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Abstract: With tuberculosis still being one of leading causes of death in the world and the emergence
of drug-resistant strains of Mycobacterium tuberculosis (Mtb), researchers have been seeking to find
further therapeutic strategies or more specific molecular targets. PknB is one of the 11 Ser/Thr protein
kinases of Mtb and is responsible for phosphorylation-mediated signaling, mainly involved in cell
wall synthesis, cell division and metabolism. With the amount of structural information available
and the great interest in protein kinases, PknB has become an attractive target for drug development.
This work describes the optimization and application of an in silico computational protocol to find
new PknB inhibitors. This multi-level computational approach combines protein–ligand docking,
structure-based virtual screening, molecular dynamics simulations and free energy calculations. The
optimized protocol was applied to screen a large dataset containing 129,650 molecules, obtained from
the ZINC/FDA-Approved database, Mu.Ta.Lig Virtual Chemotheca and Chimiothèque Nationale.
It was observed that the most promising compounds selected occupy the adenine-binding pocket
in PknB, and the main interacting residues are Leu17, Val26, Tyr94 and Met155. Only one of the
compounds was able to move the active site residues into an open conformation. It was also
observed that the P-loop and magnesium position loops change according to the characteristics of
the ligand. This protocol led to the identification of six compounds for further experimental testing
while also providing additional structural information for the design of more specific and more
effective derivatives.

Keywords: Mycobacterium tuberculosis; serine/threonine protein kinases; PknB; virtual screening;
molecular docking; molecular dynamics simulations; MM/GBSA

1. Introduction

Mycobacterium tuberculosis (Mtb) is the pathogen responsible for the development of
tuberculosis (TB). TB is, to this day, one of the most common causes of mortality, by a single
pathogen, around the world. According to the World Health Organization (WHO), in 2019,
Mtb was responsible for 10 million new infections globally, with an estimated 1.2 million
deaths [1]. The treatment for TB is rather extensive and involves a combination of different
antibiotics. If not performed correctly, it may lead to the development of drug-resistant
strains such as the multi-drug-resistant and extensively drug-resistant strains (MDR and
XDR-TB), which in turn, may cause higher transmissibility rates and larger outbreaks [2,3].
Finding additional or new strategies to control infection is of the utmost importance [4].

PknB is one of the 11 “eukaryotic-like” Serine/Threonine protein kinase (STPK) re-
sponsible for phosphorylation-mediated signaling in Mtb. It is a transmembrane protein
with four extracellular PASTA (Penicillin binding proteins and Serine Threonine kinases-
Associated) motifs and an intracellular catalytic kinase domain [5]. PknB is involved in
many key bacterial processes such as cell wall synthesis, cell division and metabolism.
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Several studies have shown that its expression affects cell morphology and survival, with a
depletion of PknB leading to the loss of bacterial viability [6–8]. In addition, it is essential
for the reactivation of the cells from a hypoxic state, being an important “switch” between
dormancy and resuscitation [9,10]. These aspects not only reinforce the significance of the
role of PknB in Mtb, but also highlight its importance as a potential drug target.

Structurally, PknB is divided into two lobes, an N-lobe and a C-terminal lobe. Between
them, is the ATP pocket. As with most STPKs, it has five main groups that are indispensable
for the catalytic process: helix C (residues 51–65); the P-loop (the phosphate-binding or
glycine-rich loop) where the amides of the glycines coordinate the phosphates of ATP, func-
tioning as a clamp (residues 18–23); the magnesium positioning loop (residues 156–158);
the catalytic loop (residues 135–143); and the activation loop (residues 164–177) (Figure 1).
PknB can be found in two conformations, open and closed, depending on the position of
the helix C and the P-loop region. The open conformation corresponds to an inactive state
of PknB, whereas the closed conformation corresponds to the active state. To be in a closed
conformation and in an active state, a glutamic acid from the helix C must be close contact
with a lysine near the P-loop, forming a salt bridge. This lysine is a fundamental piece for
the catalysis as it orients the position of the phosphates of ATP [11,12].
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Figure 1. Structure of PknB (PDB:1O6Y) with groups that are important for its activity highlighted. Figure was produced
using Pymol.

Mycobacterial STPK only presents 30% sequence identity to eukaryotic STPK; however,
the ATP-binding and catalytic mechanism are highly conserved [13]. There is a great
interest in finding kinase inhibitors, mainly in cancer research, where it is important in
signal regulation. In fact, the first crystal structure of PknB bound to a non-ATP analog was
the result of an in silico screening of 40,000 compounds that concluded that mitoxantrone,
a compound used in cancer treatment, could inhibit bacterial growth in culture. Since
then, other inhibitors were found but showed limited activity on mycobacteria mainly due
to poor permeability through the cell envelope [13,14]. Mycobacteria has a unique, thick
lipid-rich envelope composed three layers: the capsule, the cell wall and the cell membrane.
This highly hydrophobic cell envelope acts as a protective armor and hinders the diffusion
of many compounds, including more hydrophobic molecules such as antibiotics [3,15,16].
Moreover, to reach the target, the drug must be able to cross the host cell membranes, as
Mtb can be present in multiple intra- and extracellular entities, such as macrophages and
necrotic granulomas [17].

Computer-aided drug discovery has been gaining more popularity due to the gains
in computational power, the development of new programs and the exponential raise in
the number of 3D protein targets available and deposited in the Protein Data Bank [18–20].
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The usage of these computational tools in the early stages of drug design minimizes
failures in later stages and makes the entire process more cost-efficient [21–23]. There are
multiple published works in which the usage of these tools has led to the discovery of
multiple promising compounds against PknB [24–28]. Consequently, this work aims to
use computational tools to understand the binding pocket of PknB and to identify new
promising inhibitors. To accomplish this goal, a combination of multiple computational
methods was employed, including virtual screening, molecular dynamics simulations and
free energy calculations [29]. An overview of the workflow is depicted in Figure 2.
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Figure 2. Workflow of the approach used in the current study.

2. Materials and Methods
2.1. Structure Identification

Structural information regarding the serine/threonine protein kinase (PknB) from
Mycobacterium tuberculosis was obtained from the Protein Data Bank [30]. The X-ray struc-
tures and corresponding information of the targets selected are detailed in Table 1. A total
of 15 protein structures and 8 ligands were used in the protein–ligand docking protocol
validation stage. Only the catalytic domain of each structure (i.e., chain A) was used in this
study.
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Table 1. Available structures of M. tuberculosis PknB on PDB.

Code Ligand Description Resolution (Å) Metal ion Mutation Ref.

1MRU ATP analog Chains A, B 3.00 Mg2+ 0 [17]
1O6Y ATP analog Catalytic Domain 2.20 Mg2+ 0 [16]
2FUM Antagonist Chains A, B, C, D 2.89 - 0 [18]
3F61 ATP analog Catalytic Domain 1.80 Mg2+ 2 (L33D/V222D) [31]
3F69 Antagonist Chains A, B 2.80 - 3 (L36D/M148L/M158V) [31]
3ORI ATP analog Chains A, B, C, D 2.00 Mn2+ 1 (L33D) [32]
3ORK ATP analog Catalytic Domain 1.60 Mn2+ 1 (L33D) [32]
3ORL ATP analog Catalytic Domain 2.90 Mn2+ 1 (L33D) [32]
3ORM ATP analog Catalytic Domain 2.50 Mn2+ 1 (D76A) [32]
3ORO ATP analog Catalytic Domain 1.90 - 1 (L33D) [32]
3ORP ATP analog Catalytic Domain 2.10 - 1 (L33D) [32]
3ORT ATP analog Catalytic Domain 1.90 - 1 (L33D) [32]
5U94 Antagonist Catalytic Domain 2.20 Mg2+ 0 [33]
6B2P Antagonist Catalytic Domain 3.01 - 0 [34]
6I2P ATP analog Bound to GarA 1 2.37 Mg2+ 1 (L33E) [35]

1 Glycogen accumulation regulator (GarA).

Most of the molecular targets studied present magnesium (Mg2+) or manganese ions
(Mn2+) in the active site. It has been demonstrated that magnesium ions have a stabilizing
effect on ATP in order to allow for the kinase phosphorylation process to occur, even though
its precise role is complex and not fully understood [36,37]. The mutations in the structures
3F61, 3F69, 3ORI, 3ORK, 3ORL, 3ORM, 3ORO, 3ORP and 3ORT were evaluated to further
understand the role of specific residues in the dimerization and kinase regulation [31,32].
The manganese ions were typically added in such studies as substitutes for Mg2+.

Nearly all of the selected structures correspond only to the catalytic domain of PknB
bound to an ATP analog. As mentioned previously, 2FUM was the first crystallized struc-
ture of PknB in complex with an inhibitor, a non-ATP analog, called mitoxantrone [18]. The
structures containing antagonists (2FUM, 5U94 and 6B2P) are in the closed conformation,
with Lys40 and Glu59 facing each other, except 3F69, in which the Glu59 is facing the
outside of the pocket. The main different in these four structures, compared to the ones
containing ATP analogs, is a small shift of the P-loop in the direction of the C-terminal lobe.
All the antagonist molecules are in the nucleotide binding gap of ATP. The most important
residues for the interactions with the antagonist molecules seem to be Leu17, Gly18, Val25,
Ala38, Met 92, Glu93, Tyr94 and Val95 in the N-terminal lobe, and Met145 and Met155 in
the C-terminal lobe [13,26,33].

2.2. Protein–Ligand Docking Protocol Validation

To evaluate and optimize the docking protocol and to select the best structure to rep-
resent this target in the virtual screening campaign, re-docking and cross-docking studies
were performed. The goal of the re-docking consists in providing an assessment of the
quality of the docking protocol in reproducing the pose of the crystallographic ligands
in their specific targets [38]. In fact, the accuracy of different docking methods/scoring
algorithms can vary significantly with the characteristics of the protein targets [38,39].
Several aspects of the protocol, such as the size and coordinates of the binding area, were
then optimized toward minimizing the RMSD between the re-docked and crystallographic
poses. Cross-docking consists in docking each ligand into all of the studied structures. It is
an important method to evaluate the ability of each structure to correctly accommodate lig-
ands from other structures and is a measure of its general usefulness [24]. Different scoring
functions evaluate the target and the ligands in different ways [38–41]. Additionally, the
type of target and characteristics of the ligand molecules can cause variation in the virtual
screening (VS) results; therefore, it is important to consider as many scoring function (SF)
alternatives as possible [39]. For this reason, five of the most widely used scoring functions
in docking were used in this study: AutoDock Vina [42] and GOLD [43] CHEMPLP, ASP,
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ChemScore and GoldScore. The RMSD calculations were performed using DockRMSD [44].
The best performing SFs alongside the best protein structure, in terms of the RMSD (Å)
comparison and docking score, were the ones selected to move to the next stage.

2.3. Virtual Screening Protocol Optimization

At this stage, the molecular targets that did not contain magnesium were removed, as
these ions are an important part of the catalytic site, and the re-docking and cross-docking
scores were decreased in the absence of these cations, confirming their importance for
proper ligand placement. Similarly, the structures that contained manganese ions were also
removed from the data set because its addition was only to evaluate their role in the stability
of the protein [32] and their score in the re-docking and cross docking was lower when com-
pared with the structures containing Mg2+ cations (Supplementary Materials—Table S1).
From the five structures containing Mg2+ ions, only the two that presented the best results
in the re-docking and cross-docking studies moved on to this stage.

To evaluate the quality of the VS protocol, the ability to discriminate between real
binders and non-binders was evaluated by applying an active vs. decoys protocol. Actives
are compounds that possess known experimental activity against PknB. Decoys are com-
pounds randomly generated from the active molecule to have similar 1-D physico-chemical
properties but different 2-D topologies to make them likely non-binders [37]. The ideal
scoring function would rank the real binders better than decoys, but due to imperfections
in the performance of the actual SF, that is not always the case [23]. Hence, the chosen SF
to move on to the screening of large databases of compounds is the one that provides the
best results in terms of early recognition metrics.

The active compounds were extracted from CHEMBL [45] and BindingDB [46] with
a previous filtration of the compounds with an experimental IC50 or Kd under 5500 nm.
For each active molecule, 50 decoys were randomly generated using the Database of
Useful Decoys: Enhanced (DUD-E) [47]. The test set was composed of a total of 68 active
compounds and 3400 decoys. Several metrics were used to evaluate the quality of the VS
protocol. Early recognition metrics, such as the Receiver Operating Characteristic curve
(ROC), the Area under the Curve (AUC) and the Enrichment Factor (EF), were calculated
using Microsoft excel. The Total Gain (TG), Robust Initial Enhancement (RIE), Boltzmann
enhanced discrimination of ROC (BEDROC) and Hit Rate were calculated using the online
“Screening Explorer” server [48].

2.4. Virtual Screening for the Identification of Potential PknB Binders

The optimized VS protocol obtained in the previous step and the SF GOLD/ASP was
applied to three large databases of compounds in search of promising molecules to be
tested experimentally as possible PknB inhibitors. The virtual databases selected were:
the FDA (U.S. Food and Drug Administration)-approved database, a subset of the ZINC
database [49], the Mu.Ta.Lig. Virtual Chemotheca [50] and the French National chemical
library (Chimiothèque Nationale) [51].

The ZINC database is a free archive of commercially available compounds, provided
by the Irwin and Shoichet Laboratories in the Department of Pharmaceutical Chemistry
at the University of California (UCSF), that contains over 230 million compounds. For
this study, a set of 3206 FDA-approved compounds was tested. Drug repurposing is a
powerful tool in finding new uses to already known and well-characterized drugs as
antimicrobial agents, whether used alone or in synergy with other antimicrobials [52]. The
Mu.Ta.Lig. Virtual Chemotheca was created from COST Action CA15135 and is composed
of molecules already synthetized/isolated and tested during the medicinal chemistry
research for lead compounds [50]. A total of 64,804 compounds were screened against PknB.
The Chimiothèque Nationale offers a diverse collection of more than 70,000 compounds and
15,000 original and little-tested natural extracts. In this study, a total of 61,640 compounds
from the Chimiothèque were screened.
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The top compounds of each database were evaluated using pharmacokinetics and
pharmacodynamics predictors such as SwissADME [53] and pkCSM [54]. In the top
results, the toxic and carcinogenic compounds were filtered out. Compounds with a
more positive LogP values were also favored due to their higher lipophilicity, and hence,
higher probability of crossing the mycobacterial envelope. A selection of molecules of
each database was performed and the selected molecules were moved on to the molecular
dynamics and free energy calculation stages.

2.5. Molecular Dynamics (MD) Simulations

The Molecular Dynamics (MD) simulations performed in this work were conducted
using the Amber18 software package [55]. To assign the molecular mechanics parameters,
ANTECHAMBER was used, taking into account the general amber force field [56], with
RESP charges calculated using HF/6–31G(d) with Gaussian16 [57]. The protein was de-
scribed using the Amber14sb force field [A]. The protein–ligand complexes were contained
in a box of TIP3P water molecules. The edges of the water box were placed at a distance of
at least 12 Å from each atom of the complex. Periodic boundary conditions were used on
all MD simulations. Long-range electrostatic interactions were calculated using the particle-
mesh Ewald summation method. For the electrostatic and Lennard-Jones interactions, a
cut-off value of 10.0 Å was used. All bonds involving hydrogen atoms were constrained
using the SHAKE algorithm. This allowed the application of a 2-fs time step.

All solvated ligand–PknB complexes went through a phased minimization procedure
with four energy-minimization stages to remove bad contacts and optimize the system
prior to the MD simulation. In the first stage (2500 steps), only the positions of the water
molecules were optimized, with the remaining parts of the system kept constrained to their
initial positions through the application of a harmonic potential (50 kcal mol−1 Å−2). In
the second stage (2500 steps), all hydrogen atoms present in the system were optimized. In
the third stage (2500 steps), only the positions of the protein backbone atoms were kept
constrained, enabling the optimization of the amino-acid side chains. Finally in the fourth
stage (10,000 steps), all constrains were removed, enabling a full optimization of the model.
After the energy minimization steps, all complexes were heated from 0 to 310.15 K over
50 ps, using a Langevin thermostat at constant volume (NVT ensemble). They were further
equilibrated at 310.15 K during 50 ps to stabilize the density. The production phase was
run for 100 ns using an NPT ensemble, with a pressure of 1 bar (Berendsen barostat) and
a temperature of 310.15 K (Langevin thermostat). The trajectory analysis was performed
using the cpptraj tool [58] and VMD [59]. To produce the high-quality protein figures,
PyMOL [60] was used.

2.6. MM/GBSA Free Energy Calculations

The MM/PBSA.py [61] script from Amber was used to perform the MM/GBSA
calculations. The calculations used the last 40 ns of each MD simulation, with an interval of
100 ps between each structure (a total of 800 structures per complex). A salt concentration of
0.100 mol dm−3 was used. To gather information about the contribution of each active-site
amino acid residue to the overall free energy, the per-residue free energy decomposition
option was used.

2.7. Data Analysis

All the data from the docking, re-docking, VS studies and MD simulations results
were treated using the average and standard deviation tools from Microsoft Excel. To
submit the VS results to the online “Screening Explorer” server, a csv file composed of
3 columns with the Identification of the compounds, the score (ranked from the best to the
worst), and the numerical indication of Active (1) or Decoy (0) was created for each SF.
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3. Results and Discussion

Table 2 compares the RMSD (Å) values for the re-docking of all the PknB protein
structures studied obtained with all the SFs used: Vina, CHEMPLP, ASP, ChemScore and
GoldScore.

Table 2. Re-docking RMSD (Å) values for the all the PknB structures for all the docking programs used.

PDB Code Ligand Vina CHEMPLP ASP ChemScore GoldScore Average per Target 1

1MRU ATP analog 0.57 4.98 2.42 6.77 2.35 3.42 ± 2.45
1O6Y ATP analog 0.82 1.38 1.43 2.43 1.13 1.44 ± 0.61
2FUM Antagonist 0.84 2.01 1.94 2.40 2.37 1.91 ± 0.63
3F61 ATP analog 0.18 1.53 1.72 5.14 0.63 1.84 ± 1.95
3F69 Antagonist 0.50 0.31 0.56 0.81 0.81 0.60 ± 0.21
3ORI ATP analog 0.51 3.33 0.93 2.77 3.33 2.17 ± 1.36
3ORK ATP analog 3.25 1.61 1.46 3.63 2.11 2.41 ± 0.97
3ORL ATP analog 1.17 2.79 2.31 3.00 3.07 2.47 ± 0.78
3ORM ATP analog 1.68 3.5 1.49 3.06 3.9 2.73 ± 1.08
3ORO ATP analog 0.74 1.37 2.8 2.85 0.85 1.72 ± 1.03
3ORP ATP analog 1.16 2.58 2.37 2.33 0.5 1.79 ± 0.91
3ORT ATP analog 0.22 2.55 1.79 2.58 2.33 1.89 ± 0.99
5U94 Antagonist 0.25 0.04 1.14 5.97 0.60 1.60 ± 2.47
6B2P Antagonist 2.81 1.40 1.88 3.46 6.00 3.11 ± 1.80
6I2P ATP analog 1.68 1.10 1.35 1.13 2.23 1.50 ± 0.47

Average per SF 2 1.09 ± 0.92 2.03 ± 1.28 1.70 ± 0.61 3.22 ± 1.63 2.15 ± 1.52
1 n = 5; 2 n = 15.

Molecular docking studies were performed to evaluate the effect of the metal ions
(Mg2+ and Mn2+) on the re-docking scores. All scores improved in the presence of magne-
sium ions (data not shown), indicating that they are indeed crucial for the stabilization of
the ATP analogs and other binders.

Generally, the SFs that better reproduced the crystallographic pose were Vina, with an
average value of 1.09 Å, followed by ASP, with a value of 1.70 Å. On the other hand, all
the other GOLD SFs did not show a good performance (CHEMPLP–2.03 Å, ChemScore
3.22 Å and GoldScore-2.15 Å). ChemScore was the SF that had the most difficulty in the
re-docking, which can be explained by the fact that bigger, more flexible ligands, such as
ATP analogs, can be more challenging to place correctly [43]. Overall, the RMSD values are
below 2 Å across most targets, indicating that there is a general good performance with the
different docking programs/SFs. According to the cross-docking results (Supplementary
Materials—Tables S2–S6) the target 1O6Y and 3F61 were the best in the cross-docking of all
the ligands, across most of the SFs tested.

The structures 3ORI and 3ORL also presented very good scores for all the SFs; however,
these structures did not perform as effectively in the re-docking stage (with RMSD values
of 2.14 Å and 2.47 Å, respectively). Furthermore, the presence of manganese cations and
mutations made them less suitable to move on to the VS of large databases of compounds.
Based on these results, the choice of the structures to continue the protocol were 1O6Y
and 3F61, which had the best scores in 3 out of the 5 different SFs. The GOLD SFs were
chosen to progress to the next stage, due to their observed higher computational efficiencies
achieved with similar accuracy levels.

Table 3 compares the ability of all tested GOLD SFs (CHEMPLP, ASP, ChemScore and
GoldScore) in discriminating between binders and decoys for both studied structures, using
several metrics. The enrichment factor is described as the ratio between the percentage of
active compounds in the selected subset and the percentage in the entire database [62]. A
high EF in the top 1% means that the scoring function can find more true positives early on,
and it means that the scoring function is adequate or better for a specific target. However,
this metric is highly dependent on the number of actives and is unable to discriminate
between SFs that present actives in the top of the list and SFs that present actives just
before the threshold [63]. For these reasons, the robust initial enhancement (RIE) was also
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considered since it does not depend on the number of actives used and is less susceptible
to variations when a small number of actives are used. Comparing the structures studied,
the higher EF1% was obtained for structure 1O6Y across all the SFs. However, the ASP
scoring function stands out with an EF1% of 3.76.

Table 3. Evaluation metrics for Active vs. Decoys virtual screening results for the selected targets.

1O6Y 3F61

EF 1% AUC% TG RIE BEDROC EF 1% AUC TG RIE BEDROC

CHEMPLP 1.88 63.7 0.18 1.44 0.08 0.00 60.6 0.12 0.65 0.04
ASP 3.76 80.9 0.40 3.19 0.19 1.88 80.6 0.40 2.87 0.17

ChemScore 1.88 51.4 0.02 0.73 0.04 0.00 50.1 0.01 0.65 0.04
GoldScore 1.88 66.7 0.24 2.58 0.15 0.00 50.6 0.02 1.00 0.06

A ROC curve is obtained by plotting the true positive rate (TPR) against the false
positive rate (FPR). In other words, if only true positives are found at the top of the database,
it leads to a higher ROC curve and an AUC of 100%. BEDROC is a normalization of the RIE
bounded by 0 and 1. TG quantifies the discrimination of actives over decoys attributable
to score variations. TG values over 0.25 combined with an AUC over 0.5 indicate a good
performance and reproducibility from the VS protocol [48]. In Figure 3, it is possible to
visualize the difference in ROC curves between targets and SFs. ASP stands out as the SF
that can find more true positives early on (3.76) and as the one that shows a higher AUC
(80.9%). ChemScore was the SF that performed the worst in both targets. Since the best
performing SF, across all the metrics and for both targets, was ASP, it was this SF that was
selected in the virtual screening of large databases of compounds.
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Figure 3. ROC curves obtained for target structures 1O6Y and 3F61 with the different scoring functions used in the active
vs. decoys virtual screening evaluation stage.

An explanation for the discrepancy of results between the two structures might be
the position of the residue Glu59 and the position of the magnesium positioning loop
(Figure 4). Some authors defend that the position of this loop is important to bring the
helix C to its activated form [64], that is, promoting the contact between Lys40 and Glu59.
For this reason, the structure that was chosen to move on to the VS stage was 1O6Y.
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Figure 4. The ATP analogs are shown in cyan (1O6Y) and yellow (3F61) sticks. Differences in the position of the main
PknB groups are highlighted. One of the fundamental differences between structures is the position of Glu59. In 3F61, this
residue shifts away from the active site and the hydrogen bond with Lys40 does not occur. The only group that maintains
its positions in both structures is the catalytic loop (red). Figure was produced using Pymol.

From the virtual screening results, a selection of molecules was used to perform MD
simulations. These molecules were chosen based on their ranking during the virtual screen-
ing procedure and their molecular diversity. For the molecules from the Chemotheca and
from Chimiothèque Nationale databases, Lipinski’s rule of five [65,66] was also considered.

The chosen molecules from ZINC/FDA were Inositol Niacinate, Riboflavin Monophos-
phate, Fosaprepitant, Nilotinib, Gadofosveset, Tedizolid Phosphate, Cobicistat and Can-
grelor. From Chemotheca, the chosen molecules were CMLDID11504, CMLDID1335,
CMLDID24682, CMLDID25037, CMLDID35281, CMLDID39270, CMLDID42750, CML-
DID46926, CMLDID49099 and CMLDID57593. Finally, from Chimiothèque Nationale,
the chosen molecules were AB-00011214, AB-00011297, AB-00014565, AB-00019576, AB-
00028661, AB-00057453, AB-00063630, AB-00064179, AB-00070072 and AB-00074812. All
selected molecules, their scores, and some of their physical–chemical properties can be
seen in Figure 5. These properties and figures were obtained using the data visualization
program DataWarrior [67]. As a reference molecule, Mitoxantrone was used. Two of
the chosen molecules have been reported as active against M. tuberculosis or other mem-
bers of the Mycobacteriaceae family. Nilotinib was shown to regulate protective innate
immune responses against intracellular Mycobacterium bovis and Mycobacterium avium [68].
Tedizolid Phosphate was reported to have powerful bactericidal capabilities against M.
avium [69] and showed promising capabilities against the Mycobacterium abscessus com-
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plex [70]. Furthermore, Tedizolid Phosphate has also been reported to be active against M.
tuberculosis [71,72].
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To validate the molecular docking results, the structural stability of the protein–ligand
complex was evaluated, and MM/GBSA calculations and molecular dynamics simulations
were carried out. For each molecule, in complex with 1O6Y, 100 ns of simulation was
performed, starting from the posed predicted from docking. To evaluate the structural
stability, multiple properties were calculated for the last 40 ns of simulation for each
ligand–protein complex, and these are presented in Table 4.

When comparing to the initial docking pose, 13 of the 28 ligands had an RMSD value
lower than 2 Å (for further information, see Supplementary Materials—Figures S1–S3).
Even in the cases where the RMSD value was higher, the standard deviation remained
low. This suggests an induced-fit adjustment to the binding pocket of PknB. All molecules
remained bound to the protein in the predicted binding location. The stability of the
complexes is further supported by the stable SASA values observed during the last 40 ns
of simulation. Considering that all protein–ligand complexes were stable, MM/GBSA
calculations could be performed. The results are presented in Table 5 and a comparison of
the MM/GBSA results with the virtual screening scores is displayed in Figure 6.
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Table 4. Average RMSD values (Å), RMSF (Å), average SASA (Å2), percentage of potential ligand SASA buried and an
average number of hydrogen bonds for the ligands for the last 40 ns of the simulation of the PknB–ligand complexes.

Database Molecules Average RMSD (Å) 1 RMSF (Å) Average SASA (Å2) 1
Percentage of

Potential Ligand
SASA Buried (%)

Average #
H-Bonds 1

Mu.Ta.Lig
Chemotheca

CMLDID11504 3.56 ± 0.67 1.4 199 ± 65 53 ± 3 0.3
CMLDID1335 1.74 ± 0.41 1.2 395 ± 43 51 ± 5 0.4
CMLDID24682 0.69 ± 0.12 0.3 194 ± 172 57 ± 3 1.5
CMLDID35281 2.26 ± 0.73 1.4 374 ± 119 50 ± 4 0.3
CMLDID39270 2.44 ± 0.60 1.8 230 ± 48 52 ± 3 0.3
CMLDID42750 1.58 ± 0.44 1.4 182 ± 48 58 ± 3 0.3
CMLDID46926 1.88 ± 0.54 1.4 235 ± 49 55 ± 3 0.4
CMLDID49099 1.29 ± 0.32 0.9 265 ± 30 56 ± 6 1
CMLDID57593 1.93 ± 0.40 1.1 303 ± 27 45 ± 3 0.4
CMLDID25037 2.17 ± 0.30 1.2 284 ± 39 42 ± 4 0.2

Chimiothèque
Nationale

AB-00011214 2.92 ± 0.26 1.3 394 ± 116 61 ± 3 0.9
AB-00011297 1.48 ± 0.36 1.1 570 ± 143 51 ± 4 0.5
AB-00014564 2.47 ± 0.57 1.1 187 ± 47 48 ± 5 2
AB-00019576 2.39 ± 0.47 1.6 413 ± 165 45 ± 6 0.6
AB-00028661 3.75 ± 0.47 1.7 448 ± 47 53 ± 4 1.4
AB-00057453 2.50 ± 0.80 1.8 338 ± 68 48 ± 6 0.6
AB-00063630 2.03 ± 0.34 1.1 239 ± 38 59 ± 4 0.6
AB-00064179 1.87 ± 0.49 1 317 ± 33 49 ± 4 0.7
AB-00070072 1.15 ± 0.37 0.8 328 ± 26 50 ± 3 0.1
AB-00074812 3.91 ± 1.18 2.9 542 ± 101 63 ± 3 1.3

ZINC/
FDA

Inositol
Niacinate 1.77 ± 0.19 1 624 ± 135 50 ± 5 0.2

Riboflavin
Monophosphate 0.70 ± 0.17 0.3 188 ± 31 49 ± 4 0.9

Fosaprepitant 1.99 ± 0.36 0.8 408 ± 67 57 ± 2 0.3
Nilotinib 2.51 ± 1.34 2.2 325 ± 69 50 ± 3 0.3

Gadofosveset 3.96 ± 0.40 2 478 ± 51 53 ± 2 3.6
Tedizolid

Phosphate 1.33 ± 0.34 0.9 266 ± 67 51 ± 4 0.6

Cobicistat 3.89 ± 1.29 2.9 607 ± 82 53 ± 5 0.7
Cangrelor 2.27 ± 0.27 1.2 388 ± 216 57 ± 5 0.2

Reference Mitoxantrone 1.94 ± 0.30 1.3 401 ± 116 62 ± 3 1.3
1 n = 2000 frames.

Table 5. Results for the MM/GBSA calculations on the selected molecules and all their components.

MM GBSA ∆Gbinding

Database Ligand Evdw
(kcal/mol) Eel (kcal/mol) ESURF

(kcal/mol) EGB (kcal/mol) MM/GBSA
(kcal/mol)

Mu.Ta.Lig
Chemotheca

CMLDID11504 −38.8 ± 0.2 −77.6 ± 0.3 −5.8 ± 0.0 103.5 ± 0.3 −18.7 ± 0.2
CMLDID1335 −19.3 ± 0.2 −265.0 ± 2.0 −2.5 ± 0.0 272.1 ± 1.9 −14.8 ± 0.2
CMLDID24682 −46.1 ± 0.1 −111.4 ± 0.2 −6.8 ± 0.0 132.8 ± 0.2 −31.5 ± 0.1
CMLDID35281 −29.6 ± 0.1 −115.6 ± 1.0 −3.2 ± 0.1 126.9 ± 0.9 −21.5 ± 0.1
CMLDID39270 −37.4 ± 0.2 −79.7 ± 0.4 −5.4 ± 0.0 108.5 ± 0.3 −14.0 ± 0.2
CMLDID42750 −37.4 ± 0.2 −58.7 ± 0.2 −5.4 ± 0.0 87.3 ± 0.2 −14.2 ± 0.1
CMLDID46926 −39.2 ± 0.2 −15.9 ± 0.3 −4.8 ± 0.0 42.8 ± 0.4 −17.1 ± 0.2
CMLDID49099 −39.2 ± 0.1 −160.8 ± 0.5 −5.3 ± 0.0 176.0 ± 0.5 −29.3 ± 0.1
CMLDID57593 −29.6 ± 0.1 −2.6 ± 0.1 −3.1 ± 0.0 16.3 ± 0.1 −19.0 ± 0.1
CMLDID25037 −31.7 ± 0.2 −81.8 ± 0.4 −5.1 ± 0.0 111.8 ± 0.3 −6.9 ± 0.2
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Table 5. Cont.

MM GBSA ∆Gbinding

Database Ligand Evdw
(kcal/mol) Eel (kcal/mol) ESURF

(kcal/mol) EGB (kcal/mol) MM/GBSA
(kcal/mol)

Chimiothèque
Nationale

AB-00011214 −43.4 ± 0.1 −244.6 ± 0.8 −5.2 ± 0.0 263.7 ± 0.7 −29.4 ± 0.2
AB-00011297 −40.1 ± 0.2 −114.1 ± 0.4 −4.1 ± 0.0 131.9 ± 0.4 −26.4 ± 0.1
AB-00014564 −49.2 ± 0.2 −41.5 ± 0.3 −6.1 ± 0.0 59.9 ± 0.2 −37.0 ± 0.1
AB-00019576 −45.8 ± 0.1 −73.7 ± 0.3 −6.8 ± 0.0 107.1 ± 0,2 −19.1 ± 0.2
AB-00028661 −31.4 ± 0.2 −197.8 ± 0.7 −5.5 ± 0.0 224.3 ± 0.7 −10.4 ± 0.2
AB-00057453 −37.8 ± 0.2 −219.4 ± 0.8 −4.3 ± 0.0 238.5 ± 0.7 −23.0 ± 0.1
AB-00063630 −42.3 ± 0.1 −70.2 ± 0.3 −6.6 ± 0.0 101.9 ± 0.2 −17.2 ± 0.1
AB-00064179 −33.2 ± 0.1 −55.0 ± 0.3 −4.8 ± 0.0 80.8 ± 0.2 −12.2 ± 0.1
AB-00070072 −42.7 ± 0.1 7.6 ± 0.1 −4.8 ± 0.0 12.5 ± 0.1 −27.4 ± 0.1
AB-00074812 −30.1 ± 0.2 −340.0 ± 1.3 −4.6 ± 0.0 347.6 ± 1.2 −27.1 ± 0.2

ZINC/
FDA

Inositol Niacinate −35.7 ± 0.2 −5.7 ± 0.3 −4.6 ± 0.0 30.8 ± 0.3 −15.2 ± 0.1
Riboflavin

Monophosphate −16.1 ± 0.2 −584.8 ± 0.9 −6.5 ± 0.0 547.7 ± 0.8 −59.8 ± 0.3

Fosaprepitant 2.4 ± 0.2 −486.5 ± 0.7 −3.6 ± 0.0 445.1 ± 0.6 −42.6 ± 0.3
Nilotinib −38.4 ± 0.3 −17.9 ± 0.5 −5.1 ± 0.0 38.0 ± 0.6 −23.4 ± 0.2

Gadofosveset −25.0 ± 0.3 −518.5 ± 1.7 −7.1 ± 0.0 517.4 ± 1.6 −33.1 ± 0.3
Tedizolid

Phosphate −6.6 ± 0.2 −565.6 ± 0.8 −4.1 ± 0.0 526 ± 0.7 −49.5 ± 0.3

Cobicistat −39.6 ± 0.2 −115.2 ± 0.6 −5.2 ± 0.0 135.5 ± 0.6 −24.5 ± 0.2
Cangrelor −58.5 ± 0.1 −86.7 ± 0.3 −8.2 ± 0.0 112.8 ± 0.3 −40.7 ± 0.2

Reference Mitoxantrone −31.9 ± 0.2 −295.3 ± 1.1 −4.2 ± 0.0 308.4 ± 1.0 −23.0 ± 0.2
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A total of 15 of 28 ligands performed equal or better than the reference ligand. From
these, two were from Chemotheca, six were from Chimiothèque Nationale and seven
were from ZINC/FDA. Between these ligands, these MM/GBSA values varied between
−23.0 ± 0.1 and −59.8 ± 0.3 kcal/mol, compared to Mitoxantrone’s −23.0 ± 0.2 kcal/mol.
The best ligand from Chemotheca was CMLDID24682, with a MM/GBSA value of
−31.5 ± 0.1 kcal/mol. The molecule from Chimiothèque Nationale with the best per-
formance was AB-00014564, with a result of −37.0 ± 0.1 kcal/mol. Lastly, the ligand from
ZINC/FDA with the best results was Riboflavin Monophosphate with an MM/GBSA value
of −59.8 ± 0.3 kcal/mol.

To further analyze the affinity between the best performing ligands and the receptor,
the overall binding free energy was decomposed into the contribution of each residue.
The residues that had, in general, a bigger contribution are represented in Figure 7. The
six top performing ligands were chosen for this analysis, one from Chemotheca (CML-
DID24682), two from Chimiothèque Nationale (AB-00014564 and AB-00011214) and three
from ZINC/FDA (Table 6). From ZINC/FDA, the molecules chosen were Riboflavin
Monophosphate, Tedizolid phosphate and Gadofosveset trisodium.
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Figure 7. Per-residue decomposition of the free energy calculations using MM/GBSA for the best performing ligands.

Overall, the PknB residues that had higher contributions for binding free energy
were Leu17, Val26, Tyr94 and Met155. For CMLDID24682, Val 25 and Met155 had the
greater contributions, with ∆G values of −2.3 ± 0.3 and −2.6 ± 0.4 kcal/mol, respec-
tively. The residues with the higher contributions were maintained for AB-00014564,
with a ∆G value of −2.9 ± 0.4 kcal/mol for Val 25 and of −3.7 ± 0.8 kcal/mol for
Met155. In the case of AB-00011214, Met155 remained one of the more important residues,
having a ∆G value of −2.0 ± 0.7 kcal/mol, and was joined by Tyr94, which had a ∆G
value of −2.2 ± 0.5 kcal/mol. For the binding of the first of the FDA molecules, Ri-
boflavin Monophosphate, the greater contribution came from Leu17 and Met155, pre-
senting ∆G values of −2.4 ± 0.5 and −2.3 ± 0.4 kcal/mol, respectively. As for the binding
of Tedizolid Phosphate, the greater contribution came from Val25, with a ∆G value of
−1.6 ± 0.5 kcal/mol. The same was observed for the final ligand, Gadofosveset, in which
Val25 presented the higher contribution to the binding free energy with a decomposed ∆G
value of 1.8 ± 0.3 kcal/mol.
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Table 6. Best performing molecules from the ZINC/FDA database.

Drug Name Description Structure

Riboflavin Monophosphate

Riboflavin Monophosphate is a form of vitamin
B2 used to restore riboflavin in anaemia,

migraine, alcoholism, and
hyperhomocysteinemia [73].
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To extract the most representative structure from the MD simulations, the cluster com-
mand from cpptraj was used [59]. The six best performing molecules and their interactions
are represented in Figures 8 and 9. The represented interactions were obtained by using
the Protein–Ligand Interaction Profiler [76].

During the interaction of CMLDID2468 with PknB, multiple hydrogen bonds were
established. Lys40 interacted with the Triazine group, and Val95 interacted with the
nitrogen from the terminal aniline group. Lastly, Ala144 interacted with the nitrogen in
the other terminal group. Throughout the simulation, there was a shift in the position of
the magnesium ions and the carboxamide region of the molecule was stabilized by one of
them. The P-loop accompanied the shift of the cations and moved toward the front, and
Glu59 was oriented toward the second Mg2+.

AB-00011214 only formed one hydrogen bond with PknB. Asp96 interacted with one
of the secondary amine groups. Throughout the simulation, there was a shift in the position
of the P-loop of PknB opening the catalytic site, increasing the distance between Lys40 and
Glu59. This occurred due to the structure of the ligand. It was a large and flexible molecule
and as it unfolded in the catalytic site, it triggered a shift in the position of the residues of
the nucleotide-binding area as well as the Mg cations.
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As for AB-00014564, this ligand interacted with PknB with three hydrogen bonds.
Lys40 interacted with the phenol group. Glu93 and Val95 interacted with the Pyrrolidine-
2,5-diol group, with the nitrogen and one of the oxygens, respectively. The molecule
occupied a higher position in nucleotide-binding area of the PknB binding pocket, causing
a shift in the P-loop region, the Mg2+ ions and magnesium position loop, toward the C-lobe.
The pocket, however, maintained its closed configuration.

Riboflavin Monophosphate established multiple interactions. Gly21 formed a hy-
drogen bond with the phosphate group. Lys40 formed a salt bridge with the same phos-
phate group. Asp102 established a hydrogen bond with one of the nitrogens from the
Imidazolidine-2,4-diol group. Finally, Ala142 and Asp156 formed hydrogen bonds with
the three oxygens from the main chain. The phosphate groups of this compound interacted
with the magnesium cations in the same way as the ATP analogs, and hence, there was no
significative difference in the positions of the P-loop and magnesium positioning loop.

The Tedizolid Phosphate bond to PknB formed a hydrogen bond between Ser23 and
the oxygen from the Hydroxyoxazolidin group. Lys40 established a salt bridge with the
phosphate group. The phosphate group of Tedizolid Phosphate also interacted with the
Mg2+ in the same way as the ATP analogs; however, the ring portion of compound was
not in the same place as the adenine moiety of ATP would be, leading to a shift of the
activation and catalytic loops.

Finally, Gadofosveset established two hydrogen bonds with PknB. Phe19 and Gly21
interacted with two of the ligand’s carboxylic acids. In addition, Arg101 and Lys140 formed
salt bridges with two other carboxylic acids. Finally, Lys40 formed a salt bridge with the
phosphate group. Throughout the simulation, there were no significant differences in the
position of the P-loop. However, the phosphate group, which was present in the middle of
the ligand, was stabilized by the Mg cations, so it was oriented in a way that was closer to
the cations than to where the adenine moiety of ATP would have been. This also led to a
shift in the position of the activation and catalytic loops.

4. Conclusions

In this article, an in silico methodology is described for the discovery of new my-
cobacterial serine/threonine-protein kinase, PknB, inhibitors. From the six compounds
identified as potential inhibitors, only one (AB-00011214) was able to turn the active site
from a closed to an open conformation, with a shift in the position of the residue Glu59. In
the simulations of the other five compounds, there was a slight shift of the Glu59, but only
toward one of the Mg cations; this was not enough to lead to an open conformation. Two of
the FDA compounds (Tedizolid Phosphate and Gadofosveset) caused significative changes
in the position of the activation and catalytic loops, with Tedizolid showing intracellular
antimicrobial activity against Mtb. Of course, the precise kinetic effect of these structural
modifications is still not clear; however, these results can provide clues toward a better
understanding of the inhibitory mechanism. Further in vitro and in vivo experimental
studies on the drugs described should be considered to evaluate their ability to cross the
bacterial envelope and confirm their actual potential as anti-tuberculosis agents, not only
against Mtb but also toward resistant strains.

In conclusion, the data presented here demonstrate that this multi-level computational
approach accurately predicted the binding position of several crystallographic compounds
and identified six potential strong candidates for PknB inhibition. It also provided solid
structural information on the protein–ligand interactions that can be used to design more
specific and effective derivatives.

Supplementary Materials: The following are available online, Figure S1: Root mean square deviation
plots for the selected ligands from the ZINC/FDA database, Figure S2: Root mean square deviation
plots for the selected ligands from the Mu.Ta.Lig. Virtual Chemotheca, Figure S3: Root mean square
deviation plots for the selected ligands from the Chimiothèque Nationale, Table S1: GOLD Re-docking
results showing the Impact of the presence of Mg2+ and Mn2+ on the score, Table S2: CHEMPLP
Cross-docking score results for all the molecular targets studied. A higher score corresponds to
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a better affinity, Table S3: ASP score results for all the molecular targets studied. A higher score
corresponds to a better affinity, Table S4: ChemScore score results for all the molecular targets studied.
A higher score corresponds to a better affinity, Table S5: GoldScore score results for all the molecular
targets studied. A higher score corresponds to a better affinity, Table S6: Vina score results for all the
molecular targets studied. A more negative score corresponds to a better affinity.
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