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Abstract: Pollen identification is an important task for the botanical certification of honey. It is
performed via thorough microscopic examination of the pollen present in honey; a process called
melissopalynology. However, manual examination of the images is hard, time-consuming and subject
to inter- and intra-observer variability. In this study, we investigated the applicability of deep learning
models for the classification of pollen-grain images into 20 pollen types, based on the Cretan Pollen
Dataset. In particular, we applied transfer and ensemble learning methods to achieve an accuracy
of 97.5%, a sensitivity of 96.9%, a precision of 97%, an F1 score of 96.89% and an AUC of 0.9995.
However, in a preliminary case study, when we applied the best-performing model on honey-based
pollen-grain images, we found that it performed poorly; only 0.02 better than random guessing
(i.e., an AUC of 0.52). This indicates that the model should be further fine-tuned on honey-based
pollen-grain images to increase its effectiveness on such data.

Keywords: pollen grain; classification; honey certification; melissopalynology; deep learning; transfer
learning; ensemble

1. Introduction

Honey is a natural, sweet food produced by bees from the nectar of plants and/or
from the secretions of plants and insects. It is a complex mixture, with excellent healing
properties and nutrients, and plays an increasing part in the human diet [1,2]. Due to the
great variety of melliferous plants, there is high variability among honeys regarding their
composition. A honey can be considered to be unifloral or monofloral when honeybees
collect mainly from one floral source. To certify the botanical origin of honey, physic-
ochemical analyses are combined with the investigation of the pollen contained in the
honey. Pollen analysis (also known as melissopalynology) is a procedure for identifying
the pollen grains present in the honey sediment after dilution and centrifugation. The
sediment is examined under a microscope by a specialist scientist, who identifies the gran-
ules according to their morphological characteristics. This process has been performed
manually to date, although it is very time-consuming. For this reason, there is a need to
find a method that will automate and speed up the process, while reducing the potential
human error. Pollen analysis is a necessary procedure for characterizing the origin of honey.
Among other things, geographical identification is possible, according to the flora of each
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place. Specifically, the region of Crete presents a unique floral diversity with a significant
number of endemic plants from which honey is produced, with special organoleptic and
physicochemical characteristics. Such products need protection to prevent fraud and the
misleading of consumers.

Recent advances in artificial intelligence, especially deep learning, have enabled
complex analyses to be performed in a variety of tasks, with impressive performances [3,4].
The successful development of robust and powerful deep learning models is dependent
on the availability of large and well-annotated datasets, particularly for tasks based on
supervised methods, such as pollen identification. However, the collection, curation and
processing of pollen samples is difficult and time-consuming; thus, in comparison with
other computer vision applications where large datasets exist, e.g., ImageNet [5], pollen-
grain datasets are much smaller [6–9]. However, it is possible to leverage the obtained
knowledge of models trained on larger datasets for other tasks, via transfer learning [10].
In the case where knowledge is transferred from models trained using ImageNet, which is
a collection of more than 14 million real-life images with a thousand classes, when applied
on datasets from another domain, the models are able to detect low-level imaging features
more easily but are unable to properly perform the task at hand (i.e., pollen classification).
It is necessary to perform fine-tuning by either retraining the existing classification part
of the pretrained models or by training a new classifier on new annotated data, based on
the deep features produced by the pretrained convolutional network. In this study, we
utilized transfer learning to investigate the applicability of four well-established convolutional
neural network (CNN) architectures, i.e., Inception v3 [11], Xception [12], ResNet [13] and
Inception–ResNet [14] for pollen classification on the Cretan Pollen Dataset v1 (CPD-1) [6,15]
which comprises more than 4000 pollen-grain images of 20 pollen types, gathered from
the region of Crete. In addition, we examined two ensemble approaches to combine the
predictive power of all or some of the base models. Finally, we obtained preliminary results
from applying the best-performing model, trained on plant-based images, on pollen-grain
images extracted from honey samples, to evaluate the applicability of such models in a
real-life case such as pollen identification within the context of honey botanical certification.

2. Materials and Methods
2.1. Data

The study used the Cretan Pollen Dataset v1 (CPD-1) [15] for developing the classifica-
tion models. CPD-1 is a publicly available dataset comprising images of 4034 pollen grains
of 20 plant species (Figure 1). The pollen samples were collected from various places in
the region of Crete, Greece, during the period between April 2019 and April 2021. Figure 2
illustrates a mosaic of all pollen grains, numbered in accordance with Figure 1. This dataset
is very rich in terms of the variety of pollen-grain types, comprising a wide spectrum of
pollen types that are commonly found in Crete’s characteristic honey “Pefkothymaromelo
Kritis PDO”. However, it also has some limitations such as a class imbalance, as seen
in Figure 1, as well as some poorly segmented pollen grains. The proportion of poorly
segmented pollen grains is very small, and we believe that it does not affect the training
process of the model. In addition, some of the pollen types with a low representation in the
dataset have a very distinct and unique morphology (e.g., Pinus). Thus, we believe that
the model is able to classify these correctly, even if the number of images corresponding
to these types is low. The dataset was split into three subsets, i.e., training, validation and
hold-out testing sets (Figure 3). First, we split the dataset in half, to generate the training
and testing sets. Then, the training set was augmented and split into final training and
validation sets. The augmentation techniques applied to increase the size of the training
set included randomly adding Gaussian noise, linearly adjusting contrast and brightness
and rotating and translating the image in the ‘x’ and ‘y’ plane, as well as vertically and
horizontally flipping the image (see Table 1 for a detailed presentation of the augmentation
techniques). Finally, zero padding was applied to each image to standardize the image
sizes to (512, 512) pixels. This padding was necessary because the largest pollen grain
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image has a size of (435, 419) pixels. Finally, each image was normalized by sample-wise
centering of the mean value to 0 and dividing by the standard deviation of each sample.

Figure 1. Data histogram across classes.

Figure 2. Mosaic of images of all pollen types: 1 Thymbra; 2 Erica; 3 Castanea; 4 Eucalyptus;
5 Myrtus; 6 Ceratonia; 7 Urginea; 8 Vitis; 9 Origanum; 10 Satureja; 11 Pinus; 12 Calicotome; 13 Salvia;
14 Sinapis; 15 Ferula; 16 Asphodelus; 17 Oxalis; 18 Pistacia; 19 Ebenus; 20 Olea.
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Figure 3. Histogram of each subset of the data.

Table 1. Augmentations used in the study.

Augmentation Method Hyperparameters Probability

Gaussian Blurring Sigma [0, 0.3] 30%

Linear Contrast Adjustment Alpha [0.75, 1.25] 30%

Brightness Multiplication Multiplication factor [0.7, 1.3] 30%

Rotation Degrees [−180, 180] 100%

Translation in x Plane Translation percentage [−0.2, 0.2] 100%

Translation in y Plane Translation percentage [−0.2, 0.2] 100%

Vertical Flipping - 50%

Horizontal Flipping - 50%

2.2. Base Models

The current study utilized transfer learning to compare several well-established archi-
tectures that were pretrained on ImageNet [5]. In particular, the pretrained convolutional
parts of the following architectures were used: Inception v3 [11], Xception [12], ResNet [13]
and Inception–ResNet [14]. The ResNet architecture introduced residual connections to
mitigate the vanishing/exploding gradients problem of deep neural networks. With its
increased depth but considerably lower complexity than VGGNets, due to the use of global
average pooling layers, ResNet was able to outperform the state-of-the-art approach at the
time, overcoming multiple classification, detection and segmentation challenges. Google’s
Inception architecture, on the other hand, is wider rather than deeper. It is built upon
Inception modules, which consist of multiple parallel convolutional and pooling operations
with different filter sizes, each of which computes a different transformation over the same
input feature map. In addition, due to the increased computational complexity, 1 × 1
convolutions are used to reduce the dimensionality of the output feature maps. Inception
v4, or the so-called Inception–ResNet architecture, combines the principles of Inception
modules and residual connections to produce a wide, yet very deep CNN. Finally, Xcep-
tion, which stands for extreme inception, uses depth-wise separable convolutions in place
of the Inception modules, which effectively maps cross-channel and spatial correlations
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completely separately, while maintaining the complexity at the same level as Inception v3.
Xception also uses linear residual connections, like ResNet.

A custom classification part was developed as described in Table 2, which followed the
feature extraction part of the pretrained models. The GAP layer computes the mean value
of each feature map, effectively downscaling and flattening the output of the convolutional
network. For the dense layers, the activation function is the rectified linear unit (ReLU),
while the dropout rate is chosen to be 50% for each neuron. The output dense layer utilizes
the softmax activation function, which calculates the probability for each of the examined
classes. Each model was trained for a maximum of 50 epochs, with early stopping based on
the validation loss value. The categorical cross-entropy loss function (Equation (1)) and the
Adam optimizer [16] with a batch size of 8 samples were used to train the model, using an
exponentially decaying learning rate with an initial value of 0.001 and a decay rate of 0.96.

CE = −
C

∑
i=1

yo,clog(oo,i) (1)

Table 2. Classification part of the network. The input and output sizes of the GAP layer, as well as
the input size of the first dense layer, depend on the backbone convolutional network used.

Input Size Output Size Activation Function

Global Average Pooling 2D - - -

Dense Layer - 1024 ReLU

Droput of 50% 1024 1024 -

Dense Layer 1024 512 ReLU

Droput of 50% 512 512 -

Dense Layer 512 256 ReLU

Droput of 50% 256 256 -

Dense Layer 256 128 ReLU

Droput of 50% 1024 1024 -

Dense Layer 128 20 Softmax

Here, C is the number of classes, y is a binary indicator of whether class label c
is the correct classification for the observation o and p is the predicted probability that
observation o belongs to class i. The model was trained on a server with an AMD EPYC
7251 8-core 2.9 GHz CPU, RTX 2080 Ti 11 GB GPU and 64 GB RAM and implemented using
TensorFlow 2.5.

2.3. Ensemble Techniques

In addition, we utilized ensemble techniques to combine the predictive power of
the models. The hypothesis was that each classification model identifies unique imaging
features with respect to the other models, and thus the combination of their predictions
boosts the overall classification performance. Two ensemble learning strategies were
utilized: (a) a soft voting ensemble strategy, where the mean of the prediction probabilities
of all models was calculated and used for the final prediction, and (b) a hard voting
ensemble strategy, where each model calculated a single prediction and then the one with
the maximum occurrences was used as the final prediction. An example of each strategy
for a binary classification task is shown in Table 3.
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Table 3. Example of the ensemble strategies for a binary classification task. The same procedure
applies for a 20-class task.

Models Prediction Probability Prediction

Model 1 [0.8, 0.2] Class 0

Model 2 [0.55, 0.45] Class 0

Model 3 [0.1, 0.9] Class 1

Soft Voting Ensemble [0.8 + 0.55 + 0.1, 0.2 + 0.45 + 0.9]/3 = [0.483, 0.517] Class 1

Hard Voting Ensemble Maximum occurrence [0,0,1] Class 0

3. Results
3.1. Performance Metrics

To evaluate the performance of the model on the hold-out testing set, we computed
the following metrics based on the model predictions and the ground truth: accuracy
(ACC), sensitivity (SEN), precision (PRE), F1 score and AUC score (one versus the rest).
Because these metrics are mainly used in binary classification tasks, we computed them in
two different settings: (a) an average calculation across all classes (macro and weighted
averages) and (b) using a per-class calculation. In addition, we obtained the receiver
operating characteristic (ROC) curve and the confusion matrix for each model. It should be
noted that we have not provided the AUC and ROC curves for the hard voting ensemble
models, because they provide class predictions rather than prediction probabilities; thus,
only metrics derived from the confusion matrix are applicable.

3.2. Performance Analysis of the Models

Each model was trained to classify the pollen-grain images into one of the 20 plant
species. The training, validation and testing sets comprised 7129, 802 and 2013 pollen-grain
images, respectively. The specific distribution of each class is presented in Figure 3. The
validation set was used for assessing the performance during training and for early stopping
of the training procedure. Table 4 presents the overall performance results averaged across
all classes for each of the models, while Table 5 presents the performance of each model
regarding the Thymbra class. For the sake of brevity, the model performances on the rest
of the classes are presented in their respective tables in the Supplementary Materials. We
chose to include the performance regarding the Thymbra class in the main part of the paper
because it is the main pollen type present in Crete’s trademark honey “Pefkothymaromelo
Kritis PDO”.

Table 4. Performance metrics for each model on the test set, averaged across all classes.

Macro Weighted

ACC Pre Sen F1 AUC Pre Sen F1 AUC

ens_all_hard 0.975161 0.970762 0.966647 0.967991 NA 0.976031 0.975161 0.975231 NA

ens_all_soft 0.975161 0.970042 0.969219 0.968880 0.999542 0.976306 0.975161 0.975334 0.999533

ens_ir_i_r_hard 0.972678 0.969362 0.966809 0.967251 NA 0.973837 0.972678 0.972838 NA

ens_ir_i_r_soft 0.973671 0.969781 0.966628 0.967443 0.999437 0.974688 0.973671 0.973803 0.999338

ens_ir_r_hard 0.957278 0.952362 0.947819 0.947840 NA 0.959952 0.957278 0.957202 NA

ens_ir_r_soft 0.966716 0.965132 0.963203 0.962795 0.999358 0.969911 0.966716 0.967410 0.999204

ens_i_r_hard 0.964729 0.959518 0.956076 0.956596 NA 0.966231 0.964729 0.964742 NA

ens_i_r_soft 0.974168 0.967764 0.970974 0.968863 0.999177 0.975065 0.974168 0.974326 0.999204

ens_x_ir_hard 0.959265 0.958602 0.949879 0.951970 NA 0.962451 0.959265 0.959344 NA
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Table 4. Cont.

Macro Weighted

ACC Pre Sen F1 AUC Pre Sen F1 AUC

ens_x_ir_i_hard 0.972181 0.971409 0.969076 0.969541 NA 0.973656 0.972181 0.972402 NA

ens_x_ir_i_soft 0.974168 0.971959 0.968699 0.969395 0.999222 0.975805 0.974168 0.974393 0.999170

ens_x_ir_r_hard 0.969697 0.967619 0.964934 0.965034 NA 0.972198 0.969697 0.970201 NA

ens_x_ir_r_soft 0.971187 0.968954 0.966567 0.966683 0.999464 0.973259 0.971187 0.971571 0.999475

ens_x_ir_soft 0.966716 0.963960 0.961913 0.961237 0.998892 0.970550 0.966716 0.967457 0.998980

ens_x_i_hard 0.965723 0.960852 0.954880 0.956783 NA 0.966856 0.965723 0.965620 NA

ens_x_i_r_hard 0.976155 0.969923 0.970366 0.969455 NA 0.977386 0.976155 0.976399 NA

ens_x_i_r_soft 0.976652 0.969540 0.971659 0.969963 0.999387 0.977790 0.976652 0.976889 0.999454

ens_x_i_soft 0.974168 0.967077 0.971752 0.968744 0.998931 0.975470 0.974168 0.974411 0.999008

ens_x_r_hard 0.967213 0.960367 0.952631 0.954955 NA 0.968760 0.967213 0.967131 NA

ens_x_r_soft 0.971684 0.964913 0.963993 0.963454 0.999097 0.973144 0.971684 0.971921 0.999184

inception 0.964729 0.960787 0.961660 0.960547 0.998633 0.966119 0.964729 0.964959 0.998587

inception_resnet 0.952310 0.953253 0.952506 0.950253 0.998199 0.958644 0.952310 0.953534 0.997607

resnet 0.958271 0.950490 0.955365 0.951001 0.998360 0.962226 0.958271 0.959258 0.998233

xception 0.961749 0.950759 0.953611 0.950483 0.998096 0.964355 0.961749 0.962129 0.998363

Individual models (short name for ensemble naming): Inception (i); ResNet (r); Inception–ResNet (ir); Xception
(x). Ensemble strategies: soft or hard voting. The naming of the ensemble models is based on the schema
“ens_MODELS_VOTING” (e.g., ens_i_r_soft means Inception and ResNet ensembles based on soft voting). NA
refers to Not Applicable.

Table 5. Performance metrics for each model on the test set regarding the Thymbra class.

Sensitivity Specificity Precision Accuracy F1 AUC

ens_all_hard 0.917808 0.998969 0.971014 0.996026 0.943662 NA

ens_all_soft 0.931507 0.998969 0.971429 0.996523 0.951049 0.999569

ens_ir_i_r_hard 0.917808 0.998969 0.971014 0.996026 0.943662 NA

ens_ir_i_r_soft 0.931507 0.998969 0.971429 0.996523 0.951049 0.999364

ens_ir_r_hard 0.780822 1.000000 1.000000 0.992052 0.876923 NA

ens_ir_r_soft 0.917808 1.000000 1.000000 0.997019 0.957143 0.998757

ens_i_r_hard 0.835616 0.998969 0.968254 0.993045 0.897059 NA

ens_i_r_soft 0.931507 0.997938 0.944444 0.995529 0.937931 0.999244

ens_x_ir_hard 0.821918 1.000000 1.000000 0.993542 0.902256 NA

ens_x_ir_i_hard 0.904110 0.998454 0.956522 0.995032 0.929577 NA

ens_x_ir_i_soft 0.931507 0.998969 0.971429 0.996523 0.951049 0.995220

ens_x_ir_r_hard 0.917808 0.998969 0.971014 0.996026 0.943662 NA

ens_x_ir_r_soft 0.904110 0.999485 0.985075 0.996026 0.942857 0.998913

ens_x_ir_soft 0.904110 1.000000 1.000000 0.996523 0.949640 0.995629

ens_x_i_hard 0.863014 0.998454 0.954545 0.993542 0.906475 NA

ens_x_i_r_hard 0.931507 0.998454 0.957746 0.996026 0.944444 NA

ens_x_i_r_soft 0.931507 0.998969 0.971429 0.996523 0.951049 0.999477

ens_x_i_soft 0.945205 0.996907 0.920000 0.995032 0.932432 0.995523

ens_x_r_hard 0.821918 0.998969 0.967742 0.992548 0.888889 NA
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Table 5. Cont.

Sensitivity Specificity Precision Accuracy F1 AUC

ens_x_r_soft 0.904110 0.998969 0.970588 0.995529 0.936170 0.998687

inception 0.931507 0.995361 0.883117 0.993045 0.906667 0.994549

inception_resnet 0.849315 1.000000 1.000000 0.994536 0.918519 0.993913

resnet 0.863014 0.997938 0.940299 0.993045 0.900000 0.997522

xception 0.904110 0.996907 0.916667 0.993542 0.910345 0.995763

Since our main objective was to correctly identify as many pollen grains belonging
to the Thymbra class as possible, the metric that should be used to compare the model
performances is the sensitivity (recall). At the same time, false positive cases for the
Thymbra class should be minimized, which essentially means maximizing the specificity
for that class. However, the perfect classifier, which would have a sensitivity of 1 and
a specificity of 1, is rarely if ever observed in any real-life application in AI. To balance
these two metrics, ROC curves and AUC scores are used. Thus, the metric that was used
to compare the models and select the most appropriate model for our task was the AUC
score of each model. However, because hard voting ensemble classifiers do not produce
an ROC curve, based on which the AUC score is calculated, the comparison was based on
the sensitivity.

We observe that all the models performed exceptionally well in the aggregated re-
sults (Table 4), with a weighted mean AUC value of 0.99895 ± 0.00054, a macro AUC
value of 0.99898 ± 0.00047, a weighted mean sensitivity value of 0.96839 ± 0.00663 and
a macro mean sensitivity value of 0.96237 ± 0.00739. However, the same does not ap-
ply for the Thymbra class evaluation. Although the mean AUC value of all models was
0.997295 ± 0.002001, the mean sensitivity was 0.895548 ± 0.04364. Interestingly, the base
models (Inception v3, Inception–ResNet, Xception and ResNet) had a mean sensitivity
value of 0.8869865 ± 0.0326692, the hard voting ensemble classifiers had a mean sensitivity
value of 0.8712329 ± 0.050592 and the soft voting ensemble classifiers had a mean sensitiv-
ity value of 0.9232878 ± 0.0139697. In fact, the Xception–Inception soft voting ensemble
model (“ens_x_i_soft”) had the highest sensitivity value of 0.945205 of all the models, while
the highest sensitivity for a hard voting ensemble was 0.931507. Thus, soft voting ensemble
classifiers should be preferred to hard voting classifiers in the context of this study. The
receiver operating characteristic (ROC) analysis regarding the Thymbra class is presented
in Figure 4.

Thus, based on the previous assumptions and observations, the best-performing
model is a soft voting ensemble of all the base models (“ens_all_soft”). The ROC analysis
is presented in Figure 5, and the performance metrics are presented in Table 6. Looking
at the confusion matrix of this classifier in Figure 6, we observe that there are only a few
misclassified cases for all classes. Specifically, for Thymbra, there were 5 pollen-grain images
that were classified as Erica, Vitis, Origanum, Satureja and Calicotome, while 68 were correctly
classified as Thymbra. On the other hand, there were only 2 pollen-grain images that were
falsely classified as Thymbra, when in fact they belonged to Satureja and Calicotome pollen
types, respectively. Such misclassifications may be attributed to the fact that several pollen
species such as Thymbra, Origanum and Salvia have shared morphological characteristics.
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Figure 4. Receiver operating characteristic curve for Thymbra class.

Figure 5. Receiver operating characteristic curve for soft voting ensemble of all base models.
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Table 6. Performance results of soft voting ensemble of all base models across all classes.

Sensitivity Specificity Precision Accuracy F1 AUC

1. Thymbra 0.931507 0.998969 0.971429 0.996523 0.951049 0.999569

2. Erica 1.000000 0.998439 0.968085 0.998510 0.983784 1.000000

3. Castanea 1.000000 0.998950 0.981982 0.999006 0.990909 1.000000

4. Eucalyptus 0.941176 0.998444 0.963855 0.996026 0.952381 0.999713

5. Myrtus 0.989822 1.000000 1.000000 0.998013 0.994885 0.999991

6. Ceratonia 0.960000 0.995925 0.857143 0.995032 0.905660 0.998839

7. Urginea 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

8. Vitis 0.962963 0.995208 0.935252 0.993045 0.948905 0.999101

9. Origanum 0.941176 0.999481 0.987654 0.997019 0.963855 0.995973

10. Satureja 0.972222 0.998988 0.945946 0.998510 0.958904 0.999930

11. Pinus 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

12. Calicotome 0.946309 0.997854 0.972414 0.994039 0.959184 0.999622

13. Salvia 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

14. Sinapis 1.000000 0.993730 0.891892 0.994039 0.942857 0.999609

15. Ferula 0.975610 1.000000 1.000000 0.999503 0.987654 0.999975

16. Asphodelus 1.000000 0.999499 0.944444 0.999503 0.971429 1.000000

17. Oxalis 1.000000 0.999485 0.985915 0.999503 0.992908 1.000000

18. Pistacia 0.882353 1.000000 1.000000 0.999006 0.937500 0.999882

19. Ebenus 0.909091 1.000000 1.000000 0.999503 0.952381 0.999273

20. Olea 0.972152 0.998764 0.994819 0.993542 0.983355 0.999368

Figure 6. Confusion matrix for soft voting ensemble of all base models.
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According to Greek legislation, at least 18% of the pollen found in the sediment of a
sample must be thyme pollen for the honey to be characterized as thyme honey [17]. On
this basis, if there are enough Thymbra pollen grains in the sample, the chosen model with
a sensitivity of 0.931507 and a specificity of 0.998969 will identify more than enough pollen
for the honey to be certified. However, extensive evaluation and possibly fine-tuning of the
model on real-world honey-based samples should be carried out before any application of
the model in a production environment.

The performance metrics and graphs for all the other models across all studied classes
are included in the Supplementary Material.

4. Discussion
4.1. Comparison to Other Studies

Pollen analysis is an important task in melissopalynology, since it has a large financial
impact on agricultural applications such as certification of botanical origin for honey.
However, manual inspection of pollen microscopy images is a cumbersome and time-
consuming task, subject to large inter- and intra-observer variability while achieving low
identification accuracy. Thus, automatic pollen grain classification has attracted a great
deal of attention from the research community during recent years.

In a previous study in our group, Manikis et al. [18] proposed a machine learning
pipeline to extract geometric, textural and wavelet features from a private dataset of
564 pollen-grain images and to train a random forest classifier to classify them into six
pollen types. They achieved a satisfactory performance, with a reported accuracy of
88.24%, precision of 88.60%, recall of 88.16% and an F1 score of 87.79%. Battiato et al. [19]
presented a machine-learning-based analysis for classifying images into four classes (i.e.,
Corylus Avellana (well-developed pollen grains, anomalous pollen grains), Alnus and
Debris). They investigated the performance of five classifiers based on hand-crafted features
(i.e., HOG and LBP features), and they also developed an end-to-end model based on
two convolutional neural network architectures, i.e., AlexNet and VGGNet. The best-
performing model was AlexNet, achieving an accuracy of 0.8963 and a F1 score of 0.8897. A
key difference between this study and our study is the increased number of unique pollen
species that our dataset includes. Although the total number of pollen-grain images in our
dataset was lower, our approach achieved a much better accuracy (0.975161) and F1 score
(0.968880), with many more classes.

Although hand-crafted approaches report satisfactory performance results, we believe
that models trained on selected hand-crafted features are inferior to deep learning ap-
proaches for large-scale tasks such as the one presented in this study. For reference, Battiato
et al. [19] reported an increased performance from 3% up to 13% in terms of accuracy for a
deep learning approach, in comparison to the hand-crafted approach. Sevillano et al. [20]
presented a model combining CNN-based deep features with a linear discriminant classifier
for classifying 23 types of pollen images on the Pollen23E dataset. Although this dataset
comprises only 805 images (approximately 35 images per pollen type), it is very similar
to ours regarding the high number of classes. Their approach achieved an accuracy of
0.932273, a precision of 0.9477, a recall (sensitivity) of 0.9964 and an F1 score of 0.9669. It
is interesting to note that our approach slightly outperformed theirs, with an accuracy of
0.97561, precision of 0.970042, sensitivity of 0.969219 and an F1 score of 0.968880, indicat-
ing the robustness and wide applicability of advanced AI models on a wide spectrum of
pollen samples.

Astolfi et al. [7] presented a very similar study to ours, as they trained and evaluated
several well-established CNN architectures within the context of a large pollen-grain
dataset. Specifically, their database comprised 2523 images of 73 pollen types collected
from the Brazilian savanna (Cerrado). They reported that DenseNet-201 outperformed all
the other models, achieving a precision score of 95.7%, an F1 score of 96.4%, an accuracy of
95.8% and a recall score of 95.7%. However, their models’ performances varied considerably
across several pollen types. This may be attributed to the significantly lower number of



Plants 2022, 11, 919 12 of 15

images per class, i.e., there are many more classes but a much lower total number of
images in the Pollen73S dataset, compared with the CPD v1 dataset. Finally, they conclude
by stating the importance of investigating the potential gains of an ensemble approach,
which, as our study indicates, can play an important role in achieving a performance boost
compared to single-model approaches.

Table 7 presents the comparison information for the performance results of our method
and those of other researchers.

Table 7. Comparison table between other studies and ours.

Ref. Method Dataset AUC Sensitivity Precision Accuracy F1 Score

Manikis et al. [18] Hand-crafted
Features + ML 546 images - 88.16% 88.60% 88.24% 87.79%

Battiato et al. [19] CNN Pollen23E
805 images - - - 89.63% 88.97%

Sevillano et al. [20] CNN + LD Pollen23E
805 images - 99.64% 94.77% 93.22% 96.69%

Astolfi et al. [7] CNN Pollen73S
2523 images - 95.7% 95.7% 95.8% 96.4%

Our study CNN CPD 4034 0.9995 96.9% 97% 97.5% 96.89%

4.2. Performance on Honey Data

To evaluate the model in a real-life setting, 17 samples were collected from two different
honey samples. Pollen grains were isolated according to [21]. In brief, 10 g of honey was
dissolved in deionized water and centrifuged to remove the sugars. The sediment was
used to make microscopic preparations with the addition of 0.05% pararosaniline chloride
(Acros Organics, Mumbai, India). The slides were placed in a heating hearth at 40 ◦C to
evaporate the moisture, followed by closing the sample using coverslips and mounting
medium (Eukitt, Sigma-Aldrich, Tafkirchen, Germany). Permanent pollen preparations
were allowed to dry before storage. The images were acquired using a Kern Optics
microscope with a built-in ODC 832 camera, with 5.1 MP at 400× magnification. After
the images were taken, the granules were identified by a specialist scientist. The images
were processed to segment each pollen grain and then standardized according to the
preprocessing pipeline of the analysis presented in Section 2. The final data comprised a
total of 152 pollen-grain images, with a distribution across the classes as shown in Figure 7.
This is a very imbalanced collection, with many classes not having a single data point.
The best-performing model from the test set, i.e., the “ens_all_soft” classifier, was used to
predict the classes of the pollen-grain images derived from the honey samples. It should be
stressed that this is a preliminary case study, since the collected samples were not sufficient
to produce reliable and trustworthy results. Hence, we chose to include it in the Discussion
section of this manuscript as an indication of future research directions.

Unfortunately, the results of the selected model on the honey-sampled pollen-grain
images were very poor, with a weighted average AUC score of 0.52, which is only 2% better
than a random prediction classifier. The confusion matrix in Figure 8 shows that there
were many misclassifications, especially for the target species of this study, i.e., Thymbra.
However, we can observe that most of the Thymbra samples were misclassified as Salvia
and some as Origanum. These two, in addition to Satureja, have a very similar morphology
to Thymbra (Figure 9 presents indicative pollen-grain images from these species sharing
common morphological characteristics). We can also observe that all Origanum images
were misclassified as Salvia. Taking into consideration the nature of this honey-based
image collection and the morphological similarities between these species, these specific
misclassifications could be expected.
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Figure 7. Histogram of honey-based dataset.

Figure 8. Confusion matrix of soft voting ensemble of all models on the honey-based dataset.
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Figure 9. Pollen-grain images of pollen types with similar morphological characteristics.

However, there were still many unexpected misclassifications, which can be attributed
to several factors. The images from the honey sediment showed some differences compared
to those from the plant. It is possible that the granules in the sediment were more swollen,
as they contained more water. At the same time, there is a possibility that many grains
were joined together. Finally, honey contains other elements such as sugars and proteins,
which can blur the images, affecting both the quality of the image and the integrity of the
imaging features. In addition, the segmented pollen-grain images from the honey-based
samples were unfortunately very few compared to the testing set of the initial plant-based
data. Thus, any preliminary results presented in this discussion are not representative of
the actual predictive power of the model.

However, this analysis paves the way for future work on real-life data based on honey
samples, while showing some necessary and important steps that must be followed in
future studies. First, a larger number of samples should be collected and preprocessed
to create large pollen-grain datasets from honey samples, which will be representative of
all the pollen classes. Second, a robust and standardized preprocessing pipeline should
be established to eliminate the variability between the pollen-grain images collected from
plant samples and those collected from honey samples. Models that are trained on the
plant-based dataset should be fine-tuned on a small subset of the honey-based dataset, to
gain insight into this variability and learn the unique imaging features that may be present
in the honey-based dataset. Following this, the fine-tuned models will be more useful to
the melissopalynology community.

5. Conclusions

In this paper, we presented a comparative study for deep-learning-based classifica-
tion of pollen-grain images from the 20 most common pollen species in Crete’s unique
Pefkothymaromelo Kritis PDO honey. We compared four well-established CNN models,
which were pretrained on the ImageNet database and fine-tuned on the publicly available
dataset CPD v1 [15]. The best-performing model was based on the soft voting ensemble
of all the base models, achieving an accuracy of 97.5%, a precision of 97%, a sensitivity
of 96.9%, an F1 score of 96.89% and an AUC of 0.9995. When tested on a small collection
of pollen grains extracted from honey samples, it performed poorly, as it only exceeded
random guessing by 2% (i.e., an AUC of 0.52). Further development and fine-tuning on a
larger honey-based collection should be performed to increase the model’s performance
and robustness.
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