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Shape encoding mechanisms can be probed by the sequential brief display of dots that mark the boundary of the shape, and
delays of less that a millisecond between successive dots can impair recognition. It is not entirely clear whether this is
accomplished by preserving stimulus timing in the signal being sent to the brain, or calls for a retinal binding mechanism. Two
experiments manipulated the degree of simultaneity among and within dot pairs, requiring also that the pair members be in
the same half of the visual field or on opposite halves, i.e., across the midline from one another. Recognition performance was
impaired the same for these two conditions. The results make it likely that simultaneity of cues is being registered within the
retina. A potential mechanism is suggested, calling for linkage of stimulated sites through activation of PA1 cells. A third
experiment confirmed a prior finding that the overall level of recognition deficit is partly a function of display-set size, and
affirmed submillisecond resolution in binding dot pairs into effective shape-recognition cues.
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INTRODUCTION

‘‘Certainly every Gestalt psychologists knows perfectly well that a beam

of light falls on a certain retinal spot as if there were no other retinal

points and no other light beams upon them. But there is no proof that the

physiological sequel of such stimulation is made up of local independent

processes.’’ Kohler [1]

Previous research has shown that objects can be identified when

they are represented using a relatively sparse sampling of dots that

mark the outer boundary, similar to a silhouette [2]. Further, they

can be recognized with each dot being shown sequentially for only

a tenth of a millisecond [3,4], which can be described as a minimal

transient discrete cue (MTDC) protocol for the study of shape

perception.

To be effective as shape-recognition cues, the dots also must be

presented with millisecond-levels of temporal contiguity. If

adjacent dots are displayed in pairs, providing delays between

successive pairs as small as 2 ms impairs recognition, as do delays

as short as 0.5 ms between the pair members [5,6].

Such very brief time intervals might call for a special retinal

encoding mechanism that results in synchronous firing of retinal

ganglion cells. A number of investigators have proposed that

synchrony serves to bind figural components [7–12], or to offset

redundant information loss [13].

There is evidence that simultaneity is preserved in the signal

being sent to the brain. Conduction velocity of optic nerve fibers

appears to be designed to preserve the time differentials among

stimulus events, or lack thereof. Stanford [14] reported that travel

time, which was largely a function of axon diameter, was faster for

signals coming from more peripheral portions of the retina. This

provided for equal time-of-arrival at the lateral geniculate nucleus

irrespective of the retinal site that was stimulated. The travel time

for arrival at the thalamus was in the range of 5 ms, with

a standard deviation of approximately 0.5 ms. Reinagel & Reid

[15,16] report that the signals being received by the lateral

geniculate nucleus are reliable, temporally precise, and are altered

very little by noise.

However, even if the retina provides special mechanisms for

registering the simultaneity of stimulation with high precision, this

might mediate motion analysis and have no relevance to shape

recognition. In general one would not expect any coordination of

activity within the retina whose purpose was to modify the utility

of shape-recognition cues. The signal may be filtered for contrast,

motion and other local properties, but it is thought that global

relationships are evaluated at a very late stage – perhaps in the

lateral occipital complex, which is a major brain site for analysis of

shape information in humans [17].

Further, even if the retina can transmit the timing with great

precision, this might provide functional benefit only for messages

coming from each half of the retina. As illustrated in Figure 1,

nasal and temporal hemiretinas send their information to different

hemispheres. Even with binocular viewing, the projections of the

optic nerves carry information from the right visual field, i.e., the

right half of the display board in the present case, to the left

hemisphere, and vice versa. These signal streams will be processed

through several neural links, including a requirement for the signal

to cross the corpus callosum, before relationships between the two

sides of the image can be assessed by the brain. It seems unlikely

that millisecond-level precision can be preserved across so many

processing stages, and if not, one would find that linkage of

contemporaneous shape cues would be restricted to a given

hemiretina. If this is the case, one would predict that any benefit

from contemporaneous stimulation would be manifested only

within each half of the visual field, i.e., for image components that

are provided to the left half or to the right half of the display.

Two experiments are reported that provide clear evidence that

the two halves of the visual field are linked by a mechanism that

registers contemporaneous shape cues. This is best explained on
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the basis of local encoding mechanisms that link the shape cues, as

discussed below.

A third experiment was performed to answer some questions

about the mechanism itself. As noted above, two earlier reports

[4,5] found significant declines in recognition of shapes when near

simultaneous dot-pairs were temporally separated by 2 ms.

Further, with the pairs being separated by 3 ms, inserting a half

millisecond interval between the pair members produced a signif-

icant decline in recognition. It is possible that a requirement for

sub-millisecond simultaneity is a special requirement for individual

dots, providing some form of linkage that makes them more

effective at eliciting shape memory. It cannot be assumed that any

additional linkage would be seen with dot pairs in which the

members have already been yoked. Further, temporal proximity

effects for intervals shorter than 2 ms appeared to be stronger than

for intervals greater than 2 ms, which again might indicate two

separate mechanisms – the former for individual dots and the

latter for pairs in which the individual dots have already been

linked. One goal of the third experiment was to clarify this matter

by providing submillisecond separation of successive dot-pairs.

One of the previous studies also observed that the temporal

proximity had a differential impact on recognition as a function of

the number of dots that were used as shape cues [6]. An early goal

in the development of the research protocol was to compensate for

complexity and familiarity of shapes by varying the size of the

display set, thus providing for approximate equality in potential for

recognition. However, if it could be confirmed that recognition is

a function of the number of dots in the display set, this might

provide an additional tool for examining the mechanism by which

the shape cues are integrated.

The third experiment therefore examined recognition of shapes

with brief display of pairs of boundary dots, evaluating with

temporal separation between successive pairs at intervals ranging

from 0.5 to 8 ms, and with attention to differential effects as

a function of the number of dots in the display set. The results

indicate linear gradients of effect across time and display set size.

RESULTS

Experiment 1: Differential display of dot pairs to

retinal hemifields
As illustrated in Figure 2, each shape was displayed as a spaced

sampling of dots that fell on the outer boundary of the shape,

similar to a silhouette. The dots of this display set were flashed

successively on a 64664 LED array, with the duration of each dot

being 0.1 ms (designated as T1). Dots of the display set were

shown in pairs that were chosen to have an axis of alignment that

was predominantly vertical or horizontal, as illustrated in the left

panels of Figure 2A and 2B, respectively. Except for the constraint

on alignment, the locations of pair members were chosen at

random.

There was no delay in display of a given pair, which is to say

that the T2 interval was zero. Thus as soon as the first dot was

turned off, the second was turned on, and total display time for the

pair was 0.2 ms. The interval between successive, randomly

chosen pairs, designated as T3, was varied from 0–6 ms. The right

panels of Figure 1A and 1B show each pair in isolation, suggesting

what would stimulate the retina in the 0.2 ms required to show the

pair, and with successive pairs being separated by a T3 interval.

An inventory of 150 shapes was shown to each participant, each

shape being shown only once using a particular combination of

treatment conditions, i.e., vertical or horizontal alignment of pairs,

and one of the four T3 intervals. The participants were asked to

name each shape, and their answers were scored as indicating

Figure 1. Stimulus dots on each side of the display go to opposite hemispheres. The vertical meridian of the eye provides a dividing line for both
anatomical and functional segregation of image information. As subjects fixate the display board, dots that are on each side of the stimulus will be
sent to opposite hemispheres. This is true even when both eyes are used to view the stimulus, as illustrated in any basic textbook on visual function.
Thus for dot pairs that are horizontally aligned, one member will be sent to the ipsilateral side of the brain and the other to the contralateral side. This
might be expected to impair performance in a minimal transient discrete cue task wherein pairs must have millisecond-level contiguity to provide for
effective shape recognition.
doi:10.1371/journal.pone.0000871.g001
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recognition or not. In the analysis that follows, level of recognition

may also be identified as hit rate.

The data were evaluated with a generalized linear mixed model

(GLMM), which found a significant decline in recognition as

a function of T3 interval (p,.001). There were no significant

differences for vertical versus horizontal alignment of the dot pairs

(p = .50), no interaction between alignment and T3 (p = .51) and

no sign of departure from linearity across the four levels of T3

(p = .54). Model means are plotted in Figure 3.

Since dot alignment was not significant, a single regression line

has been fitted to the average of the two conditions. A linear

decline in recognition is clearly evident, with the differential

between 0 ms and 2 ms being significant (p,.01), which agrees

with the results of previous work [5].

Finding that pair members are equally effective as shape cues

whether they have horizontal or vertical alignment provides clear

evidence of functional linkage across the midline of the visual field.

The prior work [5,6] has shown that the members of the pair must

be presented with near simultaneity to be maximally effective as

shape cues, and temporal separations of even half a millisecond

can produce a significant impairment of recognition. With each

pair being displayed for only 0.2 ms, both members of a vertically

aligned pair would fall on either the nasal hemiretina or temporal

hemiretina irrespective of where the subject was looking.

Conversely, the horizontal positioning of pair members would

place each member on opposite sides of the vertical meridian. One

would have seen a differential in the level of recognition if the

members of the pair could not be functionally linked with half-

millisecond precision. The fact that no differential in recognition

was found for the horizontal- and vertical-pairing conditions

indicates that the pair members were provided with that linkage.

To be completely accurate, if the participant was not fixating on

the center of the display – even though central fixation would be

optimal for performing the recognition task – a few horizontally

aligned pairs would likely stimulate the same side of the retina.

However, even here most pair members would fall on opposite

sides, and one would see dramatic impairment of recognition if the

two sides were not functionally linked. This is best explained in

terms of a functional linkage of the two hemiretinas, as discussed

below.

Experiment 2: Retinal hemifields register

differentials in the millisecond range
Previous studies using the MTDC protocol [5,6] found the

strongest evidence of the importance of stimulus simultaneity by

keeping a constant T3 interval between pairs and varying the T2

interval. Experiment 2 followed that procedure, setting T3 at 3 ms

and using four intermediate levels of T2. Only horizontal pairs

were used to focus the full effort on an examination of temporal

linkage of hemiretinas.

GLMM analysis found a significant decline in recognition as

a function of the T2 interval (p,.001). The differential between

0.0 and 1.0 ms was significant (p,.02), which is consistent with

earlier findings that millisecond levels of delay between pair

members will impair recognition [5].
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A.  Vertical Pairing B.  Horizontal Pairing

Figure 2. Horizontal or vertically alignment of pairs. The four panels illustrate the method of forming vertically and horizontally aligned pairs. In the
first and third panels a full display set is shown, these being all the dots that were paired and successively displayed to a given participant. To form
the pair a dot was chosen at random, and then was yoked with another, requiring that the axis of alignment across the two must be approximately
vertical or horizontal. This process was repeated until all possible pairs were chosen. The second and fourth panels show the pairs being successively
displayed.
doi:10.1371/journal.pone.0000871.g002
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Predicted means are plotted in Figure 4, along with a regression

line that affirms the linear decline in treatment effect. The decline

demonstrates that the pair members are most effective as shape-

recognition cues if they are contemporaneous. This further

supports the inference that the two sides of the retina are

functionally linked.

Experiment 3: Submillisecond dot-pair effects and

role of display set size
The third experiment examined whether the slope of the T3

timing differentials might change as one transitioned into the

submillisecond range, and evaluated whether the number of dots

in the display set affected the level of recognition. Display set size,

i.e., the number of dots being used to display a given shape, may

also be designated as Dot#. To provide maximal comparability to

prior work [5,6], pair membership was randomly selected.

The GLMM analysis found significant declines in recognition

with increases in T3 interval or Dot# (p,.001 for each). There

was no indication of nonlinear components for T3 (p = 0.18) or for

Dot# (p = 0.61). There was a significant interaction between T3

and Dot# (p = .02), with the impact on recognition becoming

greater with increases in Dot# and T3 interval.

Recognition levels derived from the GLMM model were

backtransformed, and the predictions at 30, 60, 90 and 120 dots

were used to plot treatment effects. Figures 5 and 6 show these

values, with display set size (Dot#) being specified on the abscissas

in the first figure, and T3 in the second. Trend lines have been

added to emphasize the most consistently aligned points.

Figure 5 plots show consist differentials for the T3 intervals

when each is plotted against the Dot# levels. The plot points for

T3 intervals of 2 ms or less were the most consistently aligned, and

the trend lines have been fitted using only these points. Plot points

for intervals greater than 2 ms are also reasonably well aligned.

The worst alignment can be seen for T3 equal to 8 ms where there

were 120 dots in the display set, but it is doubtful that the

recognition level is reliably greater than zero, which is the

prediction of the trend line.

In Figure 6 one can see that for each of the four levels of Dot#,

there was a consistent decline of recognition as a function of the

T3 interval, and the differentials in display set size yielded reliable

differences in recognition level. Two points deviated from the

suggested trend lines, these being for the 120-dot set at T3

intervals of 6 and 8 ms. As for the discrepancy discussed for

Figure 5, these values are close to the linear prediction of zero

recognition.

One might note that the 30- and 60-dot plot points in Figure 6

tend to fall at lower levels of recognition than would be predicted

by the trend lines, and for 90- and 120-dot sets the plot points are

higher that predicted. If these prove to be reliable deviations from

linearity, they would essentially cancel out when combining across

the full inventory of shapes, thus yielding a linear decline for the

overall mean from 0 to 8 ms, as was found in earlier work [5]. This

suggests that the use of mean hit-rate may not properly estimate

declines at long intervals, and one should be careful in accepting

the simple linear plots as a reflection of neural mechanism.

In both figures (5 and 6) one can see the interaction of T3 with

Dot# as a progressive spread of plot points (and trend lines) as one

moves from left to right – possibly more so in the 0–2 ms range.
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Figure 3. Lack of horizontal/vertical differential indicates retina cue-
binding. Experiment 1 examined dot-pair alignment and temporal
separation of pairs as factors for successful recognition of the shapes.
Each dot pair was shown in 0.2 ms, and the interval between successive
pairs was varied from 0–6 ms. Model values reflecting mean recognition
level for each of the eight treatment combinations have been plotted.
There was no indication of a difference in recognition as a function of
vertical or horizontal dot alignment, but there was a significant linear
decline as a function of the temporal interval between dot pairs.
doi:10.1371/journal.pone.0000871.g003
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Figure 4. Manipulation of between-pair timing provides similar
evidence. Experiment 2 used horizontally aligned dots, kept the interval
between successive pairs at a constant 3 ms, and varied the interval
between members of each pair from 0–1.5 ms. There was a significant
linear decline in recognition as the interval between pair members was
increased.
doi:10.1371/journal.pone.0000871.g004
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Figure 5. Decline of recognition for T3 intervals as a function of Dot#. For Experiment 3, model predictions at the eight T3 intervals are plotted
across the four display set sizes that were chosen for analysis. Recognition declined in a systematic manner as the number of dots in the display set
was increased, with very consistent alignment of plot points except for the largest display set shown at the longest T3 interval.
doi:10.1371/journal.pone.0000871.g005
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Figure 6. Decline of recognition for Dot# groups as a function of T3 interval. The model predictions for the four chosen display set sizes of
Experiment 3 are plotted across the range of T3 intervals. Recognition declined in a systematic manner as a function of the delay between successive
dot pairs. Alignment across plot points was most consistent for T3 intervals in the 0–2 ms range.
doi:10.1371/journal.pone.0000871.g006

Retinal Encoding for Shape

PLoS ONE | www.plosone.org 5 September 2007 | Issue 9 | e871



This provides visual confirmation of the statistically significant

interaction reported above.

The spacing factor had been chosen during early development

of research protocols, having the goal of providing shapes that

were approximately equivalent in their potential for recognition.

Recognition levels had been tested with both T2 and T3 set to

zero, and with the dots being delivered in the order given in the

original address list. This provided for hit rates in the 70% range

for each of the shapes. At least two subsequent experiments failed

to note any differential as a function of display set size, the one

closest the present work [5] finding that recognition level for T2

and T3 = 0 was approximately level across the full range of Dot#.

The present results indicate that the adjustment for display set

size did not render the shapes comparable in their potential for

recognition, in that hit rates were lower as a function of Dot# for

each level of T3, including T3 = 0. It is unclear whether this

discrepancy should be attributed to a different sampling of test

subjects. Whatever the case, it provides an additional caution

against relying too heavily on any given experiment, even where

the significance levels are suitably high.

It should be clear that T3 and Dot# both contribute to the total

time required to display the shapes, and total time for the four

levels of Dot# were as follows, with the size of the display set

shown in parentheses: (30) 3–123 ms; (60) 6–246 ms; (90) 9–

369 ms; (120) 12–492 ms

If impairment of recognition is a function of total display time,

then a plot of one against the other should provide a single

function for each combination of Dot# and T3 interval. An

evaluation of just the 2–8 ms (T3) range seemed to suggest such

a function, meaning that one could predict recognition level using

only the total time of display, irrespective of how many dots were

in the display set. However, for data from T3 = 0–2 ms there were

clear and consistent differences in recognition for the four levels of

display-set size. Further, if total time for display was plotted for all

levels of T3, with Dot# levels being designated by specific

symbols, there was sufficient alignment within each Dot# subset

that one could make the case that recognition was not solely

a function of total display time. There was some indication that the

plots converged to zero somewhere near 275 ms, but this could

not be affirmed with any certainty given the lack of correspon-

dence of the display time across the four subsets. So while it is

possible that recognition deficits are due to the total time required

to display the dots if one is using a T3 of 2 ms or longer, even that

cannot be affirmed with any confidence. At this point it would be

best to await more definitive results.

DISCUSSION
The third experiment provides data that clarifies and extends

earlier findings, and will be discussed first. The prior work found

a linear decline in recognition, assessed for the average across all

shapes, and measured at T3 intervals of 2 ms and longer [5.6].

The present work extends the finding to T3 intervals shorter than

2 ms, and finds no clear evidence for a change in slope across the

two time ranges. This does not rule out the possibility that the

strength of effect might differ for dot subsets having more or less

than two dots.

The number of dots in the display set (Dot#) produced major

differentials in shape recognition. Each of the four levels of Dot#
that was chosen for evaluation, i.e., 30, 60, 90 and 120 dots,

manifested a linear decline across the 0–2 ms range of T3, with

hit-rates for the 2–8 ms range being progressively less linear for

each level of Dot# that was examined. In like manner, recognition

performance for each of the T3 treatments declined in a linear

manner across the four levels of Dot# that were chosen for

analysis. While one might think this to be a foregone conclusion

given that the plots represent two views of the same experimental

results, it would be entirely possible for Dot# to manifest

nonlinear effects while T3 intervals were showing linear declines.

The results indicate that recognition performance is determined

by the degree of simultaneity of the dot display. With a T3 interval

of zero, all dots in the display set are delivered as quickly as

possible given the design of the display board, this being 0.1 ms

multiplied by the number of dots in the display set. Thus for the

30-dot display set the entire complement is shown in 3 ms, and for

the 120-dot set the shape is delivered in 12 ms. By most standards

of work on object/shape recognition, the time required to deliver

the full display set is very short, even for shapes having a large set

size. But although only 12 ms was needed to show a shape using

120 dots, there was a significant decrement of recognition, which

suggests that optimal recognition should require that all the dots be

presented in far less time, perhaps at the same moment.

A standard model for the integration of information over time

delays explains the process as one in which briefly displayed

information is labile, meaning that it persists only for a limited

amount of time. The stimulus is considered to be most salient

when it is first displayed, but as the moments pass it becomes less

salient and thus less effective as a cue. If one presents two or more

brief stimuli in succession, the ones that were shown at an earlier

point will have suffered more decay, and the aggregate set will

have a net salience that reflects the overall amount of decay among

the cues. For reviews of the persistence concept, see [18–20]. For

additional background on the role of information persistence in

shape recognition, see [3].

The information persistence model does not seem appropriate

for explaining the current results. Virtually all the data to date

using the MTDC protocol has indicated linear declines in

recognition with changes in timing and/or number of dots in

the display set. Biological activities generally do not manifest linear

decay curves, and such declines are more commonly found with

interruption of an iterative, information processing mechanism.

Even if one assumes that a linear decay is possible, it would have to

be specific to a given range of T3 and Dot#. If persistence is short,

allowing for a linear decline with small display sets and short T3

intervals, there should be too few salient dots available for

recognition with large display sets and at long T3 intervals.

Conversely, if persistence is long enough to allow a linear

prediction for the large sets and long display times, one would

not have simple linear declines of recognition for small display sets

at short T3 intervals.

The concept of stimulus binding faces similar problems if

simultaneity acts to increase the salience of shape cues by binding

successive pairs. Here one would not expect any differentials as

a function of the number of pairs, and total display time should be

irrelevant. The binding would have to extend downstream to far

distant pairs, and it is unclear how it would do so in a linear

manner irrespective of the time differentials being provided. For

more on the binding hypothesis, see [7–12].

Turning to the locus of effect, the first two experiments provided

evidence that the requirement for millisecond-level simultaneity

was the same whether the two members of a pair were presented

to the same hemiretina, i.e., in the same half of the visual field, or

were shown with one member falling on the nasal hemiretina and

the other on the temporal hemiretina.

As outlined in the Introduction, in theory one might avoid the

conclusion of retinal linkage of contemporaneous stimuli if the

timing of the stimulus events were being preserved in the signal

being sent to higher brain centers. There is some evidence for such

millisecond-level precision, in that a number of laboratories have

Retinal Encoding for Shape
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reported highly correlated firing in retinal ganglion cells [21–34].

There are, however, reasons to be cautious in declaring that

millisecond-level differentials in stimulus timing are being pre-

served in the retinal signal. Most of the evidence supporting

millisecond levels of precision has been based on correlations of

spontaneous activity, electrically stimulated activity, or averaging

across extended periods of time. When brief light flashes are used,

response to initial onset of the stimulus is commonly found to be

quite variable. Murphey & Rieke [35], for example, measured

responses in three kinds of mouse ganglion cells with stimuli that

were reasonably well restricted to the excitatory receptive field of

the cells. They found that the standard deviation to first-spike

response varied from 2–10 ms. Maunsell et al. [36] also found

substantial variability of response to stimulus onset in the signal

being received in lateral geniculate nucleus of Macaque. At the very

least one should allow that highly precise encoding of stimulus

timing is not a general property of retinal signals.

Further, whether or not the optic nerve signal can preserve the

timing of very brief stimulation, it is unlikely that the present

results can be explained in terms of high precision signal

transmission. Where the dot pairs were horizontally aligned, one

fell on the nasal hemiretina and the other on the temporal

hemiretina, and the signals that were generated were sent to

different hemispheres. Even if one posits temporal precision in the

millisecond range up to V1, it is unlikely that it could be preserved

on through the corpus callosum, as required for linking a cue in

one visual field with a contemporaneous cue in the other visual

field. Finding that horizontal pairs as well as vertical pairs are

equally sensitive to simultaneity of display argues that the linking

mechanism is in the retina.

Polyaxonal amacrine (PA1) cells, first characterized in primate

retina [37], have anatomical features that may be suitable for

registering and coordinating among spatially and temporally

discrete stimulus events. Across a number of species, these cells

have relatively narrow dendritic fields, but also have axons with

a prolific branching pattern that extends over a much larger area

[37–43]. In Macaque the diameters of the dendritic fields measure

about 200 microns in central vision and 600 microns in the

periphery, with the span of the axon field being roughly 10 times

larger [37]. If similar dimensions can be assumed for the PA1 cells

of human retina, we can use the unit conversions reported by

Dacey [44] to estimate diameters of the axonal arbors to be about

7.5 degrees of visual angle for central vision, and 40 degrees of

visual angle in the periphery. Wright and Vaney [45] report that

PA1 cells appear to connect to a single class of ganglion cell, which

may be ‘‘local edge detectors.’’

Figure 7A illustrates a typical PA1 cell, showing a relatively

small dendritic field and a far larger axonal arbor. It is unlikely

that the cell responds to stimuli that are much bigger than its

dendritic field. Most recordings from axon-bearing amacrine cells

indicate that the receptive fields are co-extensive with the dendritic

fields or only slightly larger [39,43,45–47]. The dendritic trees are

relatively compact, which would be optimal for registering

stimulation by discrete boundary markers, e.g., dots. But once

activated, the extended axonal plexus could serve to link

contemporaneous events being generated at two or more locations

[37,45].

Figure 7B illustrates an array of PA1 cells, showing the ability to

distribute activity from the localized stimulation over large spans.

It should be noted that the actual cell density is far greater than

suggested in the illustration, with about twelve cells lying within

the overlap of a given dendritic field, and the axonal-field overlap

being 200–300 cells [45]. Thus even though the axon branches

from any one PA1 cell are relatively sparse, the overall mesh of the

resulting axonal plexus can almost be described as the woof and

weave of a fabric [37,45].

A B

Figure 7. PA1 cells may register contemporaneous stimulus events. The polyaxonal amacrine cell may provide a mechanism for linking discrete
stimulus events. A. This illustration approximates the camera Lucida drawing by Dacey [37] of a typical primate polyaxonal amacrine cell. The
dendritic branches are shown in blue, and evidence indicates that stimulus influence is restricted to this zone. The axon branches are shown in red.
These branches have vericosities along their full length that would provide a spreading ring of synaptic influence upon activation of the cell. The
scale bar is 500 microns. B. An array of polyaxonal cells is provided to illustrate linkage of cells through an extensive overlapping axon plexus. The
span of the axon field, shown in pink, ranges from roughly 7.5 to 40 degrees of visual angle for central and peripheral retina, respectively. For any
given location of the retina, axons from approximately 200–300 PA1 cells overlap, providing a plexus with an average spacing of approximately 2
microns [45].
doi:10.1371/journal.pone.0000871.g007
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It should be noted that GABA may be the neurotransmitter in

PA1 cells [37,45]. One might think that this requires any

spreading wave of spikes to be inhibitory, but there are numerous

examples of positive communication and control links that have

inhibition as a central component. This may be especially true

where gap junctions are used in combination with inhibitory

transmitters [48]. One could imagine, for example, that the

electrical excitation being conveyed at a gap junction might be

immediately terminated by chemical inhibition at that same locus.

Thus activation of PA1 cells might result in ultrabrief signals that

spread like rings through the axon branches, providing a physio-

logical substrate for registering submillisecond coincidence of

discrete stimulus events.

An explicit hypothesis about the role of PA1 cells has been

suggested, but it should be said that there are numerous

alternatives. Masland [49] estimates that there are upwards of

29 types of amacrine cells, all of which have extended processes

that provide for lateral coordination of stimulus events. Those

having spiking axons seem especially suitable for linking the

activities of neighboring populations, which is one reason that PA1

cells were singled out for discussion. However, given the diverse

and unexpected neuronal interactions that have been found in

recent years, for example the ability of dendrite-to-dendrite

linkage to code for local motion [50], it would be wise to watch

for other possibilities.

A final question that should be addressed is why temporal

proximity should be a major factor in the effectiveness of the shape

cues. From an evolutionary perspective, developing special filters

that register simultaneity might provide a way to identifying

objects that are moving behind heavy occlusion, such as dense

vegetation. Simultaneous changes in luminance across a myriad of

openings in the vegetation might well provide the only cue to the

existence of the object, and recognition of its shape would hinge on

being able to piece together the pattern of these events. Further,

encoding of images for purposes of storing and retrieving shape

memories may well involve sampling over brief intervals, and if so,

then the need to coordinate the sampling process could place

a premium on the simultaneous presence of stimulus components.

Wertheimer [51] used the term ‘‘common fate’’ to describe the

ability to see the gestalt of a moving pattern of points. While we

commonly think of gestalt operations as being very cognitive, the

early advocates of these concepts believed them to be fundamen-

tal, as reflected in the Kohler [1] quote given at the outset. The

current evidence supports Kohler’s conjecture that the process

begins in the retina.

METHODS
Recognition judgments were collected from 33 participants, 12

each for the first two experiments, and 9 for the third. Participants

were asked to name objects that were displayed using a minimal

transient discrete cue (MTDC) protocol that has been detailed

previously [2–6]. One hundred fifty shape patterns were shown to

each participant, each being displayed only once.

As implemented in the present work, the MTDC protocol

presented sparse sets of dots that marked the outer boundary of

each shape, these being designed as ‘‘display sets.’’ The display set

for a given shape was slightly different for each subject. It was

chosen from the full inventory of dot positions that marked the

outer boundary of the shape, beginning at a starting position and

then sampling every Nth dot (see Figure S1). The value of N,

designated as the spacing factor, determined the number of dots in

the display set. The size of the spacing factor was chosen with the

goal of having recognition level in the 75% range when all dots in

the set were shown with no temporal separation (see timing

specifications, below). Some reduction from this level of recogni-

tion was expected as a function of the spatial separation of pairs in

the each of the experiments [6]. The names of the shapes, and the

size of the display sets can be found in Table S1.

The dots of a given display set were shown as successive

brief flashes within a 64664 LED array, designated as the

display board. Participants viewed this display from a distance of

3.5 m. At this distance the diameter of each LED, specified as

a visual angle, was 4.9 minutes, center-to-center spacing of

LEDs was 7.4 minutes, and the dimensions of the full array,

width and height, was 7.7 degrees. Each LED emitted at

a wavelength of 660 nm, with a rise/fall time that was less than

100 ns, and with a luminance of 10 Cd/m2. LED luminance was

measured using a Quantum Instruments LX photometer, with

LED adaptor.

Room illumination was provided by occluded standard

fluorescent light fixtures, brightness level being 13.3 lux, as

measured with a calibrated Tektronix J 1811 photometer.

Brightness of ambient illumination and LED emission were the

same as for the ‘‘dim’’ condition of prior reports [3–6].

For each experiment, each dot in the display set was flashed for

0.1 ms, designated as T1. T2 specified the temporal separation of

pair members, measured from offset of the first member till onset

of the second member. T3 specified the temporal separation of

pairs, measured from offset of one pair till onset of the next. For

Experiment 1 the T2 interval for display of each shape was 0, and

T3 was either 0, 2, 4 or 6 ms. For Experiment 2 the T3 interval

was 3 ms for display of each shape, and the T2 interval was either

0.0, 0.5, 1.0 or 1.5 ms. For Experiment 3 T2 was 0 ms, and T3

was 0, 0.5, 1.0, 1.5, 2, 4, 6 or 8 ms. These timing conditions are

illustrated in Figure S2.

In each experiment the display set was further broken into

subsets consisting of dot pairs. For Experiment 1, pair members

were chosen so that the axis of alignment for the pair was either

predominantly vertical or horizontal. Shapes were assigned to one

of the two alignment conditions, i.e., vertical or horizontal, and

also to one of the four T3 levels, providing a given subject with

either 18 or 19 shapes for each of the treatment combinations. The

shapes were chosen at random for display, which thus randomized

the order of the treatment combinations.

Experiment 2 used only horizontal alignment of pairs. Shapes

were assigned to one of the four T2 conditions, providing each

subject with either 37 or 38 shapes for each treatment level. The

order of shape display (and thus T2 level) was chosen at random.

Experiment 3 randomly chose which dots would be designated

as a pair. Shapes were assigned to one of the eight levels of T3

interval, providing either 18 or 19 shapes for a given T3 level for

each subject.

For each experiment the shapes were shown successively,

allowing ample time for the subject to provide a name that was

judged to be correct or not. Most participants answered in 2–

3 seconds for any given shape. The experimenter was not aware of

the alignment or timing condition that was being used for display

of the shape.

A given shape was either correctly identified or not, which is

a binary alternative. The resulting data are best evaluated using

a generalized linear mixed model (GLMM) that treats the errors

using a logit link function [52]. For this one calculates logit values,

these being log e (proportion/12proportion). Treatment differ-

ences were compared using the standard error of the difference of

these values. For each of the experiments, shape and subject were

treated as random effects, and pair alignment, T2 or T3, when

serving as treatment variables, were fixed effects. In Experiment 3

display set size (Dot#) was evaluated as a variate.
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Figure plots of percent recognition were based on GLMM

predictions, which were extremely close to the raw data means.

SUPPORTING INFORMATION

Table S1 Names of shapes and descriptive data The table names

each of the 150 shapes that were shown to each subject, and gives

the length of the perimeter and area (each specified as a dot count).

The spacing factor specifies the sampling interval for forming the

display set, as further explicated in Supplementary Figure A. This

process determines the size of the display set (Dot#), which can

also be specified as a percentage of the total number of dots in the

perimeter (Dot%).

Found at: doi:10.1371/journal.pone.0000871.s001 (1.48 MB EPS)

Figure S1 Method for selecting the display set The full array of

boundary dots for a typical shape is shown. From the full inventory

of dots, a display set was chosen for presentation to a given subject,

this being an evenly spaced sampling from the full inventory of

dots. The particular sample was selected by choosing a random

starting point, shown here by the arrow, and then proceeding

clockwise around the perimeter of the shape, choosing every Nth

dot to be included in the display set. The value of N (the spacing

factor) was varied to provide approximate equivalence of potential

for recognition across the inventory of shapes. The display set is

shown using filled dots, which have been increased in size for

purposes of illustration. Unfilled dots would not be part of the

display.

Found at: doi:10.1371/journal.pone.0000871.s002 (0.74 MB EPS)

Figure S2 Timing the display of dot pairs For both experiments,

dots were shown successively with a duration of 0.1 ms (T1). In

Experiment 1, the second member of the pair was shown

immediately upon offset of the first pair-member, i.e., T2 = 0,

and temporal separation of the pairs (T3) was varied across

durations that ranged from 0 to 6 ms. In Experiment 2, the T3

interval was a constant 3 ms for display of each shape, and T2 was

varied from 0.0 to 1.5 ms. In Experiment 3, T2 was 0 and T3

intervals ranged from 0–8 ms.

Found at: doi:10.1371/journal.pone.0000871.s003 (0.71 MB EPS)
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