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Heart failure (HF) remains the leading cause of death, morbidity, and medical expenses
worldwide. Treatments for HF with reduced ejection fraction have progressed in recent
years; however, acute decompensated heart failure remains difficult to treat. The
transient receptor potential (TRP) channel family plays roles in various cardiovascular
diseases, responding to neurohormonal and mechanical load stimulation. Thus, TRP
channels are promising targets for drug discovery, and many studies have evaluated the
roles of TRP channels expressed on pain neurons. The natriuretic peptide (NP) family
of proteins regulates blood volume, natriuresis, and vasodilation and can antagonize
the renin-angiotensin-aldosterone system and participate in the pathogenesis of major
cardiovascular diseases, such as HF, coronary atherosclerotic heart disease, and left
ventricular hypertrophy. NPs are degraded by neprilysin, and the blood level of NPs has
predictive value in the diagnosis and prognostic stratification of HF. In this review, we
discuss the relationships between typical TRP family channels (e.g., transient receptor
potential cation channel subfamily V member 1 andTRPV1, transient receptor potential
cation channel subfamily C member 6) and the NP system (e.g., atrial NP, B-type NP,
and C-type NP) and their respective roles in HF. We also discuss novel drugs introduced
for the treatment of HF.

Keywords: transient receptor potential cation channel subfamily V member 1, transient receptor potential cation
channel subfamily C member 6, natriuretic peptide, heart failure, angiotensin receptor-neprilysin inhibitor (ARNI)

INTRODUCTION

On October 4, 2021, American scientists David Julius and Ardem Patapoutian won the 2021
Nobel Prize in Physiology and Medicine Award owing to their outstanding contributions
to the discovery of receptors that sense temperature and touch. In particular, transient
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FIGURE 1 | Architecture of TRP channels. TRP can be activated by various
physical and chemical stimuli and consist of six transmembrane helices
(TM1-6), cytoplasmic N- and C-termini, and a pore area between TM5 and
TM6. Ankyrin repeats are found in the amino termini of TRPC and TRPV
channels. Currently, the functions and activation mechanisms of TRP family
proteins are unclear.

receptor potential (TRP) cation channel subfamily V member
1 (TRPV1) has been shown to act as a receptor for capsaicin.
TRP channel proteins can be divided into six families: canonical
TRP (TRPC), vanilloid TRP (TRPV), melastatin TRP (TRPM),
ankyrin TRP, mucolipin TRP, and polycystin TRP (Figure 1).
These proteins can be activated by various physical and chemical
stimuli and consist of six transmembrane helices (TM1–6),
cytoplasmic N- and C-termini, and a pore area between TM5 and
TM6 (1, 2). Currently, the functions and activation mechanisms
of TRP family proteins are unclear.

The TRPV and TRPC subfamilies are the two most abundant
subfamilies and include ion channels that are involved in
neuronal pain pathways as well as heat sensing and permeability
functions (1). TRP channels are expressed in almost all
cardiovascular tissues and are a part of Ca2+ entry channels
for store-operated channels, receptor-operated channels, stretch-
activated channels, and ligand-gated channels. The functional
significance of TRP channels may be related to the various gated
stimuli that induce Ca2+ entry by integrating various variety of
physical and chemical factors. Therefore, the participation of TRP
channels in cardiovascular disease is uniquely relevant because it
provides an opportunity to interfere with the Ca2+-dependent
signal transduction process in the cardiovascular system.
Although the roles of most TRP channels in cardiovascular
diseases are largely unknown, there is no doubt that research
linking TRP channel functions with cardiovascular diseases will
become an important topic in the medical community in coming
years (3).

Natriuretic peptides (NPs) are a group of peptides involved
in maintaining the body’s water-salt balance, blood pressure,
and cardiovascular and kidney function. The NP system is
mainly composed of three well-characterized peptides, each of
which is a different gene product with a similar structure; atrial
NP (ANP) and B-type NP (BNP) are mainly derived from
cardiomyocytes (4, 5), whereas C-type NP (CNP) is mainly
derived from endothelial cells and kidney cells (6–9). These three
peptides protect the heart and kidneys. Notably, BNP is also

produced by cardiac fibroblasts and has antifibrotic effects in
the heart (10). Muscle cells release ANP and BNP when the
cardiac muscle is stretched, whereas endothelial cells release CNP
when cytokines and endothelium-dependent agonists, such as
acetylcholine, are released. Similar to ANP and BNP, CNP has
powerful systemic cardiovascular effects, including reduction of
cardiac filling pressure and output, secondary to reduction of
vasodilation and venous return, but with minimal renal effects
(11). CNPs have the strongest antifibrosis effects among the
three natural endogenous NPs. All NPs operate through a second
messenger, cGMP. ANP and BNP bind to guanylyl cyclase (GC)-
A, whereas CNP binds to GC-B (12). Furthermore, the three NPs
are all cleared by the clearance receptor NP receptor (NPR) C
(NPR-C), which is unrelated to GCs (13). However, new evidence
shows that NPR-C also participates in the antifibrotic effects
of NP through a mechanism independent of cGMP activation
(14). NPs are also eliminated from circulation by enzymatic
degradation of neprilysin (NEP) (12).

Recent studies have demonstrated the roles of NPs,
particularly the GC-A agonists ANP and BNP, in metabolic
regulation. Among the many potentially beneficial findings, GC-
A activation was shown to increase lipid oxidation in transgenic
rodents, inhibit fat cell growth, increase oxygen consumption,
enhance mitochondrial biogenesis in rodent skeletal muscle,
delay gastric emptying, activate adiponectin, convert white
adipocytes into brown adipocytes, reduce insulin levels, and
improve glucose tolerance (15–23). In addition, a specific human
ANP gene mutation, RS5068, increases circulating ANP levels
and protects against hypertension and metabolic syndrome (24,
25). Moreover, both hypertension and obesity are related to the
reduction of ANP and BNP levels, indicating that the NP system
is defective in these cases; therefore, NP treatment is required
(26–29). However, owing to the inherent biological properties
of NPs, these hormones are now considered to be effective for
the treatment of HF and other cardiovascular diseases (such as
hypertension) (30–33). Accordingly, in the treatment of human
cardiovascular diseases, enhancing the NP system and preventing
its degradation by NEP inhibition is a goal worthy of research.
The role of NEP inhibition has been explored in animal models
and humans, either alone or in combination with the inhibition
of other systems involved in cardiovascular disease progression.

In this review, we discuss the relationships between typical
TRP family channels and the NP system as well as their respective
roles in HF. We also discuss novel drugs introduced for the
treatment of HF.

TRANSIENT RECEPTOR POTENTIAL
CHANNEL PROTEINS AND ATRIAL
NATRIURETIC PEPTIDE

Transient Receptor Potential Cation
Channel Subfamily V Member 1 and
Atrial Natriuretic Peptide
TRPV1 is a complex component of the ANP cell signaling
pathway. The ANP receptor is a guanylate cyclase and antagonist
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of the renin-angiotensin-aldosterone system (RAAS). Interaction
trap data using the amino and carboxyl termini of intracellular
TRPV1 as bait suggested that TRPV1 interacts with NPR1
(GC-A) (13, 34). Activation of the NPR1 and ANP pathway leads
to cGMP-dependent stimulation of TRPV1 phosphorylation,
thereby inhibiting TRPV1 and reducing the surface current.
NPR1-knockout experiments effectively demonstrated the
presence of the ANP/NPR1 antihypertrophic pathway in the
heart (35). Therefore, the ANP/NPR1/cGMP/protein kinase G
(PKG)/TRPV1 linkage mechanism may represent a target for
the antifertilization effects of ANP/NPR1. However, further
studies are needed to clarify the effects of PKG phosphorylation
on TRPV1 (sGC-PKG) because there are two ways to regulate
cardiomyocyte function. The PKG pathway, which is regulated
by sGC (NO) and pGC (NP), involves PKG phosphorylation, and
PKG negatively regulates TRPV1. Data from our recent studies
support the negative regulatory effects of NPR1/PKG/TRPV1
phosphorylation; however, in general, compared with protein
kinase A and protein kinase C (PKC), the effect of PKG
phosphorylation on TRPV1 have not been extensively studied
(36–38).

Transient Receptor Potential C6 and
Atrial Natriuretic Peptide/B-Type
Natriuretic Peptide
In our recent studies, we used an in vitro culture system and
an in vivo genetic engineering model to reveal the functional
negative correlations between the ANP/GC-A/cGMP/PKG
and TRPC6 calcineurin/fat pathways in cardiomyocytes.
ANP directly inhibits the activity of TRPC6 through the
cGMP/PKG pathway, thereby blocking the hypertrophic
signaling pathway. The selective TRPC inhibitor BTP2
significantly reduces myocardial hypertrophy in GC-A-
knockout mice, which are sensitive to the hypertrophic
signals caused by TRPC6 overexpression. BTP2 significantly
inhibits myocardial hypertrophy caused by chronic infusion
of angiotensin II (Ang-II). PKG also inhibits L-type calcium
channel (LTCC) activity and calcineurin/nuclear factor of
activated T cells (NFAT) signaling (39). In fact, activation
of TRPC3/6 has been shown to lead to the activation of
LTCC (40), and ANP may inhibit this activation, thereby
suppressing calcineurin/NFAT signal transmission. Therefore,
the ANP/BNP/cGMP/PKG signaling pathway may inhibit
the hypertrophic signaling pathway through multiple steps.
ANP and BNP have been used clinically in patients with
acute heart failure (31, 41), and the ANP/GC-A/cGMP/PKG
signal transduction pathway is a complex pathway involving
multiple mechanisms. Therefore, our research shows that
inhibition of TRPC6 activity mediates the antihypertrophic
effects of ANP/BNP and suggests that inhibition of TRPC6 may
prevent pathological effects, providing insights into potential
effective treatment strategies for myocardial hypertrophy and
remodeling (42).

TRANSIENT RECEPTOR POTENTIAL
CHANNEL PROTEINS AND B-TYPE
NATRIURETIC PEPTIDE

Among membrane proteins that detect harmful stimuli, sensory
neurons (pain receptors) of small and medium diameters
express capsaicin (and heat)-sensitive TRP and allicin-1 (TRPV1)
channels and/or ATP-gated P2 × 3 subunit receptors (43, 44)
to transmit pain. Some studies have shown that TRPV1 is
essential for the development of inflammatory heat pain (45–
47). The activity of TRPV1 and P2 × 3 receptors is upregulated
by endogenous peptides, such as bradykinin, calcitonin gene-
related peptide, substance P, and nutritional factors (48–52).
The functional effects of these modulators manifest as receptor
sensitization, thereby helping to lower the pain threshold and
trigger pain, particularly chronic pain.

The NP family, including ANP, BNP, and CNP, are involved in
pain sensing. ANP does not affect sensitivity to radiant heat (53)
or mechanical ectopic pain (54, 55), whereas CNP is considered
an active regulator of chronic pain (56). By contrast, microarray
genetic analysis have shown that chronic pain enhances BNP
expression and NPR-A, a receptor for BNP, in the rat dorsal root
ganglion (DRG). In addition, in a rat model of inflammatory
pain, application of BNP reduced the excitability and hyperalgesia
of DRG allodynia receptors, suggesting that BNP may have
inhibitory roles in chronic pain (57). BNP functions by binding
to NPR-A, which is a guanosine cyclase receptor (also sensitive
to ANP), and increases intracellular cGMP levels (58, 59). These
studies have not explored the molecular mechanisms of GC-A
activation and TRPV1 and P2 × 3 receptor changes, and further
research is therefore needed to demonstrate whether and how
BNP regulates TRPV1 and P2× 3.

Several intracellular cascades are involved in the trigeminal
ganglion (TG). Moreover, TG neurons strongly express NPR-
A (in the absence of BNP binding), making TG particularly
sensitive to BNP released from various peripheral tissues under
physiological and pathological conditions (60). Therefore, the
NPR-A system may act as a slow regulator of sensory excitability.

TRANSIENT RECEPTOR POTENTIAL
CHANNEL PROTEINS AND C-TYPE
NATRIURETIC PEPTIDE

NPR is an enzyme-linked receptor (GC); NPR-A and NPR-B
mediate the conduction effects of all NPs in via a conventional
GC/cGMP/PKG pathway. However, unlike NPR-A and NPR-B,
NPR-C lacks the GC kinase domain and therefore acts as an NP
clearance receptor (61, 62). Our research shows that functional
NPR-A/B/C is expressed in mouse DRG neurons, and CNP
and ANP, but not BNP, induce sensitization of TRPV1 channel
activity, independent of classic NPR-A/NPR-B/cGMP/PKG
signaling. By contrast, NP sensitization of TRPV1 proceeds
through atypical NPR-C/Gβγ/phospholipase C (PLC) β/PLC-
mediated signaling modules. Specific drugs block these signaling
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components, and CNP attenuates the regulation of TRPV1
activity. This modulation of TRPV1 channel activity causes
nociceptors to be sensitive to mildly and pathophysiologically
related acidic conditions. However, this modulatory mechanism
is absent in TRPV1-deficient DRG neurons. In addition, plantar
injection of CNP induces thermal hyperalgesia in wild-type mice,
but not in TRPV1-deficient mice. Gβγ and TRPV1 inhibitors can
be systemically administered to modulate these effects. Overall,
these findings indicate that CNP is involved in a novel non-
classical Gβγ/PLCβ/PKC/TRPV1 signaling pathway to induce
hyperalgesia and thermal hyperalgesia, which may occur under
various tissue damage and inflammatory conditions (56).

In general, NPs have substantial effects on inflammatory
heat and mechanical allergies. The NPR-A/NPR-B/cGMP/PKG
signaling pathway in the central axon of DRG neurons projected
to the dorsal horn of the spinal cord promotes mechanical
ectopic pain (55, 63, 64), whereas intrathecal BNP induces
thermal hyperalgesia and has analgesic effects (57). Our research
shows that the PKC/TRPV1 signal in the peripheral afferent
nerve is involved in the occurrence of thermal hyperalgesia
via CNP/Gβγ and NPR-B/NPR-C, which is widely expressed in
neurons of all sizes in the DRG. Additionally, the increase in
cGMP production in CNP-induced neurons jointly indicates that
CNP may be involved in the peripheral sprouting/bifurcation of
sensory afferent nerves and induces mechanical effects, including
dyskinesia and hyperalgesia. Further studies are required to verify
these findings (56).

CNP and ANP have higher affinities for NPR-C than BNP (14,
65). This can explain the lack of BNP-induced TRPV1 currents
observed in our work. Based on these findings, we propose a
signal module mediated by NPR-C/Gβγ/PLCβ/PLC (56). High
concentrations of morphine can directly activate and enhance the
TRPV1 currents in mouse DRG neurons (66). Considering that
many opioid receptors induce Gαi-coupling downstream signals
(67, 68), the sensitization of TRPV1 channel activity by high doses
of morphine (66) may involve the Gαi/Gβγ/PLCβ/PKC signaling
pathway. This hypothesis still needs to be verified experimentally.

TRANSIENT RECEPTOR POTENTIAL
CHANNEL PROTEINS AND HEART
FAILURE

Calcium ions participate in many physiological reactions in
the human body and play important roles in many cellular
reactions. For example, calcium acts as second messenger and
blood coagulation factor IV, participates in excitation and
contraction coupling, and modulates muscle contraction. Altered
intracellular Ca2+ helps modulate impaired systolic HF (69, 70).
In the myocardium, intracellular Ca2+ storage and Ca2+ ATP
enzymes [sarco endoplasmic reticulum Ca2+-ATPase (SERCA)
2 subtype] play important roles in contraction activation and
relaxation. However, in HF, an increase in sodium-calcium
exchange (NCX) levels is associated with downregulation of
SERCA. In addition, an in vitro study using small interfering
RNA against myocardial SERCA showed that decreased SERCA2
expression is related to TRPC4, TRPC5, and NCX upregulation,

suggesting that deficiency of intracellular storage may be
compensated for by entry of Ca2+ through the plasma membrane
(71). In fact, induced expression of TRPC5 or TRPC6 can
be observed in patients with HF (72, 73). The importance of
this compensatory mechanism may be related to its universal
participation in the Ca2+ signaling mechanism, not only for
excitation-contraction coupling but also for heart remodeling
and hypertrophy.

Myocardial apoptosis is an important process leading to
HF; therefore, inhibition of apoptosis is a promising treatment.
Apoptosis is induced by various stimuli, including oxidative
stress, pro-inflammatory cytokines, catecholamines, and Ang-II
(74). Elevated intracellular Ca2+ is considered a key initiator
of intracellular apoptosis signal transduction (for example,
activation of endogenous endonucleases dependent on Ca2+).
Currently, there are two reports of TRP channels being involved
in myocardial apoptosis in animal models. Activation of the
TRPM2 channel and poly (ADP-ribose) polymerase (PARP) is
involved in cardiomyocyte death induced by oxidative stress
(75, 76). The apoptotic component is caused by activation of
the clotrimazle-sensitive NAD+/ADP ribose/PARP-dependent
TRPM2 channel, which induces mitochondrial Na+ and
Ca2+ overload, leading to mitochondrial membrane rupture,
cytochrome release, and caspase-3-dependent chromatin
condensation/fragmentation. Moreover, TRPC7 may be the key
initiator of AT1 activation, leading to myocardial apoptosis, and
could then participate in the progression of HF (77). Although
these findings provide possible strategies for regulating cardiac
apoptosis, further research is needed to clarify the complex
relationships between TRP and HF.

NATRIURETIC PEPTIDES AND HEART
FAILURE

NPs, particularly BNP, play critical roles in the diagnosis
of HF. The accuracy of HF severity assessment is directly
related to clinical outcomes of treatment in patients. BNP
levels are the most commonly used index in clinical practice.
The diagnostic roles of NPs in acute and chronic HF have
been confirmed. In particular, ANP and BNP levels increase
in parallel with the degree of left ventricular dysfunction
and hemodynamic pressure, although they are not helpful
in distinguishing between systolic and diastolic HF (78). In
addition, in cases of acute and chronic HF, the value of NPs as
reliable markers for long-term prognostic stratification has been
demonstrated. In a study of patients with acute HF, BNP, NT-
proBNP, and mid-region (MR) proBNP levels showed significant
diagnostic performance, although only MR-proBNP had long-
term prognostic value (79). In patients hospitalized due to
acute decompensated HF (ADHF), the prognostic performance
of NT-proBNP and MR-pro-ANP levels was confirmed by
evidence of the increased prognostic value of clinical risk
factors for predicting mortality within 1 year of onset (80).
In patients with chronic HF, subsequent measurements of
BNP or NT-proBNP levels provide independent information
about the risk of disease progression, which involves a series
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FIGURE 2 | Mechanisms of action of novel therapeutics for heart failure. The ARNi LCZ696 is split into the ARB valsartan and the neprilysin-inhibitor sacubitril.
Valsartan abrogates signaling via the AT1 receptor, inhibiting deleterious effects mediated by Ang-II such as vasoconstriction, hypertrophy, and fibrosis in major
cardiovascular organs. Sacubitril prevents breakdown of endogenous natriuretic peptides (ANP, BNP, and CNP), thereby augmenting their beneficial actions in
cardiovascular disease. The overall effects of ARNi are vasodilatation, natriuresis, and diuresis, as well as inhibition of fibrosis and hypertrophy. Ularitide selectively
targets NPR-A, whereas cenderitide activates both NPR-A and NPR-B. Both peptides increase intracellular cGMP, which in turn leads to inhibition of the
renin-angiotensin-aldosterone system and attenuation of fibrosis, hypertrophy, and vasoconstriction. Our proposed model shows that TRPV1 interacting with
NPR-A, activation of the NPR1 and ANP pathway leads to cGMP-dependent stimulation ofTRPV1 phosphorylation. PDE3 antagonists (enoximone, milrinone),
calcium sensitizers (levosimendan), and a direct activator of cardiac myosin (omecamtiv mecarbil). ACE, angiotensin-converting enzyme; TRPV1, transient receptor
potential cation channel subfamily V member 1; Ang-I/II, angiotensin I/II; ARB, angiotensin-receptor blocker; ARNi, angiotensin receptor-neprilysin inhibitor; AT1,
type-1 angiotensin II receptor; ANP, A-type natriuretic peptide; BNP, B-type natriuretic peptide; CNP, C-type natriuretic peptide; NPR-A/B, atrial natriuretic peptide
receptor 1/2; PDE3, phosphodiesterase-3; pGC, plasma- membrane-bound guanylate cyclase; PKA, protein kinase A; PKC, protein kinase C; PKG, protein kinase
G; pGC, plasma- membrane-bound guanylate cyclase; sGC, soluble guanylate cyclase.

of adverse consequences, including ventricular remodeling,
malignant ventricular arrhythmia, HF-related hospitalization,
transplantation need, and death (81). In the longest follow-
up study of patients with chronic HF, the prognostic ability of
multiple biomarkers was evaluated, and the results showed that
the plasma ANP level was the strongest long-term predictor of
death during all disease stages (82). NPs have prognostic value in
patients with HF with reduced ejection fraction (HFrEF) and HF
with retention of ejection fraction (HFpEF) (83). Recent studies
have shown that screening based on BNP has preventive effects
on HF development. In patients with cardiovascular risk factors
and those at risk of HF, BNP assessment related to combination
therapy reduces the combined incidence of left ventricular
systolic dysfunction, diastolic dysfunction, and HF (84).

The clinical significance of NPs in HF indicates that NP
level measurement is an effective tools for hormone-guided
treatment of HF. In ADHF, BNP measurement improves the
accuracy of diagnosis, reduces the hospitalization and admission
rates in the intensive care unit, and has beneficial effects on
treatment costs and mortality (85). A useful algorithm was
developed to treat ADHF guided by BNP (85). Additionally,
in chronic HF, NP levels are useful markers for monitoring
disease progression related to the benefits of different treatment
strategies (86). However, because of uncertainty among studies,
the American Heart Association/American College of Cardiology
HF guidelines recommend a low level of NP-guided treatment for
patients with chronic HF (87). A recent meta-analysis attempted
to overcome existing controversies, including randomized
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clinical trials, which showed that in patients with chronic HF,
NP-guided treatment reduces all-cause mortality and HF-related
hospitalization (88).

ANGIOTENSIN RECEPTOR-NEPRILYSIN
INHIBITORS AND HEART FAILURE

NEP is a neutral endopeptidase responsible for the degradation
of endogenous vasoactive substances in the body, including
NPs (ANP, BNP, and CNP), bradykinin, and adrenal medulla
hormones. BNP, which is synthesized and secreted by ventricular
myocytes, can promote sodium excretion and diuresis and
has strong vasodilator effects. The use of pharmacological
drugs to reduce the catabolism and elimination of endogenous
NPs has been applied in clinical practice. Indeed, sacubitril
combined with valsartan to inhibit NEP has been shown to be
a successful method for the treatment of arterial hypertension,
chronic congestive HF, and myocardial fibrosis. Sacubitril
and valsartan sodium are novel types of anti-HF drugs.
Valsartan is an angiotensin receptor antagonist that inhibits
the RAAS, thereby expanding blood vessels, lowering blood
pressure, inhibiting myocardial remodeling, and blocking
abnormal activation of the nerve and endocrine system. By
contrast, sacubitril is an NEP. The three types of NPs are
inactivated by receptor-mediated internalization and lysosomal
degradation, followed by enzymatic neutral endopeptidase or
NEP degradation. Recent studies have shown that, compared
with enalapril, NEP inhibition can moderately increase
BNP levels and enhance levels of endogenous brain NP,
thereby dilating blood vessels, inducing diuresis, improving
myocardial remodeling, and exerting other cardioprotective
effects. The combination of the two constitutes sacubitril
and valsartan sodium can be used for the treatment of
various cardiovascular diseases, including hypertension,
HF, and coronary heart disease (Figure 2). Sacubitril and
valsartan sodium can also inhibit the adverse effects of the
RAAS and activate the cardiovascular protective effect of
enkephalins. Therefore, drugs involving the combination of
both of these components may be suitable for the treatment of
patients with HF.

In a prospective study, the effects of angiotensin receptor-
neprilysin inhibitors and angiotensin-converting-enzyme
inhibitors (ACEIs) on the global mortality and morbidity of heart
failure (PARADIGM-HF) were compared. In this multicenter
trial, 8,442 patients with reduced ejection fraction and NYHA
class II–IV were randomly assigned to the treatment group
and received valsartan/sacubitril 200 mg/2 days or enalapril
10 mg/2 days (89–91). After a median follow-up of 27 months,
21.8% of patients in the valsartan/sacubitril group died from
cardiovascular causes or were hospitalized for HF compared
with 26.5% in the enalapril group; the risk was reduced by
20% (p < 0.001) (89). There were no differences between the
two groups in the incidence of new-onset atrial fibrillation
or decreased renal function. In terms of drug side effects, the
incidence of symptomatic hypotension in the valsartan/sacubitril
group was higher than that in the enalapril group (14% versus
9.2%, p < 0.001), whereas patients in the enalapril treatment

group had cough and increased serum creatinine (2.5 mg/dL
or higher). Additionally, the incidence of hyperkalemia was
significantly higher in the valsartan/sacubitril group than in
the enalapril group. During the double-blind treatment, 19
patients in the valsartan/sacubitril group developed angioedema,
and 10 patients in the enalapril group developed angioedema.
Compared with ACEIs alone, the combined use of ACEIs
and the heparanase inhibitor omapatrilat increased the risk
of angioedema threefold (92). Thus, valsartan/sacubitril, the
first combined ARNI/nephrase inhibitor, can reduce mortality
in patients with HFrEF. Ongoing clinical trials will determine
its efficacy in other conditions, including hypertension and
HFpEF (93).

At present, heart failure is divided into three categories. The
first category is heart failure with preserved ejection fraction, the
second category is heart failure with reduced ejection fraction,
and the third category is heart failure with intermediate ejection
fraction. The diagnosis standard needs to be calculated according
to 50 and 40%, that is, if the patient’s ejection fraction ≥50%,
it belongs to heart failure with preserved ejection fraction. If
the patient’s ejection fraction is less than or equal to 40%,
it is classified as heart failure with reduced ejection fraction.
If the patient’s ejection fraction is between 40 and 50%, 50
and 40% are not included, which belong to the heart failure
in the middle position of the ejection fraction. Under normal
circumstances, the earliest occurrence of heart failure is diastolic
dysfunction, and with the gradual decline of diastolic function,
it will gradually progress to heart failure with median ejection
fraction or heart failure with reduced ejection fraction. Heart
failure with preserved ejection fraction refers more to the early
stage of heart failure.

For patients with chronic HFrEF, ACEI, ARB, and ARNI
can be used as first-line therapy. The PARADIGM-HF study
confirmed that ARNI can bring greater benefit to patients with
chronic HFrEF than ACEI; but a large number of previous
studies have confirmed the efficacy of RAAS inhibitors in
patients with HFrEF, but these two types of drugs have
poor efficacy in patients with HFpEF, which may be due to
the low importance of RAAS system abnormalities in the
pathophysiological mechanism of HFpEF. Among them, ARNI
can significantly reduce the rate of heart failure hospitalization,
but fails to reduce the composite endpoint of cardiovascular
death and total heart failure hospitalization in patients with heart
failure with LVEF ≥ 45% (94).

SUMMARY AND PERSPECTIVES

The TRP family is closely related to the NP family; however,
the specific molecular mechanisms remain unclear. TRPs are
activated by similar prohypertrophic or profibrotic stimuli and
are related to or interact to activate hypertrophy-, fibrosis-, and
conduction disorder-related signaling pathways. Unfortunately,
common agonists and antagonists used to modulate TRP
have not been able to determine which TRP channel proteins
may be the correct targets and potential therapeutic tools.
Decades of research have outlined the important contributions
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of NPs in cardiovascular diseases. In addition to evaluating
their diagnostic functions, particularly in HF, TRP channel
proteins have important predictive significance for HF and
hypertension. Based on the extensive effects of these hormones in
the cardiovascular system, NP-derived treatments are currently
considered reasonable treatments for cardiovascular diseases.
Drugs to treat HF have always been limited and are typically
based on RAAS and SNS suppression. In recent years, with
the development of ARNI, i.e., sacubitril/valsartan (LCZ696),
as the first combined angiotensin receptor antagonist/renal
protease inhibitor, the mortality rates in patients with HFrEF
have decreased, and its effectiveness and safety have been
confirmed. However, the specific mechanisms are still unclear.
Moreover, it is still unknown whether the clinical benefit
of valsartan/sacubitril is driven by reducing the degradation
of NPs or whether other mechanisms function to alleviate

symptoms of HF by combining angiotensin receptor antagonists
and renin inhibitors. In addition, ARNI is used in patients
with clinical HF, and the incidence of angioedema during
treatment is still not known. Further studies are needed to
address these questions and improve our understanding of
clinical HF in order to establish novel treatment strategies
in these patients.
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