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Little is known about cerebral blood flow, cerebral blood volume (CBV), oxygenation, and oxygen
consumption in the premature newborn brain. We combined quantitative frequency-domain near-
infrared spectroscopy measures of cerebral hemoglobin oxygenation (SO2) and CBV with diffusion
correlation spectroscopy measures of cerebral blood flow index (BFix) to determine the relationship
between these measures, gestational age at birth (GA), and chronological age. We followed
56 neonates of various GA once a week during their hospital stay. We provide absolute values of SO2

and CBV, relative values of BFix, and relative cerebral metabolic rate of oxygen (rCMRO2) as a
function of postmenstrual age (PMA) and chronological age for four GA groups. SO2 correlates with
chronological age (r =�0.54, P value p0.001) but not with PMA (r =�0.07), whereas BFix and rCMRO2

correlate better with PMA (r = 0.37 and 0.43, respectively, P value p0.001). Relative CMRO2 during
the first month of life is lower when GA is lower. Blood flow index and rCMRO2 are more accurate
biomarkers of the brain development than SO2 in the premature newborns.
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Introduction

Premature birth interferes with normal brain matura-
tion, and clinical events and interventions may
have additional deleterious effects. Compared with
normal term newborns, premature newborns at term
equivalent postmenstrual age (PMA) have structural
abnormalities on magnetic resonance imaging
(Huppi et al, 1998) and magnetic resonance diffusion
abnormalities that have been associated with func-
tional impairment (Bassi et al, 2008), and their
resting state functional connectivity networks are
abnormal (Smyser et al, 2010). Using near-infrared

spectroscopy (NIRS), several studies have described
alterations in cerebral blood volume (CBV) and oxy-
genation in preterm newborns (see review in Wolf
and Greisen, 2009). However, little is known about
baseline cerebral blood flow, oxygenation, and oxy-
gen consumption in the premature newborn’s brain.
Such information, especially if available at the bed-
side, would provide valuable insight on early brain
development and the impact of premature birth.

Near-infrared spectroscopy is a portable and
noninvasive method for interrogating cerebral
physiology that uses low-intensity nonionizing
radiation. It is thus suitable for use in neonates,
whose thin scalps and skulls facilitate light transmis-
sion. Contrary to continuous wave NIRS measures of
changes in oxy- and deoxy-hemoglobin concentra-
tions (respectively, HbO (oxygenated hemoglobin
concentration) and HbR (reduced hemoglobin con-
centration)) (Wolf and Greisen, 2009; Wyatt et al,
1986), frequency-domain near-infrared spectroscopy
(FDNIRS) provides absolute values of HbO and HbR
from which absolute values of CBV and hemoglobin
oxygen saturation (SO2) can be calculated (Fantini
et al, 1995; Zhao et al, 2005). Frequency-domain

Received 2 June 2011; revised 1 September 2011; accepted 7
September 2011; published online 26 October 2011

Correspondence: Dr N Roche-Labarbe, Athinoula A Martinos
Center for Biomedical Imaging, Massachusetts General Hospital,
Building 149, 13th Street, Charlestown MA 02129, USA.
E-mail: nadege@nmr.mgh.harvard.edu

This work was supported by NIH Grant R01 HD042908,

P41-RR14075, and R21-HD058725 and by Clinical Translational

Science Award UL1RR025758 to Harvard University and Brigham

and Women’s Hospital from the National Center for Research

Resources.

Journal of Cerebral Blood Flow & Metabolism (2012) 32, 481–488
& 2012 ISCBFM All rights reserved 0271-678X/12

www.jcbfm.com

http://dx.doi.org/10.1038/jcbfm.2011.145
mailto:nadege@nmr.mgh.harvard.edu
http://www.jcbfm.com


near-infrared spectroscopy has been successful in
measuring the evolution of CBV, SO2, and relative
cerebral metabolic rate of oxygen (rCMRO2) over the
first year of normal brain development (Franceschini
et al, 2007), establishing baseline values of CBV, SO2,
and rCMRO2 during the first 6 weeks of life in
premature neonates (Roche-Labarbe et al, 2010), and
determining the effect of acute brain injury on these
parameters (Grant et al, 2009).

Diffusion correlation spectroscopy (DCS) provides
a measure of tissue perfusion based on the move-
ment of scatterers (i.e., blood cells) inside the
tissue (Boas and Yodh, 1997; Cheung et al, 2001).
Diffusion correlation spectroscopy is a valid assess-
ment of cerebral blood flow changes in the adult
brain (Durduran et al, 2004; Li et al, 2005) and
infants (Buckley et al, 2009; Durduran et al, 2010;
Roche-Labarbe et al, 2010) and a safe and reliable
alternative to the oxygen bolus (Edwards et al, 1988)
or indocyanine green (Patel et al, 1998) methods.

Combining FDNIRS measures of CBV and SO2 and
DCS measures of blood flow index (BFix) allows for
reliable calculation of local rCMRO2 in the newborns
(Roche-Labarbe et al, 2010). Quantification will
improve estimation of normal values and detection
of abnormalities in at-risk neonates (Nicklin et al,
2003). Such markers of brain development and
detection of deviations from normal can be obtained
before the age at which accurate behavioral and
neurologic assessments can be performed, potentially
providing early biomarkers for adverse outcomes.

Here, we studied premature neonates with no
known brain injury to determine the relationship
between CBV, SO2, rCMRO2, and BFix, gestational age
(GA) and chronological age.

Materials and methods

Subjects

We studied 56 neonates (24 to 37 weeks GA at birth, 25
females) enrolled from the neonatal intensive care units and
Well Baby Nurseries at the Massachusetts General Hospital,
Brigham and Women’s Hospital and Children’s Hospital
Boston between 2008 and 2010. Subjects were included if
they had no diagnosis of brain injury or neurologic issue
during or after their hospital stay. They were sorted into four
groups: 24 to 27 weeks GA (9 subjects, 55 measurements,
6±3 measurements per infant, APGAR score at 5 minutes =
8±0.5, weight at birth = 930±180 g), 28 to 30 weeks GA (10
subjects, 65 measurements, 7±1 measurements per infant,
APGAR score at 5 minutes = 7.4±0.7, weight at birth =
1,200±350 g), 31 to 33 weeks GA (18 subjects, 64 measure-
ments, 4±1 measurements per infant, APGAR score at
5 minutes = 8.5±0.6, weight at birth= 1,730±300 g) and
34 to 37 weeks GA (19 subjects, 44 measurements, 2±1
measurements per infant, APGAR score at 5 minutes =
8.4±1, weight at birth = 2,180±250 g). Subjects included
had a variety of cardiovascular and respiratory conditions
representative of the neonatal intensive care unit population
(Supplementary Table 1). Each infant was measured once

a week from 1 to 15 weeks of age (ages in days were rounded
off to the nearest week) while in the hospital. Our
Institutional Review Board, the Partners Human Research
Committee, approved all the aspects of this study and all
parents provided informed consent.

Acquisition

We used a customized FDNIRS instrument from ISS Inc.,
Champaign, IL, USA (http://www.iss.com/products/oxi-
plex/), and built a DCS instrument similar to the system
developed by Drs Arjun Yodh and Turgut Durduran at the
University of Pennsylvania (Carp et al, 2010; Cheung et al,
2001; Durduran et al, 2004). Both instruments are de-
scribed in detail in Roche-Labarbe et al (2010).

The FDNIRS sources and detector fiber bundles (each
2.5 mm diameter) were arranged in a row in a black rubber
probe (5� 2� 0.5 cm3) with source-detector distances of 1,
1.5, 2, and 2.5 cm (Figure 1C), adequate for a depth
penetration of B1 cm, which includes the cerebral cortex
in neonates (Dehaes et al, 2011; Franceschini et al, 1998).
The DCS laser (50 mW power) was coupled to a 62.5-mm
diameter multimode optical fiber and diffused at the
fiber tip to comply with the American National Standards
Institute exposure standards. The detectors were coupled to
5.6mm single mode optical fibers. The DCS fibers were
arranged in a second row parallel to the NIRS bundles, with
source-detector distances of 1.5 (one fiber) and 2 cm (three
fibers) (Figure 1C). For each measurement, the probe and
fibers were placed in a single-use polypropylene sleeve for
hygiene reasons (Figure 1A).

Frequency-domain near-infrared spectroscopy and DCS
measurements were obtained in sequence from seven areas
of the head (Figure 1B). The optical probe was held in each
location for up to three times 10 seconds of data acquisi-
tion. Repositioning the probe compensated for local
inhomogeneities such as hair and superficial large vessels
to ensure that the measurement was representative of the

Figure 1 (A) Subject during a measurement. (B) Locations of
recording on the subject’s head. (C) Schema of the probe. DCS,
diffusion correlation spectroscopy; FDNIRS, frequency-domain
near-infrared spectroscopy.
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underlying brain region. The total number of positions and
repetitions depended on the cooperation of the subject and
the presence of other medical devices on the head. Total
examination time was B45 minutes. Hemoglobin counts
were extracted from clinical reports and arterial oxygena-
tion (SaO2) was obtained from routine monitors at the time
of the measurement session.

Near-Infrared Spectroscopy Data Processing

Amplitude and phase data collected at each wavelength
allows the calculation of average absorption and scattering
coefficients using the multidistance frequency-domain
method (Fantini et al, 1995). An automated data analysis
routine includes data quality assessment and data rejec-
tion based on previously established statistical criteria
(Roche-Labarbe et al, 2010). Oxygenated hemoglobin
concentration and HbR were derived by fitting the
absorption coefficient at our wavelengths with the hemo-
globin spectra using the extinction coefficients reported in
the literature (Wray et al, 1988) and a 75% concentration of
water (Wolthuis et al, 2001). Total hemoglobin concentra-
tion HbT = HbO + HbR (mmol) and SO2 = HbO/HbT (%).
Cerebral blood volume in mL/100 g was calculated using
standard equations (Franceschini et al, 2007; Takahashi
et al, 1999) and hemoglobin concentration in the blood
(HGB) from clinical charts. For 20% of measurements, HGB
was not available, in which case standard normal values
for HGB for age were used (de Alarcón and Werner, 2005).

Diffusion Correlation Spectroscopy Data Processing

Diffusion correlation spectroscopy data comprise a set of
intensity autocorrelation curves (over a delay time range of
200 nanoseconds B1 second in our case) acquired sequen-
tially at 1 Hz. Following the diffusion correlation equations
(Boas and Yodh, 1997; Cheung et al, 2001; Culver et al,
2003; Durduran et al, 2004), a BFix was derived fitting the
normalized intensity temporal autocorrelation profile of
the diffusively reflected light to the measured temporal
autocorrelation function (Boas et al, 1995; Boas and Yodh,
1997; Cheung et al, 2001). To maximize accuracy, we used
the actual optical absorption and scattering coefficients at
785 nm interpolated from the FDNIRS measurements. We
rejected measurements that do not met objective criteria
(Roche-Labarbe et al, 2010).

Relative CMRO2 from combined DCS and FDNIRS
measures was calculated as the ratio between the subject’s
values and the average of all the first week’s values
(indicated by the subscript 0) of the 34 to 37 weeks GA
group using the following equation:

rCMRO2 ¼
CMRO2

CMRO20
¼ HGB

HGB0
� BFix

BFix0
� SaO2 � SO2

SaO20 � SO20

Statistical analysis

In each infant for each measurement session and for each
measured parameter (HbO, HbR, HbT, SO2, CBV, BFix, and

rCMRO2), results were averaged over all positions. We
verified that results are consistent when only one location
is considered. We averaged data sets to obtain one time
point per week (ages in days were rounded off to the
nearest week, for example, 3 days becomes week 0, 12 days
becomes week 2). Given our small sample size, confidence
intervals were calculated using Student’s tables.

We calculated linear regression, correlation coefficients
(r), coefficient of determination (R2), and significance
levels between each measured parameter and HGB,
chronological age, or PMA for all time points. Finally, we
calculated linear regression between each measured para-
meter and chronological age for the first 31 days of life
(4.4 weeks), then between each measured parameter and
PMA for time points taken between 34 and 38.4 weeks
PMA. These periods correspond to the overlapping
measurements among all four groups. We performed t-tests
for independent subjects with Bonferroni adjustment of
significance levels on the slopes and intercepts (for each
element in Table 2; i.e., 42 elements).

Results

Figure 2 illustrates the weekly average of FDNIRS/
DCS measured and derived parameters as a func-
tion of age for the four GA groups with confidence
intervals. Figure 3 illustrates the same parameters as
a function of PMA. For the four GA groups, Figure 2
shows that HbO, HbT, and SO2 decrease with
chronological age, HbR and CBV are constant with
age, and BFix and rCMRO2 increase with age. Figure 3
shows that the decrease in HbO, HbT, and SO2 of the
four groups is independent of PMA, while the
increase in BFix and rCMRO2 is associated with
PMA (scatterplots of individual measurements as
Supplementary Figures 1 and 2).

Table 1 presents the results of linear regressions of
the measured and derived optical parameters with
HGB, age, and PMA across groups at all time points.
To specifically illustrate differences among groups,
Table 2 presents the results of the t-test on slopes and
intercepts of the measured and derived parameters
during the first month of life. Differences in slope,
as seen on SO2, reflect different rates of progression
between GA groups, while differences in intercepts
for similar slopes, as seen on rCMRO2, reflect differ-
ent absolute values between GA groups. Because the
differences in CBV intercepts are due to the large
variance in the 24 to 27 group in the first weeks of
life (Figure 2), which is confirmed by the absence
of correlation with any factor (Table 1), they do
not reflect true intergroup differences. t-Test on
slopes and intercepts between groups at same PMA
showed no significant or near significant differences.
Figure 4 represents the trends (slopes and intercepts)
of SO2 and rCMRO2 maturation during the first
month of life as a function of GA at birth (other box
plots as Supplementary Figure 3). SO2 decrease is
steeper and occurs at an earlier PMA in subjects born
at a lower GA (slopes are different). Relative CMRO2
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during the first month of life is proportional to GA at
birth (slopes are comparable but intercepts are
proportional to GA).

Discussion

We (1) provided absolute values of HbO, HbR, HbT,
SO2, and CBV and relative values of BFix and
rCMRO2 as a function of gestational and chronologi-
cal age; (2) found that SO2 correlates with chrono-
logical age but not with PMA; (3) BFix and rCMRO2

correlate better with PMA than with chronological
age; and (4) rCMRO2 during the first month of life is
lower when GA at birth is lower.

SO2 is not correlated with PMA but varies with
chronological age and HGB, suggesting that it
depends on systemic changes and does not reflect
changes associated with brain development. This is
consistent with the findings that SO2 correlates with
the heart and respiratory rate and with arterial SO2 in
newborns (Tina et al, 2009). SO2 undergoes a dip
around 6 to 8 weeks of life, probably due to the

transition from fetal to adult hemoglobin (Fran-
ceschini et al, 2007; Roche-Labarbe et al, 2010). This
decrease is steeper and occurs at an earlier PMA in
subjects born at a lower GA. This is because SO2

immediately after birth is higher when GA is lower
(Tina et al, 2009), and because SO2 is highly
dependent on HGB, which starts decreasing at birth
regardless of GA and decreases faster in more
premature infants (de Alarcón and Werner, 2005).
These findings question the relevance of SO2 as a
measure of brain health and brain development in
newborns, and are consistent with the results
showing that SO2 is not sensitive to evolving acute
brain injury in newborns (Grant et al, 2009). The
focus on SO2 may explain why many early NIRS
studies yielded inconsistent results, which ham-
pered the implementation of NIRS in clinical settings
(Greisen, 2006; Nicklin et al, 2003). Those using
NIRS to evaluate hemodynamics in infants have
typically used SO2 rather than other parameters, and
SO2 is sensitive to transient hemodynamic changes
(Huang et al, 2004; Naulaers et al, 2004; Petrova and
Mehta, 2006; Toet et al, 2005). However, SO2 is the

Figure 2 Measured and derived parameters as a function of chronological age. Confidence intervals are displayed where two or more
values were averaged. Filled markers were used when at least two values were averaged, empty markers represent individual values.
BFix, blood flow index; CBV, cerebral blood volume; HbO, oxygenated hemoglobin concentration; HbR, reduced hemoglobin
concentration; HbT, total hemoglobin concentration; rCMRO2, relative cerebral metabolic rate of oxygen; SO2, oxygen saturation.
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parameter least sensitive to development or the
evolution of injury.

Blood flow index and rCMRO2 correlate better
with PMA and are less dependent on chronological

age than SO2, suggesting that they are more sensitive
to hemodynamic and metabolic changes associated
with early brain development. Relative CMRO2

during the first month of life is proportional to GA
at birth, which is consistent with the correlation
between GA at birth and spontaneous neuronal
activity transients measured with electrophysiology
(André et al, 2010). This is also consistent with the
findings that fractional tissue oxygen extraction
during the first 6 hours of life is higher when GA at
birth is higher (Tina et al, 2009).

When subjects from various GA groups increase in
chronological age, rCMRO2 shows an increase over
time, which may reflect increasing oxygen require-
ments due to synaptic development. We did not find
rCMRO2 differences between GA groups at the same
PMA, suggesting that synaptic production is appro-
priate for PMA, regardless of GA at birth. This is
consistent with primate studies showing that pre-
mature birth does not affect the rate of synaptic
production in the visual cortex: synaptogenesis
correlates with PMA but not chronological age
despite increased sensory stimulation (Bourgeois

Figure 3 Measured and derived parameters as a function of postmenstrual age (PMA). Postmenstrual age for each group is
calculated starting from the group’s median gestational age (GA). Confidence intervals are displayed where two or more values were
averaged. Filled markers were used when at least two values were averaged, empty markers represent individual values. BFix, blood
flow index; CBV, cerebral blood volume; HbO, oxygenated hemoglobin concentration; HbR, reduced hemoglobin concentration; HbT,
total hemoglobin concentration; rCMRO2, relative cerebral metabolic rate of oxygen; SO2, oxygen saturation.

Table 1 Correlation coefficient and significance (*) in individual
measurements

HGB Chronological age PMA

HbO 0.55*** �0.39*** �0.13
HbR 0.02 0.10 �0.05
HbT 0.48*** �0.32*** �0.12
SO2 0.66*** �0.54*** �0.07
CBV �0.12 0.07 �0.10
BFix �0.38*** 0.35*** 0.37***
rCMRO2 �0.19** 0.31*** 0.43***

BFix, blood flow index; CBV, cerebral blood volume; HbO, oxygenated
hemoglobin concentration; HbR, reduced hemoglobin concentration; HbT,
total hemoglobin concentration; HGB, hemoglobin blood count; PMA,
postmenstrual age; rCMRO2, relative cerebral metabolic rate of oxygen;
SO2, oxygen saturation.
Significance legend: *P value p0.05; **P value p0.01; ***P value
p0.001.
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et al, 1989). The consistency of rCMRO2 with PMA
regardless of GA is also consistent with angiogenesis
being driven by intrinsic mechanisms associated
with synaptogenesis, with no direct effect of outside
stimulation (Fonta and Imbert, 2002). However, it

conflicts with reports of thinner cortex associated
with premature birth (Nagy et al, 2010).

Slopes of BFix were similar among GA groups, but
so were intercepts, perhaps due to competitive
influences of HGB decreasing (BFix was more
influenced by HGB than rCMRO2) and neuronal
activity increasing BFix. Overall, these results that
agree with the findings in brain-injured neonates
(Grant et al, 2009), suggest that rCMRO2 is a better
indicator of brain health and developmental stage in
infants than SO2.

Oxygenated hemoglobin concentration, HbR, and
HbT constitute the output of most NIRS systems
and are provided for comparison purposes.
Cerebral blood volume does not show any consistent
behavior during the first weeks of life (Franceschini
et al, 2007; Roche-Labarbe et al, 2010). Cerebral
blood volume was higher in the 24 to 27 group
compared with the other groups during the first 3
weeks of life (different intercepts), but the large
variance in that group and the absence of correlation
with any factor (HGB, age, or PMA) suggests that this
may be an artifact due to small sample size in that
group at that age.

Because premature infants are often treated with
medication or require respiratory assistance, we
included them in analyses. The variety of cardiac
and respiratory conditions among subjects probably
contributed to the intragroup variability, particularly
in the lower GA group. Caffeine, commonly admin-
istered to premature infants with apnea, stimulates
neurons and decreases cerebral blood flow, therefore
uncoupling cerebral blood flow and rCMRO2, but its
effects on baseline CBV, SO2, and rCMRO2 remain
controversial (Chen and Parrish, 2009; Perthen et al,
2008). Ventilation modes are also suspected to affect
brain hemodynamics, although results are still
inconsistent (Milan et al, 2009).

Combined FDNIRS and DCS offers an effective
and quantitative bedside method to monitor CBV,
SO2, and BFix as well as rCMRO2 in the premature
brain. Quantitative values facilitate both individual
follow-up and comparison among patients. Blood
flow index and rCMRO2 appear to be more accurate
biomarkers of newborn brain development than SO2.
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André M, Lamblin MD, d’Allest AM, Curzi-Dascalova L,
Moussalli-Salefranque F, Nguyen The Tich S, Vecchierini-
Blineau MF, Wallois F, Walls-Esquivel E, Plouin P (2010)
Electroencephalography in premature and full-term in-
fants. Developmental features and glossary. Neurophysiol
Clin 40:59–124

Bassi L, Ricci D, Volzone A, Allsop JM, Srinivasan L, Pai A,
Ribes C, Ramenghi LA, Mercuri E, Mosca F, Edwards
AD, Cowan FM, Rutherford MA, Counsell SJ (2008)
Probabilistic diffusion tractography of the optic radia-
tions and visual function in preterm infants at term
equivalent age. Brain 131:573–82

Boas DA, Campbell LE, Yodh AG (1995) Scattering and
imaging with diffusing temporal fields correlations.
Phys Rev Lett 75:1855–8

Boas DA, Yodh AG (1997) Spatially varying dynamical
properties of turbid media probed with diffusing
temporal light correlation. J Opt Soc Am 14:192–215

Bourgeois J-P, Jastreboff PJ, Rakic P (1989) Synaptogenesis
in visual cortex of normal and preterm monkeys:
evidence for intrinsic regulation of synaptic overpro-
duction. Proc Natl Acad Sci 86:4297–301

Buckley EM, Cook NM, Durduran T, Kim MN, Zhou C,
Choe R, Yu G, Shultz S, Sehgal CM, Licht DJ,
Arger PH, Putt ME, Hurt HH, Yodh AG (2009) Cerebral
monitoring in preterm infants during positional inter-
vention measured with diffuse correlation spectroscopy
and transcranial Doppler ultrasound. Opt Express
17:12571–81

Carp SA, Dai GP, Boas DA, Franceschini MA, Kim YR
(2010) Validation of diffuse correlation spectroscopy
measurements of rodent cerebral blood flow with
simultaneous arterial spin labeling MRI; towards MRI-
optical continuous cerebral metabolic monitoring.
Biomed Opt Exp 1:553–65

Chen Y, Parrish TB (2009) Caffeine’s effects on cerebrovas-
cular reactivity and coupling between cerebral blood
flow and oxygen metabolism. NeuroImage 44:647–52

Cheung C, Culver JP, Kasushi T, Greenberg JH, Yodh AG
(2001) In vivo cerebrovascular measurement combining
diffuse near-infrared absorption and correlation spectro-
scopies. Phys Med Biol 46:2053–65

Culver JP, Durduran T, Cheung C, Furuya D, Greenberg JH,
Yodh AG (2003) Diffuse optical measurement of hemo-
globin and cerebral blood flow in rat brain during
hypercapnia, hypoxia and cardiac arrest. Adv Exp Med
Biol 23:293–8

de Alarcón P, Werner E (eds). (2005) Neonatal Hematology.
UK: Cambridge University Press

Dehaes M, Grant PE, Sliva D, Roche-Labarbe N, Pienaar R,
Boas D, Franceschini M, Selb J (2011) Assessment of the
frequency-domain multi-distance method to evaluate

the brain optical properties: Monte Carlo simulations
from neonate to adult. Biomed Opt Express 2:552–67

Durduran T, Burnett MG, Yu G, Zhou C, Furuya D, Yodh
AG, Detre JA, Greenberg JH (2004) Spatiotemporal
quantification of cerebral blood flow during functional
activation in rat somatosensory cortex using laser-
speckle flowmetry. J Cereb Blood Flow Metab 24:518–25

Durduran T, Zhou C, Buckley EM, Kim MN, Yu G, Choe R,
Gaynor JW, Spray TL, Durning SM, Mason SE,
Montenegro LM, Nicolson SC, Zimmerman RA,
Putt ME, Wang J, Greenberg JH, Detre JA, Yodh AG,
Licht DJ (2010) Optical measurement of cerebral
hemodynamics and oxygen metabolism in neonates
with congenital heart defects. J Biomed Opt 15:037004

Edwards AD, Richardson C, Cope M, Wyatt JS, Delpy DT,
Reynolds EOR (1988) Cotside measurement of cerebral
blood flow in ill infants by near-infrared spectroscopy.
Lancet 332:770–1

Fantini S, Franceschini M, Maier JS, Walker SA, Barbieri B,
Gratton E (1995) Frequency-domain multichannel
optical detector for non-invasive tissue spectroscopy
and oximetry. Opt Eng 34:34–42

Fonta C, Imbert M (2002) Vascularization in the primate
visual cortex during development. Cereb Cortex 12:
199–211

Franceschini M, Fantini S, Paunescu LA, Maier JS,
Gratton E (1998) Influence of a superficial layer in the
quantitative spectroscopic study of strongly scattering
media. Appl Opt 37:7447–58

Franceschini MA, Thaker S, Themelis G, Krishnamoorthy
KK, Bortfeld H, Diamond SG, Boas DA, Arvin K,
Grant PE (2007) Assessment of infant brain develop-
ment with frequency-domain near-infrared spectro-
scopy. Ped Res 61:546–51

Grant PE, Roche-Labarbe N, Surova A, Themelis G, Selb J,
Warren EK, Krishnamoorthy KS, Boas DA, Franceschini
MA, Grant PE (2009) Increased cerebral blood volume
and oxygen consumption in neonatal brain injury.
J Cereb Blood Flow Metab 29:1704–13

Greisen G (2006) Is near-infrared spectroscopy living up to
its promises? Semin Fetal Neonatal Med 11:498–502

Huang L, Ding H, Hou X, Zhou C, Wang G, Tian F (2004)
Assessment of the hypoxic-ischemic encephalopathy in
neonates using non-invasive near-infrared spectroscopy.
Physiol Meas 25:749–61

Huppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP,
Jolesz FA, Tsuji MK, Volpe JJ (1998) Quantitative
magnetic resonance imaging of brain development in
premature and mature newborns. Ann Neurol 43:224–35

Li J, Dietsche G, Iftime D, Skipetrov SE, Maret G, Elbert T,
Rockstroh B, Gisler T (2005) Noninvasive detection of
functional brain activity with near-infrared diffusing-
wave spectroscopy. J Biomed Opt 10:044002

Milan A, Freato F, Vanzo V, Chiandetti L, Zaramella P (2009)
Influence of ventilation mode on neonatal cerebral blood
flow and volume. Early Hum Dev 85:415–9

Nagy Z, Lagercrantz H, Hutton C (2010) Effects of preterm
birth on cortical thickness measured in adolescence.
Cereb Cortex PMID 21:300–6

Naulaers G, Cossey V, Morren G, Van Huffel S, Casaer P,
Devlieger H (2004) Continuous measurement of cerebral
blood volume and oxygenation during rewarming of
neonates. Acta Paediatr 93:1540–2

Nicklin SE, Hassan IA-A, Wickramasinghe YA, Spencer SA
(2003) The light still shines, but not that brightly? The
current status of perinatal near infrared spectroscopy.
Arch Dis Child Fetal Neonatal Ed 88:263–8

Oxygen metabolism in the premature brain
N Roche-Labarbe et al

487

Journal of Cerebral Blood Flow & Metabolism (2012) 32, 481–488



Patel J, Marks K, Roberts I, Azzopardi D, David EA (1998)
Measurement of cerebral blood flow in newborn infants
using near infrared spectroscopy with indocyanine
green. Ped Res 43:34–9

Perthen JE, Lansing AE, Liau J, Liu TT, Buxton RB (2008)
Caffeine-induced uncoupling of cerebral blood flow and
oxygen metabolism: a calibrated BOLD fMRI study.
NeuroImage 40:237–47

Petrova A, Mehta R (2006) Near-infrared spectroscopy in
the detection of regional tissue oxygenation during
hypoxic events in preterm infants undergoing critical
care. Pediatr Crit Care Med 7:449–54

Roche-Labarbe N, Carp SA, Surova A, Patel M, Boas DA,
Grant PE, Franceschini MA, Roche-Labarbe N (2010)
Noninvasive optical measures of CBV, StO2, CBF index,
and rCMRO2 in human premature neonates’ brains in
the first six weeks of life. Hum Brain Mapp 31:341–52

Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ,
Snyder AZ, Neil JJ (2010) Longitudinal analysis of neural
network development in preterm infants. Cereb Cortex
20:2852–62

Takahashi T, Shirane R, Sato S, Yoshimoto T (1999)
Developmental changes of cerebral blood flow and oxygen
metabolism in children. Am J Neuroradiol 20:917–22

Tina LG, Frigiola A, Abella R, Artale B, Puleo G, D’Angelo S,
Musmarra C, Tagliabue P, Li Volti G, Florio P, Gazzolo D
(2009) Near infrared spectroscopy in healthy preterm and
term newborns: correlation with gestational age and stan-
dard monitoring parameters. Curr Neurovasc Res 6:148–54

Toet MC, Flinterman A, van de Laar I, de Vries JW,
Bennink GBWE, Uiterwaal CSPM, van Bel F (2005)

Cerebral oxygen saturation and electrical brain activity
before, during, and up to 36 hours after arterial switch
procedure in neonates without pre-existing brain
damage: its relationship to neurodevelopmental out-
come. Exp Brain Res 165:343–50

Wolf M, Greisen G (2009) Advances in near-infrared
spectroscopy to study the brain of the preterm and term
neonate. Clin Perinatol 36:807–34

Wolthuis R, van Aken M, Fountas K, Robinson JSJ,
Bruining HA, Puppels GJ (2001) Determination of water
concentration in brain tissue by Raman spectroscopy.
Anal Chem 73:3915–20

Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds EO (1988)
Characterization of the near infrared absorption spectra
of cytochrome aa3 and haemoglobin for the non-
invasive monitoring of cerebral oxygenation. Biochim
Biophys Acta 933:184–92

Wyatt JS, Cope M, Delpy DT, Wray S, Reynolds EO (1986)
Quantification of cerebral oxygenation and haemody-
namics in sick newborn infants by near infrared
spectrophotometry. Lancet 2:1063–6

Zhao J, Ding HS, Hou XL, Zhou CL, Chance B (2005) In vivo
determination of the optical properties of infant brain
using frequency-domain near-infrared spectroscopy.
J Biomed Opt 10:024028

This work is licensed under the Creative Com-
mons Attribution-NonCommercial-No Derivative

Works 3.0 Unported License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Supplementary Information accompanies the paper on the Journal of Cerebral Blood Flow & Metabolism website (http://
www.nature.com/jcbfm)

Oxygen metabolism in the premature brain
N Roche-Labarbe et al

488

Journal of Cerebral Blood Flow & Metabolism (2012) 32, 481–488

http://www.nature.com/jcbfm
http://www.nature.com/jcbfm

	Near-infrared spectroscopy assessment &!QJ;of cerebral oxygen metabolism in the &!QJ;developing premature brain
	Introduction
	Materials and methods
	Subjects
	Acquisition

	Figure 1 (A) Subject during a measurement.
	Near-Infrared Spectroscopy Data Processing
	Diffusion Correlation Spectroscopy Data Processing
	Statistical analysis

	Results
	Discussion
	Figure 2 Measured and derived parameters as a function of chronological age.
	Figure 3 Measured and derived parameters as a function of postmenstrual age (PMA).
	Table 1 Correlation coefficient and significance (ast) in individual measurements
	Acknowledgements
	Table 2 t-Tests on slopes and intercepts for the first month of life
	Figure 4 Boxplots of slope and intercept of oxygen saturation (SO2) and relative cerebral metabolic rate of oxygen (rCMRO2) during the first month of life.
	Disclosure
	References




