STs) were determined using the multilocus
sequencing typing (MLST) script available at https://github.com/
tseemann/mlst implemented at Institut Pasteur (Diancourt et al.,
2005). Resistance and virulence genes were identified using the
ABricate tool available at https://github.com/tseemann/abricate.
ABricate allows the screening of contigs against multiple
databases, including the AMRFinderPlus resistance gene database
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
(Feldgardenet al., 2019) and theVirulenceFactorDatabase (VFDB)
(Chen et al., 2005).

Relative Quantification of the
Gastrointestinal Load of CRE
Rectal swabswere eluted in 0.5mL of theTE1Xbuffer (Tris-EDTA;
10 mM Tris, 1mM EDTA, pH 8.0) and used for serial 10-fold
dilution in 0.9% saline as previously described (Lerner et al., 2013).
The dilutions were plated on tryptic soy plates supplemented with
5% sheep blood (BiobioMérieux, Craponne, France) and
CHROMagar ™ msupercarba™ plates (CHROMagar, Paris,
France), to obtain total viable aerobic bacteria (TAB) and viable
CRE, respectively. Bacterial counts were determined after 18 h of
growth at 37°C, and the ratio of CRE to TAB [colony-forming unit
(CFU/ml)] was determined and expressed as log CRE/TAB. The
rectal swab suspensions were stored at -20°C for further
molecular analysis.

Relative Quantification of the
Gastrointestinal Load of blaKPC Gene
TotalDNAwas extracted fromrectal swab suspensions. Briefly, 250
µl of bacterial suspensions were heated at 100°C for 10 min and
centrifuged at 12,000g for 5 min, and the lysate was transferred to a
new tube. Quantitative real-time PCR was performed in
multiplexed reactions using primers for the 16S rRNA gene (see
above) and following conditions previously described (Centers for
Disease Control and Prevention (CDC), 2019). DNA from a K.
pneumoniae isolate harboring the blaKPC gene, Kp378, previously
sequencedbyour group (Migliorini et al., 2021)was used as positive
control. The blaKPC copy number of the positive control (Kp378)
was determined from short-read assemblies by dividing the
coverage of the contig containing blaKPC by the average coverage
for the assembly (weightedbycontig length) aspreviouslydescribed
(Stoesser et al., 2020). The 2-DDCt method was used to compare
blaKPC copy numbers between the rectal swab and the reference
samples (Ramos-Ramos et al., 2020) DDCt was defined as the
difference between the DCt of a sample (rectal swab) and DCt of
the reference sample (Kp378). Relative loads (RLs) were defined as
RL= log(2-DDCt), inwhich values close to zeromeant that the sample
contained a similar copy number of blaKPC when compared to the
reference sample, and values lower or higher than zero were
considered as low or high intestinal loads of bacteria carrying
blaKPC gene, respectively.

Statistical Analysis
Electronic clinical records were searched retrospectively. The
variables registered were sex, age, comorbidities, hospitalization
days within last 2 months, medical ward admission, antibiotic
treatments in the previous 30 days, invasive procedures, and
infections. The statistical significance of results was tested by
non-parametric Mann–Whitney U test and two-way ANOVA
for continuous variables and Fisher’s exact test for categorical
variables (Graph Pad Software 9.0 Inc). Bivariate analysis to
determine the impact of covariables on infection following
colonization was carried out by binary logistic regression,
adjusting for confounders, using jamovi (Version 1.6).
July 2022 | Volume 12 | Article 928578
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RESULTS

Molecular Characterization of Carriage
and Infection Isolates
Out of 122 KpKPC carrier patients from which isolates were
selected for this study, 54 had a subsequent infection episode;
from these 54 cases, both carriage and infection KpKPC isolates
were analyzed by PFGE (n = 108). In 46 of these cases (85%) the
same KpKPC strain was detected as carriage and in the infection site
(≥90% similarity in the PFGE pattern), suggesting that KpKPC
intestinal colonization was the primary source for infection.

At least one isolate per patient was sequenced; general genome
data quality, STs, O-, and K-types are reported in Supplementary
Table 1. Most carriage and infection isolates belonged to the most
prevalent strains in the period, ST11 or ST437, and no specific ST
could be associated with either carriage or infection in this
cohort (Figure 1A).

Additionally, capsule polysaccharide synthesis and O antigen
locus analysis indicated that isolates belonged to 15 distinct K-loci
groups, the most recurrent being KL36, corresponding to ST437.
We also identified a total of four different O-types, of which O4 was
predominant. No differences between carriage and infection
samples were observed.

Antimicrobial Susceptibility, and
Virulence Genes
All included isolates were resistant to carbapenems (imipenem or
meropenem). Among infection isolates, resistance rates were high
for ciprofloxacin (98%), ceftazidime (93%), and cefepime (93%) and
lower for amikacin (48%) and gentamicin (44%). The blaKPC-2 gene
was the most frequently found gene encoding a carbapenamase
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
(102/124), followed by blaKPC-3 (3/124), blaKPC-30 (2/124), and
blaKPC-33 (1/124). One isolate of K. pneumoniae carried blaNDM.
No other carbapenem resistance mechanisms were found.
Additionally, genes associated with resistance to cephalosporins
(blaCTX-M-15, blaOXA-1, blaTEM-1, and blaSHV-158) and to
aminoglycoside (aac(6’)-Ib-D181Y) were also detected, as well as
genes associated with reduced susceptibility to ciprofloxacin (oqxA
and oqxB). All infection-associated isolates resistant to
ciprofloxacin, cephalosporins, and/or aminoglycoside carried
genes related to resistance to these antibiotic classes, showing a
good association between the resistance phenotype and genetic
determinants. The number of resistance genes was not significantly
altered over time, and no significant differences were observed
between carriage isolates and those related to infection
(Figure 1B). Surprisingly, virulence genes were not mostly found
in the isolates involved with infection nor did the number of
virulence genes vary (Figure 1B). Carriage and infection isolates
also carried a very similar set of virulence markers (data not shown),
including yersiniobactin (ytb) and colibactin (clb) (Figure 1C).

Taken together, these results indicate that the resistance and
virulence markers identified in this study, or their combination,
possibly contribute but do not explain infections identified following
intestinal colonization by KpKPC.

Intestinal Carriage of CRE and blaKPC-
Carrying Bacteria in Colonized Patients
The relative intestinal load of CRE and blaKPC-carrying bacteria
(bacKPC) was estimated by microbiological and molecular
quantification methods, respectively. Out of the 165 patients
evaluated, 58 presented with an infection subsequent to
colonization (infection group) within 30 days, and 107 showed
B

C

A

FIGURE 1 | Characterization of KpKPC isolates in carriage and infection groups according to MLST and acquired resistance and virulence genes. (A) Bar graph
showing the distribution of KpKPC isolates STs in carriage and infection groups. The most prevalent STs were ST11 and ST437 in both groups. (B) Total number of
acquired resistance and virulence genes in carriage and infection groups. (C) Total number of isolates carrying the yersiniobactin (ytb) and colibactin (clb) loci. Both
groups (carriage and infection) showed a similar number of acquired genes associated with antimicrobial resistance and virulence.
July 2022 | Volume 12 | Article 928578
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only intestinal colonization by KpKPC (carrier group). Only the
stay in intensive/semi-intensive care units was significantly
associated with infection in this cohort (Table 1).

The relative intestinal load was determined using two
techniques: the microbiological method that measured the load of
CRE as related to the total aerobic bacteria present in the sample
(results are reported as log CRE/TAB) and the molecular method,
comparing blaKPC gene copy numbers and the total number of
bacteria present in the sample as estimated using primers specific to
the conserved region of 16S rRNA gene (results are reported as log
2-DDCt). The relative load of CRE in the infection group was higher
(median of -0.54, 95% CI: -0.77 to -0.30) than in the carrier group
(median of -1.49, 95% CI: -1.76 to -1.23) (P<0.0001) (Figure 2A).
Similarly, the infection group showed a higher relative load of
bacKPC from swabs (median of -0.28, 95% CI: -0.51 to -0.06),
compared to carriers (median -1.36, 95% CI: -1.69 to -1.02)
(P<0.0001) (Figure 2B).

On the bivariate logistic regression, ICU/semi-intensive care unit
admission (OR 2.79, 95% CI 1.375 to 5.687, P=0.005), the relative
intestinal load of CRE (OR 3.78, 95% CI 1.658 to 8.640, P=0.002),
and relative intestinal load of bacKPC (OR 8.601, 95% CI 2.44 to
30.352, P<0.001), were factors independently associated
with infections.

However, when analyzed independently, patients from ICU/
semi-intensive care units and those admitted to other wards had
higher intestinal loads of CRE and bacKPC when they belonged to
the infection group when compared with the carriage group
(P<0.05; Figures 3A, B).

Taken together, these results indicate that patients from the
infection group showed higher intestinal loads of CRE and
bacKPC when compared with patients who did not present
with infection within 30 days of the first positive KpKPC swab.
DISCUSSION

In Brazil, carbapenem resistance is mostly associated with KPC
(Sampaio and Gales, 2016; Ramos-Castaneda et al., 2018).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Currently, K. pneumoniae carrying KPC is considered epidemic
in Brazil and it has been involved in several outbreaks (Campos
et al., 2016). Other carbapenemases such as NDM and OXA-48,
despite being the mainmechanisms that contribute to carbapenem
resistance in other countries, are not frequent in Brazil. In
agreement with this scenario, in the hospital where the study
was carried out, increased rates of carbapenem resistance were
accompanied by an increase of KPC detection rates and, during
the study period, only 1 isolate of K. pneumoniae carrying
exclusively blaNDM was found and none carrying blaOXA-48.
Thus, due to the importance of KpKPC in the country and in
this hospital, our study focused on KpKPC strains.

In this study, colonizing isolates and subsequently infecting
isolates from the same patient were highly similar, as assessed by
PFGE, corroborating previous studies that evaluated colonizing vs.
infecting isolates using MLST, SNP analysis, and cgMLST (Martin
et al., 2016).

No specific strain could be associated with transition from
colonization to infection, with the most prevalent KpKPC
population in each period (i.e. ST437 between 2011 and 2015
and ST11 between 2016 and 2021) being predominantly found
associated with both the carriage and infection groups.
Although KpKPC ST437 is frequently detected in Brazil, our
study and a previous one conducted in another region of
Brazil observed ST11 becoming more prevalent after 2014
(Seki et al., 2011; Pereira et al., 2013). K. pneumoniae ST11 is
considered a global problem due to its broad geographic
distribution and antibiotic resistance (Wyres and Holt,
2016). As endemic strains carry virulence and resistance
mechanisms, ST11 strains are able to resist antibiotic
selective pressure and persist in the clinical environment for
years, leading to widespread colonization of patients and
subsequent infections (Raro et al., 2020).

A comparison between carriage and infection-related isolates
in terms of K- and O-types, the presence of virulence genes such
as yersiniabactin and colibactin, or the number of antimicrobial
resistance genes, showed no significant differences. These results
suggest that a combination of factors, including host and
TABLE 1 | Univariate analysis of risk factors for K. pneumoniae infection comparing carriers and patients who developed an infection within 30 days following colonization.

Variable Carriage (n = 107) Infection (n = 58) P-valuea

Age mean (SD) 65 (17.4) 64.9 (17.8) 0.74
Male 69 (65.1) 36 (62.1) 0.735
Diabetes mellitus 14 (13.9) 4 (7.1) 0.297
Chronic renal disease 11 (10.9) 6 (10.7) 1.000
Solid organ transplantation 4(4) 4 (7) 0.457
Onco-hematological disease 2(3.6) 2(2) 0.617
Chemotherapy 2 (2) 1(1.8) 1.000
Carbapenems 51 (50.5) 28 (51.9) 1.000
Quinolones 10 (9.9) 2 (3.7) 0.218
Cephalosporins 35 (34.7) 21 (38.9) 0.604
Hospitalization within the last 2 months 53 (52.5) 34 (61.8) 0.312
Central venous catheter 47(46.5) 27 (48.2) 0.869
Gastrointestinal previous diseases 12 (11.9) 4 (7.1) 0.419
Abdominal surgery 8 (7.9) 6 (10.7) 0.519
Ventilation device 51 (51) 31 (55.4) 0.620
ICU/Semi-intensive care unit (vs. other medical wards) 42 (72.4) 51 (48.1) 0.003
July 2022 | Volume 12 | Artic
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pathogen factors, determine whether carriage develops into
infection, as previously proposed (Lewis, 2022).

Intestinal colonization by KpKPC has been related to the
development of infections that are difficult to treat (Martin et al.,
2016). Prolonged stay in the hospital and the consumption of
broad-spectrum antibiotics are the main clinical risk factors
related to intestinal colonization by KpKPC due to the
disruption of the host’s intestinal homeostasis (Kinashi and
Hase, 2021). Most recently, the density of the intestinal load of
CRE and bacKPC has been considered a risk factor for the
development of infections (Gorrie et al., 2017). Our results are
consistent with a previous study performed with 147 adult
patients hospitalized in a single health center (Lázaro-Perona
et al., 2021). In the study, patients who developed infections
showed higher intestinal loads of K. pneumoniae harboring
blaOXA-48 (KpOXA) than carriers of KpOXA that had no
infections (Lázaro-Perona et al., 2021). Our results add to their
observations by reporting that no ST or pulse-type, as
determined by the analysis of isolates within a 10-year time
line, or resistance and virulence genes showed a significant and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
independent impact in the transition from colonization to
infection by K. pneumoniae harboring blaKPC.

It has been shown that increased levels of K. pneumoniae in
the intestine are associated with increased inflammation, due to
pro-inflammatory cytokines, and decreased the expression of
tight-junction-related proteins (e.g., claudin-1, ZO-1, and
occludin), increasing the permeability of the intestinal
membrane and facilitating the translocation of K. pneumoniae
to the bloodstream (Lee and Kim, 2011; Joseph et al., 2021). In
agreement, prebiotics and probiotics such as Bifidobacterium
bifidum and Lactobacillus acidophilus reduce the expression of
inflammatory markers, increase the expression of tight-junction-
related proteins, and are also associated with a decrease in the
intestinal load of CRE (Marcinkiewicz et al., 2007; Zhou et al.,
2009; Ramos-Ramos et al., 2020; Hung et al., 2021). Since CRE
carriers contribute to the spread of CRE (Lerner et al., 2015), the
use of probiotics can be an important strategy to reduce both the
spread of CRE and the development of serious infections during
hospitalization (Ramos-Ramos et al., 2020). The use of probiotics
in patients colonized by CRE is currently a strategy considered in
BA

FIGURE 3 | Intestinal load of CRE and blaKPC-carrying bacteria in association with the infection risk factor “admission to intensive and semi-intensive care
units.” (A) Relative intestinal loads of CRE in carriage and infection groups considering admission to ICU, semi-intensive care unit, or medical/surgical clinic.
(B) Relative intestinal loads of bacKPC in carriage and infection groups considering admission to ICU, semi-intensive care unit, or medical/surgical clinic.
P-values were calculated using the two-way ANOVA test.
BA

FIGURE 2 | Relative quantification of CRE and blaKPC-carrying bacteria in carriage and infection groups. (A) Relative intestinal load of CRE in carriage and infection
groups. (B) Relative intestinal loads of bacKPC in carriage and infection groups. P-values were calculated using the non-parametric Mann–Whitney test.
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EUCAST guidelines and should be explored in selected
hospitalized patient groups to reduce the intestinal load of
pathogenic bacteria (Tacconelli et al., 2019).

Given the difficulty in treating infections caused by Hv and
MDR strains, our study and others that address the role of
intestinal colonization in infections may support new therapeutic
approaches. Since patients admitted to the ICU/semi-intensive
care unit have a greater chance of developing infections
subsequent to colonization by CRE, the relative quantification
of intestinal load may be a useful and cost-effective tool to infer
the risk of these patients developing an infection. This practice
can contribute to early intervention and reduce the risk of the
patient developing a difficult-to-treat infection, thus contributing
to a better prognosis and new patient care practices.
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