
Research Article
Distribution of Major and Trace Elements in a Tropical
Hydroelectric Reservoir in Sarawak, Malaysia

Siong Fong Sim, Teck Yee Ling, Lee Nyanti, Terri Zhuan Ean Lee, Nurul Aida Lu Mohd
Irwan Lu, and Tomy Bakeh

Faculty of Resource Science & Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

Correspondence should be addressed to Siong Fong Sim; sfsim@frst.unimas.my

Received 8 April 2014; Revised 8 June 2014; Accepted 8 June 2014; Published 21 September 2014

Academic Editor: Khalid Z. Elwakeel

Copyright © 2014 Siong Fong Sim et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper reports the metals content in water, sediment, macroalgae, aquatic plant, and fish of Batang Ai Hydroelectric Reservoir
in Sarawak, Malaysia. The samples were acid digested and subjected to atomic absorption spectrometry analysis for Na, K, Mn, Cr,
Ni, Zn, Mg, Fe, Sn, Al, Ca, As, Se, and Hg. The total Hg content was analysed on the mercury analyser. Results showed that metals
in water, sediment, macroalgae, aquatic plant, and fish are distinguishable, with sediment and biota samples more susceptible to
metal accumulation. The distributions of heavy metals in water specifically Se, Sn, and As could have associated with the input of
fish feed, boating, and construction activities.The accumulation of heavy metals in sediment, macroalgae, and aquatic plant on the
other hand might be largely influenced by the redox conditions in the aquatic environment. According to the contamination factor
and the geoaccumulation index, sediment in Batang Ai Reservoir possesses low risk of contamination. The average metal contents
in sediment and river water are consistently lower than the literature values reported and well below the limit of various guidelines.
For fishes, trace element Hg was detected; however, the concentration was below the permissible level suggested by the Food and
Agriculture Organization.

1. Introduction

Metals contamination has been a concern of hydroelectric
development [1–5]. The process inevitably exposes rivers
to the risk of metals contamination due to the alteration
triggered in hydrological and sediment regime. The trace
elements are often released into the aquatic environment
from natural and/or anthropogenic sources where they are
usually bound to sediment particles or soluble in water.These
elements can then be taken up by aquatic organisms and
transferred to human via food chain resulting in numerous
adverse health effects; for example, methylmercury is a
neurotoxin and exposure to arsenic increases the risk of skin
cancer [6]. The bioaccumulation factor (BAF), expressed as
the ratio of chemical concentrations in organisms over the
concentrations in water [7], as high as 150−300 has been
reported in fishes such as Tilapia zilli, Tilapia guineensis,
Clarias gariepinus, and Synodontis membranaceus for various
elements [8–12].

The construction of dam has been long challenged with
the issue of elevated mercury (Hg). Upon impoundment of a
dam, the naturally occurring inorganic Hg may be converted
to bioavailable organic Hg by bacteria leading to bioaccumu-
lation of Hg in fish [13]. The accumulation of Hg can be very
persistent; for example, the methylmercury contamination
reported in Canada and Finland took 20–30 years to be
restored to the baseline level after impoundment [14]. Besides
Hg, other elements were also reported to increase in sediment
of Iron Gate, the largest dam and reservoir in Danube,
20 years after impoundment [15]. The potentials of metals
contamination in dams and reservoirs have been revealed in
numerous studies associating it with various anthropogenic
inputs [16, 17].

Sarawak, a state in Malaysia on the island of Borneo,
possesses high potential for hydroelectric development due
to the abundant rainfall throughout the year [18]. A series of
hydroelectric projects have been identified of which Batang
Ai Hydroelectric Dam is the first dam impounded in 1985.
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The dam is a 29-year-old dam with the reservoir covering a
total area of 9,000 ha and a capacity of 100MW.The reservoir
has been used for freshwater aquaculture activities where the
production increases dramatically over years. In 1993, the
production of tilapia fish was estimated at 22.9 metric tonnes
(mt), but after 16 years, it increases by 13-fold to 298.9mt and
further soars to 488.8mt in 2010 and 744.1mt in 2011 [19].

According to Roulet et al. [20, 21], tropical soil is naturally
rich inmercurywhich tends to be remobilized upon degrada-
tion of soil due to deforestation aswell as flooding.The release
of mercury into the environment due to the hydroelectric
dam construction has been repeatedly reported where the
element tends to be accumulated in aquatic organisms. The
Hg level in fish of the affected system could take 15–30 years
to be restored to its background level [22].

With the continuous increase of demand for aquaculture
harvest and the potential of metal contamination particularly
the phenomenon of mercury accumulation, the status of
Batang Ai Reservoir is poorly understood. There is relatively
little information on the metal accumulation in hydroelectric
reservoir in this region; Barletta et al. [23] state that river
basin and environmental management plans are poorly
developed in tropical and subtropical countries.Themercury
pollution policies are often not implemented leaving the risk
of metal pollution undetermined. Thus, this paper attempts
to evaluate the metal pollution status in Batang Ai Reservoir,
29 years after impoundment, reporting the major and trace
elements in water, sediment, macroalgae, aquatic plant, and
fish.

2. Materials and Methods

2.1. Sampling. Water, sediment, macroalgae, aquatic plant,
and fish samples were collected from 7 stations in Batang
Ai Reservoir and the Ai River as shown in Figure 1. For
water samples, a composite of triplicates was obtained from
subsurface, acidified with 5mL of 2M HNO

3
, and stored at

4∘C. Sediment samples were obtained using a grab sampler,
stored in plastic bags, and kept at 4∘C. For biological samples
including fish, aquatic plant, and macroalgae, they were
representative of the dominant species at respective stations
in triplicate. Upon transportation of the samples to the
laboratory, they were kept at −20∘C until further analysis.
Table 1 summarises the species of plant and fish collected.
Note that, in this paper, fish samples were only obtained from
ST5 near the aquaculture site. Algae and aquatic plant were
collected depending on the sample availability.

2.2. Acid Digestion and Metal Analysis. The samples were
digested in triplicate and subjected to atomic absorption
spectroscopy (AAS) for metal analyses including Na, K, Mn,
Cr, Ni, Zn, Mg, Fe, Sn, Al, Ca, As, and Se. The total Hg was
analysed on a mercury analyser (Perkin Elmer, FIMS 400).
The water samples were analysed according to the standard
method of APHA [27] where water samples were digested to
free elements that are complexed. Samples were first filtered
through 0.45 𝜇m membrane filter. Approximately 5mL of
concentratedHNO

3
was added to 100mLofwater sample and

put to slow boil on a hotplate to 10–20mL, until the solution
is clear. The sample was left to cool to room temperature
and filtered through 0.45 𝜇mmembrane filter.The filtrate was
diluted to 100mL for metal analysis.

For biological samples, they were washed under running
tap water prior to drying to remove dirt. The dorsal of fish
samples was dissected whilst for aquatic plant only the part
above ground is considered. The samples were oven dried at
60∘C and ground. A total of 0.5 g of sediment sample was
digested with 6mL of concentrated HNO

3
and 2mL of HCl

on a hotplate until the solution is colorless. The sample was
cooled and filtered through 0.45𝜇m membrane filter and
transferred to a 100mL volumetric flask where the filtrate was
diluted to the mark and mixed. For macroalgae and aquatic
plant, 0.5 g of sample was digested in 6mL of concentrated
HNO

3
whilst for fish 0.25 g of sample was digested in 6mL of

HNO
3
and 1mL of HCl [28]. All glassware was acid washed.

Detection limits of element analysed were Na
(0.0037 ppm); K (0.0009 ppm); Mn (0.0016 ppm); Cr
(0.0054 ppm); Ni (0.008 ppm); Zn (0.0033 ppm); Mg
(0.0022 ppm); Fe (0.0043 ppm); Sn (0.21 ppm); Al
(0.028 ppm); Ca (0.0037 ppm); As (0.12 ppm); Se (0.23 ppm);
and Hg (at ppb level). Blanks were also analysed for potential
contamination.

2.3. Statistical Analysis. The metal contents tabulated in
tables with rows corresponding to samples and columns
corresponding to variables (elements)were square rooted and
standardised prior to principal component analysis (PCA).
The multivariate exploratory approach reveals the cluster-
ing pattern of various samples and according to sampling
locations. This facilitates the interpretation of a relatively
large dataset whether metal contents in various samples
are distinguishable and whether respective samples can be
differentiated according to sampling locations. Pearson’s cor-
relation analysis was performed to identify the correlation
between two elements where𝑃 value at 95% significance level
was computed to evaluate the relationship.

2.4. Assessment of the Contamination Status. The contami-
nation status is evaluated based on the contamination factor
(CF), the geoaccumulation index (𝐼geo), and the pollution
index (PI). The contamination factor is expressed as the
concentration of a given element in sediment,𝐶sample, against
the value of the average metal in the world surface rock,
𝐶background, stated by Martin and Meybeck [29]. The back-
ground levels of various metals are Mn (750mg/kg), Cr
(71mg/kg), Ni (49mg/kg), Zn (127mg/kg), Mn (750mg/kg),
Hg (0.4mg/kg), and Fe (35900mg/kg). For CF < 1, the level
of contamination is interpreted as low whilst 1 ≤ CF ≤ 3 is
moderately contaminated, 3 ≤ CF ≤ 6 is contaminated, and
CF > 6 is highly contaminated. Consider the following:

CF =
𝐶sample

𝐶background
. (1)

The geoaccumulation index, 𝐼geo, is calculated to illustrate
the enrichment of metal concentration above the baseline
concentrations [30]. According to Muller’s classification, the
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Figure 1: The sampling locations at Batang Ai Reservoir and the Ai River.

Table 1: Summary of species of macroalgae, aquatic plant, and fish samples.

Fish (total length (cm)) Description Algae/aquatic plants Description

Barbonymus schwanenfeldii
(33.4 cm)

It is largely herbivorous, consuming aquatic
macrophytes and submerged plants as well as algae. Enteromorpha sp.

Found at ST1. It is
commonly known as

macroalgae.
Hampala macrolepidota
(19.0 cm)

It is a migratory species where the diet consists
mainly of aquatic insects. Polygonum sp. Found at ST6. It is a type of

floating aquatic plant.
Cyclocheilichthys apogon
(17.7 cm)

It is a carnivorous species consuming mainly small
fish and aquatic insects. Fimbristylis globulosa Found at ST7. It is an

emergent aquatic plant.
Hemibagrus planiceps
(21.4 cm)

It is probably a predator feeding on crustaceans and
smaller fishes.

Barbonymus collingwoodii
(18.6 cm)

It is largely herbivorous, consuming aquatic
macrophytes and submerged plants as well as algae.

sediment is classified as unpolluted if 𝐼geo < 0, progressing
from unpolluted to moderately polluted if 𝐼geo is between 0
and 1, moderately polluted if 𝐼geo is between 1 and 2, moving
into polluted if 𝐼geo is between 2 and 3, and polluted if 𝐼geo is
between 3 and 4. Consider the following:

𝐼geo = log2 (
𝐶sample

1.5 ∗ 𝐶background
) . (2)

The pollution load index (PLI) is calculated as
(CF
1
× CF
2
× CF
3
× ⋅ ⋅ ⋅CF

𝑛
)

1/𝑛, where 𝑛 is the number
of metals. The PLI value of >1 suggests the sediment is
polluted whilst PLI < 0 implies unpolluted [31].

3. Results and Discussion

3.1. The Distribution of Heavy Metals in Water, Sediment,
Aquatic Plant, Macroalgae, and Fish. Metals in water, sed-
iment, macroalgae, aquatic plant, and fish are subjected to
PCA yielding a scores plot of PC2 versus PC1 in Figure 2(a)
with a total variance of 55.95%. The corresponding loadings
plot is shown in Figure 2(b). Clearly, the distributions of
metals in different samples are distinguishable where the
loadings plot suggests that Hg and As are characteristic of
water while Na is typical to fish. Table 2 summarises the
nonzero average of metal contents in respective samples.
Essentially, elements such as Ca, Mg, and K are more
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Figure 2: The scores plot of heavy metal contents according to heavy metals in water, sediment, aquatic plant, macroalgae, and fish.

prominent in sediment, macroalgae, aquatic plant, and fish
with Na present in appreciable amount in fish. Aluminium
on the other hand is profoundly detected in sediment due
to the high content of silicoaluminate clays; nevertheless it
is unlikely to be found in biological samples as Al in this
form is insoluble. Under acidic condition, it may become
more soluble and thus more available for plant uptake [32].
Other elements such as Fe, Mn, and Cr are variably detected
in various samples, that is, sediment, macroalgae, aquatic
plant, and fish, with Sn prominently present in macroal-
gae and plants. As a whole, metals tend to be found in
higher concentrations in sediment corroborating its nature
as metal bioaccumulators. The average trace metal contents
specifically As, Cr, Ni, and Zn in sediment are relatively
lower than those reported in a canyon reservoir in Southwest
China [33]. They are also lower than those found in the
hydroelectric dam of Danube [34]. In comparison to the
selected metals, namely, Al, Zn, and Fe, identified in fishes
of Tasik Mutiara, Malaysia, fishes at Batang Ai Reservoir
are characterised by lower concentrations with As similarly
undetected [35]. The level of Hg in fish on the other hand
ranges between 0.03 and 0.20mg/kg, comparatively lower
than the range reported elsewhere, for example, in Tucuruı́
Reservoir and River Mojú (0.11–1.3mg/kg) [36]; Newfound-
land (0.13–0.86mg/kg) [37]; Tanzania (0.003–0.263mg/kg)
[38]; Guizhou (0.3–0.5mg/kg) [39]. LikewiseHg in sediment,
at an average of 0.129mg/kg, is less prominent than the
level reported in two hydroelectric reservoirs in Quebec,
Canada (0.15–0.49mg/kg) [40]. Tin is found in elevated
concentration in macroalgae and aquatic plants; according
to Thompson et al. [41], the bioaccumulation factor of Sn in
these samples can be as high as 100 where Nirbadha et al.
[42] likewise revealed relatively large quantities of Sn in three
aquatic plants in Kelaniya.

The occurrence of metals in water, sediment, macroalgae,
aquatic plant, and fish is examined independently with PCA;
the scores plots are shown in Figure 3 according to sampling
stations. For surface water, it appears that samples from the

Ai River (ST1, ST3, ST4, and ST7) are primarily distributed
over the upper region of the scores plot whilst samples
from the aquaculture sites (ST5 and ST6 (abandoned)) are
scattered around the lower right. The underlying pattern of
metal distributions in sediment on the other hand suggests
that samples from the upper stream (ST1), near the outflow
(ST4), and downstream of the power house (ST7) are dis-
tinguishable. Macroalgae and aquatic plants collected from
three different stations are seemingly differentiable. For fish,
no distinctive pattern is interpretable. Figure 4 illustrates the
averagemetal concentrations in various samples according to
sampling stations where the error bars indicate the standard
deviations.

Evidently, Se is below the detection limit in most water
samples except ST5 and ST6 with aquaculture activities. The
presence of Se can be an indication of excessive discharge
of fish feed as Se has been commonly added to animal
feed including fish meal due to its importance in biological
function [43, 44]. This element was consistently detected
in fish feed by Alam et al. [45], Maule et al. [46], and
Ikem and Egilla [44] at average concentrations of 5.4mg/kg,
2.48mg/kg, and 1.7mg/kg, respectively. Ikem and Egilla [44]
further examined the level of Se present correspondingly
in aquaculture fish muscles with concentration ranges 0.2–
0.4mg/kg. As a whole, no significant correlation can be
deduced between the waterborne and the accumulated Se
in sediment. According to Canton and Derveer [47], the
accumulation of Se in sediment does not correspond verywell
to the waterborne Se. It depends largely on the redox condi-
tions where, under strongly reduced environment, insoluble
selenium usually predominates [48]. As observed, Se is found
in sediment at ST3whilst the bioaccumulation of Se in aquatic
plants is negligible.

Arsenic is detected in water at ST3, ST4, and ST7. This
may be associated with the development and construction
activity nearby as studies revealed that As is susceptible to
leaching from construction debris with chromate-copper-
arsenate (CCA) wood [49, 50]. At ST3, there are several long
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Figure 3: The scores plot of heavy metals in water, sediment, macroalgae, aquatic plant, and fish according to sampling stations.

houses and a resort is located 4 km south of ST3, ST4 is
near the outflow, and ST7 is downstream of the power house.
Despite the presence of As in several stations, the element is
undetected in other corresponding samples. Mn and Fe are
found distinctively in water samples at ST1, ST2, and ST7.
These elements are naturally present in soils; under reduced
conditions, they tend to exist in soluble forms resulting
in increased concentrations in water [51]. The distribution
patterns of Mn and Fe in water are very similar with a
correlation coefficient of 0.93 suggesting that both elements
are geochemically correlated. Naturally, they are constituents
of various source rocks, that is, igneous rock; in addition, they
possess similar dissolution and precipitation behaviour under
comparable redox conditions.

Sn, particularly organotin, has been widely used as a
component in antifouling paint, applied as a finish coat
to the submerged part of boat, and in pesticides. In this
study, Sn is found in an appreciable amount in algae and

plants. In fact, Sn is relatively immobile; it may exist as
Sn(II) or Sn(IV) where both forms are readily precipitated
under reduced conditions. The element can be profoundly
accumulated in aquatic organisms. According to Thompson
et al. [41], the bioaccumulation factors of tin in freshwater
plant and fish could be as high as 100 and 3000, respectively.
The present results likewise suggest that algae and aquatic
plants are good indicators of Sn accumulation; its distribution
is markedly higher near the aquaculture site (ST6) and the
downstream of power station (ST7) possibly due to boating
activities as well as the cooling system where tributyltin is
commonly used in biocides. To date, there is no legislation
in Malaysia to control the use of tributyltin. In this study, Cr
is present at an average of 20mg/kg in sediment of almost
all stations except ST6 where higher concentration is also
found in water. Despite the elevated concentration of Cr
at ST6, there is no sign of bioaccumulation in the aquatic
plants indicating that the element may not be bioavailable.
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Figure 4: The average metal contents in water, sediment, macroalgae, and aquatic plant according to sampling stations.
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Figure 5:The average concentrations of six prominent elements in fish according to species and parts (SP1: Barbonymus schwanenfeldii; SP2:
Hampala macrolepidota; SP3: Cyclocheilichthys apogon; SP4: Hemibagrus planiceps; SP5: Barbonymus collingwoodii).
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Table 3: Correlation analysis of metal concentrations in (a) water, (b) sediment, and (c) macroalgae and aquatic plant.

(a) Water

Na K Mn Cr Mg Fe Ca As Se Hg
Na 1.00
K −0.34 1.00
Mn 0.15 0.61 1.00
Cr −0.51 0.39 0.40 1.00
Mg 0.75 −0.71 −0.42 −0.65 1.00
Fe 0.25 0.40 0.93 0.32 −0.16 1.00
Ca 0.46 −0.61 −0.07 −0.12 0.55 0.14 1.00
As −0.24 −0.51 −0.40 −0.32 0.05 −0.33 0.46 1.00
Se −0.35 0.15 −0.39 0.34 −0.18 −0.50 −0.62 −0.54 1.00
Hg 0.78 0.19 0.64 −0.36 0.25 0.62 0.10 −0.34 −0.50 1.00

(b) Sediment

K Mn Cr Ni Zn Mg Fe Al Ca Se Hg
K 1.00
Mn 0.25 1.00
Cr 0.02 0.84∗ 1.00
Ni 0.28 0.35 −0.02 1.00
Zn 0.28 0.35 −0.02 1.00 1.00
Mg 0.51 0.39 −0.06 0.95∗ 0.95∗ 1.00
Fe 0.64 0.34 0.35 0.39 0.39 0.43 1.00
Al 0.13 0.58 0.62 0.41 0.41 0.28 0.55 1.00
Ca 0.70 −0.04 −0.32 0.46 0.46 0.64 0.39 −0.34 1.00
Se −0.03 −0.39 −0.14 −0.17 −0.17 −0.18 0.05 −0.51 0.45 1.00
Hg 0.64 0.29 0.17 0.66 0.66 0.68 0.63 0.32 0.68 0.34 1.00

(c) Aquatic plants and macroalgae

Na K Cr Mg Fe Al Ca Hg
Na 1.00
K −0.47 1.00
Cr 0.14 0.59 1.00
Mg −0.93∗ 0.61 0.20 1.00
Fe −0.29 0.68 0.10 0.18 1.00
Al 0.43 −0.38 −0.20 −0.62 0.24 1.00
Ca 0.13 −0.23 0.07 −0.21 0.17 0.83∗ 1.00
Hg 0.43 −0.70 −0.44 −0.46 −0.79 −0.11 −0.41 1.00
∗
𝑃 < 0.05.

For other elements such as Ni, Zn, and Mg, there is no
concern of heavy metal contamination but interestingly they
are detected distinctively in sediment at ST1 upstream.

Five species of fish samples were collected from the
reservoir near the aquaculture farm at ST5. No well-defined
separation can be interpreted based on the scores plot of
PCA. Figure 5 shows the average concentrations of six promi-
nent elements according to species. Obviously, Hg seems
to be bioaccumulated in higher concentration in Hampala
macrolepidota and Hemibagrus planiceps; nevertheless the
amount is generally well below the permissible level set by
FAO at 0.5mg/kg suggesting that the selected fishes are safe
for consumption [52]. Other predominating elements are
primarily major elements such as Na and K.

3.2. Correlation of Metals. The relationships of metals within
samples, that is, water, sediment, and macroalgae/aquatic
plant, are correlated based on the mean concentrations.
Table 3 summarises the results of Pearson’s correlation analy-
sis, where 𝑃 < 0.05 are highlighted. The findings suggest that
Mn and Fe in water are positively correlated whilst Na andHg
also demonstrate significant correlation. In sediment, on the
other hand, positive correlations are statistically confirmed
in Zn-Ni-Mg and Fe-Mn. Formacroalgae/aquatic plants, Na-
Mg are negatively correlated whilst Ca-Al correlate positively.
The negative correlation, as suggested by Osaki et al. [53],
indicates antagonistic mechanism in metal accumulation
whereas positive correlation could imply that elements are
taken via similar mechanisms. The correlations of metals
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between samples, that is, water-sediment, water-plant, and
sediment-plant, are also evaluated. Apparently, no significant
correlation is statistically deduced except Hg in water-plant
(𝑟 = 0.99) and Ni in sediment-plant (𝑟 = 1).

Considering the metals uptake in algae and plant,
macroalgae at ST1 demonstrates greater tendency of metal
accumulation. According to Michalak and Chojnacka [54],
macroalgae exhibits greater ability in accumulating heavy
metals (more than 10 times) than vascular plants whilst
studies elsewhere further support that Enteromorpha sp. is an
excellent indicator for a wide range ofmetals including Fe, Al,
Mn, Ni, and Zn [55–57].The other plants species, Polygonum
sp. and Fimbristylis globulosa at ST6 and ST7, respectively, are
also possible metals accumulators; they have been employed
for phytoremediation, treating water polluted with Cu, Cd,
Zn, and Pb [58].

3.3. Assessment of Contamination Status. The contamination
factors (CF) calculated for Mn, Cr, Ni, Zn, Mn, and Fe are
comfortably below 1. The CF of Hg, however, is slightly
above 0, at an average of 0.322, indicative of slight pollution.
According to a survey of Hg present in 73 rivers of the
USA, the concentrations reported range between 0.1𝜇g/L
and 5 𝜇g/L with two rivers exceeding 5 𝜇g/L (the limit for
potablewater supplies according to the PublicHealth Service)
[59]. The unpolluted Hg level is defined at <0.1 𝜇g/L; with
this criterion, the average Hg detected in the reservoir of
0.451 𝜇g/L is suspected to be affected by the anthropogenic
inputs. Nonetheless, the concentration accumulated in the
sediment, at an average of 0.129mg/kg, is below the limit
of 1mg/kg set in sediment for attention [59]. The geoac-
cumulation indices, 𝐼geo, are less than 0 for all elements
considered; according to Muller’s classification, the sediment
is categorised as unpolluted. The pollution load indices
calculated across all stations (PLI) are consistently less than
1 suggesting no risk of contamination at the moment. The
average metal concentrations in sediment and river water
(as summarised in Table 1) are consistently lower than the
literature values and are well below the limit set according
to various guidelines such as the Food and Agriculture
OrganizationGuidelines, 1985, Canadianwater quality guide-
lines for the protection of aquatic life, interim freshwater
sediment quality guidelines, and the probable effect level
[24–26].

4. Conclusions

The findings of the study indicate that there is low risk of
heavy metal contamination in the environment of Batang Ai
Hydroelectric Reservoir. The aquaculture and development
activities, however, may result in elevated Se, As, and Sn.
The availability of the trace elements is largely governed by
the redox conditions in the environment. Generally, there
is no special concern of heavy metal contamination in fish;
nonetheless there is a tendency of Hg bioaccumulation and
continuous monitoring is necessary.
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