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Abstract: Zinc is the second most abundant trace element in the human body, and it plays a fun-
damental role in human physiology, being an integral component of hundreds of enzymes and
transcription factors. The discovery that zinc atoms may compete with copper for their absorption
in the gastrointestinal tract let to introduce zinc in the therapy of Wilson’s disease, a congenital
disorder of copper metabolism characterized by a systemic copper storage. Nowadays, zinc salts
are considered one of the best therapeutic approach in patients affected by Wilson’s disease. On
the basis of the similarities, at histological level, between Wilson’s disease and non-alcoholic liver
disease, zinc has been successfully introduced in the therapy of non-alcoholic liver disease, with
positive effects both on insulin resistance and oxidative stress. Recently, zinc deficiency has been
indicated as a possible factor responsible for the susceptibility of elderly patients to undergo infection
by SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic. Here, we present the data
correlating zinc deficiency with the insurgence and progression of Covid-19 with low zinc levels
associated with severe disease states. Finally, the relevance of zinc supplementation in aged people
at risk for SARS-CoV-2 is underlined, with the aim that the zinc-based drug, classically used in
the treatment of copper overload, might be recorded as one of the tools reducing the mortality of
COVID-19, particularly in elderly people.

Keywords: zinc; COVID-19; Wilson’s disease; non-alcoholic liver disease; drug therapy

1. Introduction

Zinc (Zn) is the second most abundant trace element in the human body after iron.
The zinc content in the adult body ranges from 1.4 to 2.3 g, with about 85% of the total
amount localized in muscles and bones. According to recent findings, the brain is the organ
with the highest Zn content, exceeding 10 times the zinc concentration in the liver and
serum [1], but contrasting data can be found [2]. Such discrepancies come from the fact that
the data are mostly based on zinc content from biopsies and sections of tissues, assuming
that this reflects the total zinc content of the respective live tissue [3].
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Zinc liver content is correlated with gestational age and decreases in the postnatal
period [4]. Only 0.1% of total body zinc is found in plasma, where zinc atoms are bound to
albumin [5], α-2-micro-globulin and transferrin [6]. Together with iron, copper, manganese,
and selenium, zinc is a fundamental trace metal in human physiology, being an integral
component of about 10% of the human proteome. Even if zinc has no redox potential, as
other listed trace elements, it represents a key component in more than 300 enzymes and
multiple transcription factors [7]. Studies counting the zinc proteins encoded in the human
genome revealed that about 3000 human proteins are potential zinc-binders [8].

Zinc deficiency increases risk for infectious diseases (16% of all deep respiratory in-
fections worldwide [9]), autoimmune disorders, and cancer [10–12]. Mild zinc deficiency
is largely subclinical, and according to the World Health Organization’s (WHO) assump-
tions at least one third of the world population have zinc deficiency [9]. The highest
incidence of patients affected by zinc deficiency is among those with chronic obstructive
pulmonary disease (COPD), bronchial asthma, cardiovascular diseases, autoimmune dis-
eases, kidney diseases, dialysis, obesity, diabetes, cancer, atherosclerosis, liver cirrhosis,
immunosuppression, and liver damage [11,13]. Plasma zinc concentration corresponds
only to 0.1% of the zinc in the body and widely depends on plasma zinc-transporters [14],
thus plasma zinc concentration is not a reliable biomarker of cell/body zinc content. How-
ever, plasma zinc/albumin ratio could be considered as a surrogate marker for functional
zinc status [14]. Nowadays, zinc deficiency is associated with low plasma concentration
of zinc (<70 µg/dL), which are frequently detected during infections or in the elderly
and in patients with chronic disease comorbidities that predispose to severe forms of
COVID-19 [15].

Zinc is commonly used in the treatment of patients with documented zinc deficiency,
which occurs in many types of liver disease, anorexia, anemia, growth retardation, abnor-
mal immune function, abnormal nitrogen metabolism, hypogeusia, impaired reproductive
capacity, coarse and sparse hair growth, flaking seborrhea of the skin, impaired connec-
tive tissue metabolism, behavioral defect, hypogonadism, and geophagia [16]. Recent
studies put emphasis on zinc dyshomeostasis in neurological disorders [17] (e.g., brain
injury, stroke, seizure, neurodegeneration [18]), α-1 antitrypsin polymorphism [19] and
diabetes [20,21].

In this review, we present the role of zinc in biological processes and how its deficiency
leads to different pathologies. In addition, we summarize the literature data of zinc-drug
pharmacology and clinical trials for the use of zinc as a drug in prevention and treatment
of numerous diseases. Finally, we discuss the beneficial effects of zinc therapy in Wilson’s
disease (WD), non-alcoholic liver disease (NALD) and COVID-19-related liver injury.

2. Zinc Absorption and Metabolism

Zinc homeostasis is driven mainly by the gastrointestinal system, especially the small
intestine, liver and pancreas, where absorption of exogenous zinc and gastrointestinal
secretion and excretion of endogenous zinc occurs [22]. Zinc absorption depends on
proper dietary intake, and is greatly affected by its intestinal availability [2]. Under regular
physiologic conditions, zinc uptake does not saturate; although, the quantification of
absorbed zinc is influenced by the zinc secretion into the gut. Numerous studies in human
models with the use of stable zinc isotopes delivered important data on zinc absorption [23].
For instance, Zn in aqueous solutions is absorbed quite efficiently (at a rate of 60–70%),
while absorption from solid dietary products is less effective, and greatly influenced by
zinc content and presence of zinc competitors, e.g., other metal ions (iron and calcium),
and zinc-chelating molecules [10]. Of note, zinc status conditionate zinc absorption, and
zinc-deficient humans absorb zinc more efficiently, whereas humans with high-zinc diet
have reduced zinc absorption [10]. Populations that followed habitual vegetarian diets
have dietary zinc intakes and serum zinc concentrations significantly lower compared with
non-vegetarians [10].
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During the digestion process, Zn is released from food as free ions, which are absorbed
in the duodenum [24] and jejunum [25] (Scheme 1). Zinc absorption, transfer, and excretion
are accomplished by two large classes of transporters: Zinc transporters (ZnT) and zinc-
regulated and iron-regulated transporter proteins (Zip). These proteins have opposite
roles within the cell. The Zip family move zinc from the extracellular space into the cells,
increasing cytoplasmic zinc concentrations, while ZnT is mostly decreasing intracellular
zinc. Zinc is uptaken at the intestinal brush border membrane, where it is transported
from the lumen into the enterocytes by the Zrt-, Irt-like protein (ZIP)4 (solute carrier
(SLC39A4) transporters [26,27] and ZnT-1 (SLC30A1)), which is a basolateral membrane
protein exporting zinc on the basolateral side of enterocytes into the portal blood [28]. In
addition, the basolaterally localized transporters ZIP5 (SLC39A5) and ZIP14 (SLC39A14)
transfer Zn from the blood circulation into enterocytes [29,30]. Moreover, ZnT-5 variant
B (SLC30A5B) at the apical membrane of enterocytes [31,32] transports both luminal
Zn into enterocytes and cellular ions back into the lumen [32,33]. Recently, research
data showed that polymorphism of the common zinc transporter SLC30A8/ZnT8 may
increase susceptibility to type 2 diabetes, providing novel insights into the role of zinc in
diabetes [34].
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Scheme 1. Zinc metabolism is finely regulated in the body in order to limits its potential toxic effect. The zinc dietary intake
is regulated in the intestine through several zinc transporters proteins (ZnT) and by iron-regulated transporter proteins
(ZIP). Zinc bound to α2 -macroglobulin (a2m), albumin (alb) and other proteins and amino acid (AA) is distributed in the
body. Zinc is prevalently stored in skeletal muscle, bone, liver and brain. Liver plays a central role in zinc metabolism and,
in general hepatitis, liver disfunction or liver diseases are associated with low levels of this trace element. In the brain, zinc
is necessary for the regular central nervous system functions.
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The Zn cation is excreted at the basolateral side of enterocytes into the portal blood,
where it is bound to albumin (60%), α-macroglobulin (30%) and transferrin (10%) [35],
which distributes the metal in the body [36]. Of note, the expression of metallothioneins
(MTs) depends on zinc levels in enterocytes. Among four known MT genes (MT-1–MT-4) [37],
mainly MT-1 and MT-2 are expressed in the intestine [38], and combines zinc and copper
in the intestine, and prevents their serosal surface transfer. Intestinal cells are sloughed
with approximately a 6-day turnover, and the metallothionein-bound copper and zinc are
lost in the stool and are thus not absorbed [39]. Detailed processes of cellular distribution
of zinc into enterocytes and its transfer through the cells after its absorption are not yet
completely understood [2].

Plasma or serum zinc levels in healthy individuals ranges from 12 to 16 µM [40],
and corresponds to 1% (or less) of whole-body zinc. Serum contains only 0.1% of the
whole-body zinc, but the circulating zinc turns over rapidly to meet tissue needs [10], thus
serum is important in zinc homeostasis within the body. Conversely, zinc stored in skeletal
muscle and bone has low turnover and availability [41]. The plasma and serum zinc are
directed into the hepatic circulation, and then it is released into systemic circulation and
deliver zinc into various tissues (Scheme 1).

Brain concentration of zinc is high, yet very little is known about the molecular
mechanism of zinc and homeostasis in nervous system (Scheme 1). Zinc can use several
pathways to enter and/or exit brain. In neurons, zinc ions use (1) presynaptic release along
with glutamate, (2) voltage-gated L-type Ca2+-channels and glutamate-gated channels and
(3) a plasma membrane transporter mechanism [42].

The correct zinc balance is regulated by biliary and intestinal secretions, even if most
zinc ions are reabsorbed. Additional routes of zinc excretion are through urine, feces and
surface losses (sloughed skin, hair, sweat) [10].

3. Zinc Binding Proteins and Zinc Biological Role

The latest bioinformatic analysis showed that there are over 3000 proteins (~10%
of all encoded proteins) that bind Zn ions [8], including enzymes, nuclear factors and
hormones [43]. Zn is mainly bound to four amino acid residues and adopts a tetrahedral
coordination, but the stability of the formed adducts depends on metal binding sites (most
frequently sulfur from cysteine, nitrogen from histidine and oxygen from glutamate or
aspartate) and surrounding protein and ligand environments. The affinity of zinc proteins
for Zn ions and the stability of formed complexes determines Zn function, and how proteins
regulate its mobility and cellular availability [44].

Zinc has a catalytic, structural and regulatory role in its adducts with proteins. Ac-
cording to Kochanczyk et al. [44] zinc proteins can be divided into five classes, based
on correlation between structural and functional similarities of the metal binding cen-
ter. In the first-class, the catalytic zinc binding domains coordinate metal with three
amino acid (mainly histidine and aspartate/glutamate) donors deriving from a single
polypeptide chain. The second-class proteins bind zinc in mononuclear, tetrahedral coor-
dination sphere involving four protein-derived ligands (mainly cysteine–sulfur donors
and histidine–nitrogen donors). The third-class proteins have multinuclear zinc binding
sites, with more than one metal ion in distinct site. In the fourth-class proteins, ligand
environment influences metal affinity and in the consequence the high mobility of zinc. The
last class of zinc binding proteins coordinate metal intermolecularly with ligands present
in two or more different polypeptide chains.

The zinc presence in different proteins lead to zinc involvement in numerous cellular
processes and biochemical pathways including cytoprotection against reactive oxygen
species and bacterial toxins, regulation of multiple transcription factors, restore of dermal
and mucosal barrier integrity, and production of antibodies and circulating lymphocytes.
Immune function, wound healing, protein synthesis, DNA synthesis and cell division are
the best-known processes where the zinc presence is essential. Taste and smell, growth and
development during pregnancy, childhood, and adolescence are also controlled by the Zn
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homeostasis. Antioxidant and antibacterial properties of zinc protects against aging and
accelerate wound healing [45]. Finally, different enzymes involved in epigenetic events,
such as DNA methylation and histone modification, require zinc [46,47]. Therefore, zinc
could be considered an essential trace metal in epigenetics events, which determine both
health and disease conditions [48].

4. Zinc Pharmacodynamics and Clinical Trials

There are 69 registered clinical trials for the use of zinc therapy in different human
pathologies [49] (Table S1—complete list of clinical trials; Table 1—selected clinical trials):
35 are completed, while others are going to recruit, or are already recruiting. Zinc therapy
is proposed mostly for treatment, prevention or supportive care.

The use of oral zinc therapy showed effective results in boosting the immune system,
treating the common cold and recurrent ear infections, as well as preventing lower respira-
tory tract infections [49]. Moreover, zinc can be used for the treatment and/or prevention
of zinc deficiency and its consequences, for instance slowed wound healing, acute diarrhea
in children, and stunted growth. Other indications for zinc oral therapy are (in alphabetic
order): candidiasis; common cold; diaper dermatitis and rash; eye redness; iron deficiency;
ocular and skin irritation; sunburn and Wilson’s disease [49].

Oral zinc therapy consists of zinc oxide or zinc inorganic salts, for instance zinc sulfate,
zinc gluconate, zinc acetate and zinc picolinate. There is no significant difference in efficacy
between different zinc salts, but it may affect patient tolerance. Most forms of zinc salts
have nausea and epigastric distress as potential side effects. Moreover, it appears that some
patients may not be zinc responsive, and adherence to therapy and careful monitoring are
critical [50].

The safety of high-dose intravenous zinc (HDIVZn) has been presented in litera-
ture [51–54]. HDIVZn has been administered in the treatment of burns at doses ranging
from 26.4 to 37.5 mg/d for 8 successive days without any side effects [51–53]. Oral zinc at
doses over 75 mg/d has antiviral effects against common cold viruses, including influenza
viruses [55]. Mild adverse effects of zinc supplementation have been reported with dosages
above 200 mg/d [56,57].

The half-life of zinc in humans is approximately 280 days [58], while the clearance
of zinc was found to be 0.63 ± 0.39 µg/min [59]. A pharmacokinetic study made on rats
showed that zinc particles were mainly distributed to liver, lung and kidney within 72 h
without significant gender differences [60]. According to the Toxnet database of the U.S.
National Library of Medicine, the oral LD50 (measured in rats and mice) for zinc is close to
3 g/kg body weight [61].

Zinc can be chelated by ligands present in food products and metal binding sites of
drugs (list of 50 potential drug interactions can be find in reference [49]). When assuming
zinc, milk and phosphorous containing products should be avoided at least 2 h before
administration. Moreover, zinc should not be assumed with bran and high fiber foods. For
optimal absorption, zinc should be taken on an empty stomach, at least 1 h before and 2 h
after eating. Zinc can be taken with food to reduce gastrointestinal upset [49].

Zn absorption can be reduced by malabsorptions, diarrheal episodes, pathogen translo-
cations and celiac disease [62]. Of note, 10.4% patients with SARS-CoV-2 infection presented
diarrhea [63].
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Table 1. Selected Zinc-based therapies in clinical trials (data adopted from https://clinicaltrials.gov/applying “Zinc therapy” to search results; accessed on 13 October 2021).

NCT Number Title Status Conditions Interventions Characteristics Population Locations

1 NCT04542993

Can SARS-CoV-2 Viral Load and
COVID-19 Disease Severity be
Reduced by Resveratrol-assisted Zinc
Therapy

Active, not recruiting •Covid19
•SARS-CoV Infection

•Dietary Supplement: Zinc Picolinate
•Dietary Supplement: Resveratro
•Dietary Supplement: Zinc Picolinate
Placebo •Dietary Supplement:
Resveratrol Placebo

Study Type:
Interventional

Age:
18 Years to 75 Years
(Adult, Older Adult)

•Swedish Medical
Center, Seattle,
Washington, United
States

2 NCT04468139

The Study of Quadruple Therapy
Zinc, Quercetin, Bromelain and
Vitamin C on the Clinical Outcomes
of Patients
Infected With COVID-19

Recruiting •Covid-19
•Drug: Quercetin •Dietary
Supplement: bromelain•Drug: Zinc
•Drug: Vitamin C

Study Type:
Interventional

Age:
18 Years and older
(Adult, Older Adult)

•Ministry of health.
First health cluster,
Riaydh, Riyadh, Saudi
Arabia

3 NCT05003492

Utilizing the Crosstalk Among
Aerosolized Phenformin, Methylene
Blue, Photodynamic Therapy, Zinc
and Potassium for Treating Severe
COVID-19 Infection and Its
Inflammatory Complication

Not yet recruiting •COVID-19

•Combination Product:
Combination therapy plus Standard
therapy•Radiation: Photodynamic
therapy •Drug: Standard therapy

Study Type:
Interventional

Age:
18 Years to 70 Years
(Adult, Older Adult)

•Ministry of health.
First health cluster,
Riaydh, Riyadh, Saudi
Arabia

4 NCT04395768
International ALLIANCE Study of
Therapies to Prevent Progression of
COVID-19

Recruiting •COVID19

•Dietary Supplement: Vitamin C
•Drug: Hydroxychloroquine •Drug:
Azithromycin. •Dietary Supplement:
Zinc Citrate •Dietary Supplement:
VitaminD3 •Dietary Supplement:
Vitamin B12

Study Type:
Interventional

Age:
18 Years and older
(Adult, Older Adult)

•National Institute of
Integrative Medicine,
Melbourne, Victoria,
Australia

5 NCT04447534
Zinc With Chloroquine/
Hydroxychloroquine in Treatment of
COVID-19

Recruiting •COVID •Drug: Chloroquine •Drug: zinc Study Type:
Interventional

Age:
18 Years and older
(Adult, Older Adult)

•Tanta university
hospital, Assuit
University, Ainshams
University, Tanta,
Egypt

6 NCT04828538

Vitamin D, Omega-3, and
Combination Vitamins B, C and Zinc
Supplementation
for the Treatment and Prevention of
COVID-19

Active, not recruiting •Covid19

•Dietary Supplement: VitaminD
•Dietary Supplement: Omega
DHA/EPA
•Dietary Supplement: Vitamin C,
Vitamin B complex and
Zinc Acetate

Study Type:
Interventional

Age:
18 Years and older
(Adult, Older Adult)

•Hospital de Soledad,
San Luis Potosí, SLP,
Mexico

7 NCT04370782

Hydroxychloroquine and Zinc With
Either Azithromycin or Doxycycline
for
Treatment of COVID-19 in Outpatient
Setting

Completed •COVID-19
•Drug: Hydroxychloroquine •Drug:
Azithromycin •Drug: Zinc Sulfate
•Drug: Doxycycline

Study Type:
Interventional

Age:
30 Years and older
(Adult, Older Adult)

•St Francis Hospital,
Roslyn, New York,
United States

8 NCT04641195

Vitamin D and Zinc Supplementation
for
Improving Treatment Outcomes
Among
COVID-19 Patients in India

Recruiting •COVID-19

•Dietary Supplement: Vitamin D3
(cholecalciferol) •Dietary
Supplement: Zinc (zinc gluconate)
•Dietary Supplement: Zinc (zinc
gluconate) & Vitamin
D(cholecalciferol) •Other: Placebo

Study Type:
Interventional

Age:
18 Years and older
(Adult, Older Adult)

•Saifee Hospital,
Mumbai, Maharashtra,
India •King Edward
Memorial (KEM)
Hospital, Pune,
Maharashtra, India

https://clinicaltrials.gov/applying
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Table 1. Cont.

NCT Number Title Status Conditions Interventions Characteristics Population Locations

9 NCT04621461

Placebo Controlled Trial to Evaluate
Zinc for the Treatment of COVID-19
in the
Outpatient Setting

Completed •Corona Virus
Infection

•Dietary Supplement: Zinc Sulfate
220 MG
•Drug: Placebo

Study Type:
Interventional

Age:
30 Years and older
(Adult, Older Adult)

•St. Francis
Hospital—The Heart
Center, Roslyn, New
York, United States

10 NCT00212368
Efficacy and Safety Study of Zinc
Acetate to Treat Wilson’s Disease in
Japan.

Completed •Wilson’s Disease •Drug: Zinc acetate Study Type:
Interventional

Age:
1 Year and older
(Child, Adult, Older
Adult)

11 NCT00212355
Efficacy and Safety, Long-term Study
of Zinc Acetate to Treat Wilson’s
Disease in Japan.

Completed •Wilson’s Disease •Drug: NPC-02 Study Type:
Interventional

Age:
1 Year and older
(Child, Adult, Older
Adult)

12 NCT03659331

A Controlled Study of Potential
Therapeutic Effect of Oral Zinc in
Manifesting Carriers of Wilson’s
Disease

Unknown
status •Wilson’s Disease •Dietary Supplement: Zinc Study Type:

Interventional

Age:
18 Years and older
(Adult, Older Adult)

13 NCT02475928 Zinc Supplementation in Cirrhotic
Patients

Unknown
status

•Dysgeusia •Liver
Cirrhosis

•Dietary Supplement: zinc gluconate
•Dietary Supplement: Placebo
•Behavioral: Nutritional education

Study Type:
Interventional

Age:
18 Years to 70 Years
(Adult, Older Adult)

•Medica Sur Clinic &
Foundation, Mexico
City, Mexico

14 NCT01899521

Examination of Zinc, S-
adenosylmethionine, and
Combination Therapy Versus Placebo
in Alcoholics

Completed •Alcoholism

•Procedure: Bronchoscopy •Dietary
Supplement: Zinc sulfate 220 mg
once daily •Dietary Supplement:
Sadenosylmethionine 400 mg twice
daily

Study Type:
Interventional

Age:
18 Years to 60 Years
(Adult)

•Atlanta VA Medical
and Rehab Center,
Decatur, GA, Decatur,
Georgia, United States

15 NCT00149552
Zinc Therapy in HIV Infected
Individuals
Who Abuse Drugs

Completed
•HIV Infections
•Substance-Related
Disorders

•Dietary Supplement: zinc Study Type:
Interventional

Age:
18 Years and older
(Adult, Older Adult)

•Camillus House,
Miami, Florida, United
States

16 NCT00449592
Oral Zinc Therapy for the
Prevention of
Mucositis

Completed •Mucositis •Drug: Zinc •Drug: Placebo Study Type:
Interventional

Age:
18 Years to 70 Years
(Adult, Older Adult)

•Division of
Hematology and Bone
Marrow
Transplantation, Sheba
Medical
Center, Ramat-Gan,
Israel

17 NCT00325247 Efficacy of Zinc Therapy in Acute
Diarrhoea in Young Children Completed •Acute Watery

Diarrhea •Drug: ZINC Study Type:
Interventional

Age:
1 Month to
59 Months
(Child)

•ICDDR,B, Dhaka,
Bangladesh

18 NCT01440608

Effectiveness of High-dose Zinc
Therapy and Albendazole in the
Treatment of
Environmental Enteropathy

Completed •Enteropathy
•Drug: Albendazole
•Drug: Placebo
•Dietary Supplement: High dose zinc

Study Type:
Interventional

Age:
1 Year to 3 Years
(Child)

•Saint Louis Nutrition
Project, Blantyre,
Malawi



Molecules 2021, 26, 6614 8 of 19

Table 1. Cont.

NCT Number Title Status Conditions Interventions Characteristics Population Locations

19 NCT01162109 Zinc Therapy in Critical Illness Active, not recruiting •Severe Sepsis •Dietary Supplement: Zinc sulfate Study Type:
Interventional

Age:
18 Years and older
(Adult, Older Adult)

•University of Vermont
College of
Medicine, Burlington,
Vermont, United States

20 NCT01259050 Safety Study of High Doses of Zinc in
ALS Patients Completed •Amyotrophic Lateral

Sclerosis •Drug: Zinc and Copper Study Type:
Interventional

Age:
18 Years to 85 Years
(Adult, Older Adult)

•Phoenix Neurological
Associates, Phoenix,
Arizona, United States

21 NCT00252304 Therapeutic Zinc in Childhood
Pneumonia Completed •Pneumonia •Drug: Zinc (zinc sulphate)

•Drug: Placebo
Study Type:
Interventional

Age:
2 Months to
35 Months
(Child)

•Kanti Children
Hospital, Kathmandu,
Nepal

22 NCT00693680 Zinc Supplementation of Imipramine
Therapy Completed •Major Depression •Dietary Supplement: Zincas Forte

•Dietary Supplement: Placebo
Study Type:
Interventional

Age:
18 Years and older
(Adult, Older Adult)

•Department of
Psychiatry, Collegium
Medicum, Jagiellonian
University,
Krakow, Poland

23 NCT02601742

Effectiveness of Oral Rehydration
Therapy Supplemented With Zinc in
the
Management of Diarrhea Acute

Unknown
status

•Diarrhea
•Children

•Other: Zinc group
•Other: Placebo group

Study Type:
Interventional

Age:
6 Months to 5 Years
(Child)

24 NCT03923829

The Effect of Zinc on the Gingival
Crevicular Fluid Level of Total
Oxidant
Capacity in Type 2 Diabetic Patients

Unknown
status •Chronic Periodontitis •Drug: Zinc Sulfate

•Procedure: scaling and root planing
Study Type:
Interventional

Age:
Child, Adult, Older
Adult



Molecules 2021, 26, 6614 9 of 19

5. Zinc in the Therapy of Wilson’s Disease

Wilson’s disease (WD) is an inherited metabolic disorder leading to hepatic and
extrahepatic copper deposition. Most cases of WD occur in adolescents, but in some cases it
can affect older people [64]. Diagnosis is usually established after the evaluation of serum
ceruloplasmin (CP, which is typically below the reference range in WD), 24 h urinary Cu
excretion and a slit lamp examination for the presence of Kayser–Fleischer rings (indicative
of corneal Cu deposition). The histochemical demonstration of hepatic copper [65], genetic
tests [66] and ultrastructural changes [67] are now important in the diagnosis of Wilson’s
disease [68].

The liver synthesizes transporting P-type ATPases (ATP7B) protein and regulates
copper metabolism. The WD copper concentration in hepatocytes varies during disease
progression and reaches fivefold higher liver copper content (dry weight) in WD patients
than that in healthy individuals [69]. The human brain has the highest concentration of
copper after the liver [70] and copper concentration in the brain of WD patients is 10–15
fold higher than in healthy controls [71].

None of the drug treatments for WD can cure the disease, and prescribed treatments
are life-long oral regimen. Each drug treatment aims at decreasing copper overload in the
body, either by the copper chelation with D-penicillamine (DPen) [72] or trientine [73], or
by zinc salts [74], which inhibit intestinal copper absorption through slow transcriptional
induction of cellular metallothioneins [75]. After a lag phase, Zn also leads to excretion of
copper from the body.

The first proposal to introduce oral zinc in the therapy of Wilson’s disease dates back
to the early 1960s, and was contained in a thesis defended at the University of Amsterdam
by the student G. Schouwink [76]. It was necessary to wait for 17 years for the first report
in the international literature of the ability of zinc to decrease copper absorption in the
gastrointestinal tract [77]. Sixty years after the first report, zinc is generally considered
an alternative to chelating agents for the therapy of WD [78]. Monotherapy is generally
considered one of the best options for young patients with WD around the world [79].
There are promising evidences that zinc therapy may decrease liver injury and provide
antifibrotic effects in patients with WD [80].

In the recent study, Appenzeller-Herzog et al. [81] presented the comparative (prospec-
tive, retrospective, randomized and non-randomized) study of common therapies for WD,
namely D-penicillamine (DPen), zinc salts, trientine and tetrathiomolybdate. It was shown
that zinc therapy has similar effects to penicillamine in terms of prevention or reduc-
tion of hepatic or neurological WD symptoms, and at the same time is safer and has
lower association with mortality. Severe side effects necessitating drug withdrawal were
more frequent on DPen than on Zn [82]. Moreover, neurological deterioration after the
copper-chelating therapy were more frequent when using DPen as compared to Zn [82].
Nevertheless, rare cases of gastrointestinal reactions and hepatic deterioration can occur
during zinc therapy [83–85]. Up to now, eight patients with anemia after a long period of
zinc therapy for WD have been reported [86], thus regular follow-up during zinc treatment
and the involvement of specialists in the long-term management of Wilson’s disease are
recommended.

According to the current guidelines [87], symptomatic patients should be treated with
a chelating agent, although Zn may be used as first-line therapy in those with neurological
disease [88,89]. In presymptomatic patients, either a chelator or Zn can be used [88,89].
Neurological deterioration is rare in zinc salts treatment [67], thus in patients with neu-
rological symptoms worsening after treatment with chelators, zinc therapy should be
introduced [90].

The recommended dose for adult patients is elemental zinc 150 mg/day in three di-
vided doses, while dose recommended for children weighing less than 50 kg is 75 mg/day
in three divided doses. Zinc salts should be assumed 1 h before or 2 h after meals for the
optimal absorption and efficacy [87].
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During gestation women should follow a low-copper diet, and the therapy with
copper chelating agents should be decreased to 70% of the normal dose [87]. There is no
evidence that zinc is teratogenic, nevertheless zinc acetate therapy should be decreased to
75 mg/day in pregnancy [91]. Compared to copper chelating therapy, zinc lowers copper
overload relatively slowly, thus avoids excessive copper removal and copper insufficiency
during pregnancy [92]. The knowledge of zinc therapy during breastfeeding is scarce, but
single case studies suggest good compliance [93].

The mechanisms by which zinc therapy ameliorates copper balance in WD patients are
multiple and, in part, unknown. In the enterocytes, high Zn levels up-regulate transcription
of metallothioneins through the induction of the metal-responsive transcription factor 1
(MTF1) [94]. The increase of MTs in the cytoplasm of enterocytes causes the sequester
of absorbed copper, prevents transfer of copper atoms into the bloodstream, and thus
decreases dietary copper absorption [75]. In this way, zinc can attenuate liver oxidative
stress by introduction of metallothionein and inhibition of tumor necrosis factor (TNF).
Moreover, Zn prevents decrease of glutathione (GSH) and glutathione peroxidase activity.
Contemporary, zinc increases glutathione reductase activity in the liver and increased
the expression of factors associated to hepatic apoptosis [50]. Other beneficial effect of
zinc treatment in Wilson’s disease, and in general in all diseases characterized by copper
toxicosis, have been recently described by Barber et al. [95].

6. Zinc in the Therapy of Non-Alcoholic Liver Disease (NAFLD)

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease
with 24.4% prevalence worldwide, with 20−30% dominance in Western countries, and
5−18% in Asian countries. NAFLD is a multifactorial disease with complex pathophysi-
ology such as obesity (80% of obese individuals present NAFLD), insulin resistance (IR),
dyslipidemia and metabolic syndrome [96,97]. Recently, it was shown that COVID-19
patients with NAFLD have increased risk of COVID-19 disease progression, underlined by
an abnormal liver function, and by a longer period of viral shedding in comparison with
non-NAFLD individuals [98].

Even if the pathogenesis of NAFLD remains uncertain, recent data demonstrated
that zinc treatment might be preventive and/or protective factor in alcoholic as well as
in NAFLD liver diseases. Liver maintains systemic zinc homeostasis in the body [99],
thus chronic liver diseases can lead to zinc deficiency. Zinc deficiency may decrease free
insulin-like growth factor-1, and increase iron overload in the liver, and therefore leads to
chronic liver diseases via elevating lipid peroxidation [100,101].

For instance, non-alcoholic steatohepatitis (NASH) or cirrhosis in general, may alter
the process of trace mineral metabolism, and decreased Zn level was associated with
hepatic steatosis with a leptin receptor deficiency or dysregulation of a large number of
genes in lipid metabolism [102,103]. Numerous studies demonstrated zinc deficiency in
NAFLD patients [104,105], as well as in obese individuals and those with diabetes, and
zinc could be involved in physiologic mechanism and disease progression. Recently, the
relationship between zinc and hepatic fibrosis was revealed in patients with biopsy-proven
NAFLD [106]. For these reasons, a decreasing trend of serum zinc level is a clinical tool to
measure severity of NAFLD in terms of ultrasonographic aspect of hepatic steatosis and
liver fibrosis [107,108].

Impaired liver hemostasis of zinc may lead to oxidative stress and inflammation of
liver in NAFLD patients [109]. Zinc transporters play a significant role in attenuation of
endoplasmic reticulum (ER)-stress and hepatic steatosis, which increases in zinc deficient
patients [110]. In addition, zinc regulates secretion, receptor activation and signal trans-
duction of insulin [111], thus zinc deficiency may influence insulin resistance and diabetes
mellitus [112]. The recent studies by Fathi et al. [97] showed that 3-month therapy with
30 mg elemental zinc supplement improves serum levels of insulin, insulin resistance,
superoxide dismutase 1 (SOD1) and malondialdehyde (MDA), thus improving stress status
in overweight/obese NAFLD patients.
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In this contest, the protective role exerted by zinc antioxidant enzymes in several liver
diseases seems to be important also in NASH progression [113]. Moreover, Zn-treatment
seems to have potential antiviral effect, restoring both innate and humoral immunity.
Therefore, Zn treatment may also act in a synergistic manner, when co-administered with
the standard antiviral therapy, in patients with hepatitis C, HIV, and SARS-CoV [114,115].

7. Zinc in the Prevention of COVID-19-Related Liver Injury

The severe stages of COVID-19 occur in up to 15% of patients, which develop acute
respiratory distress syndrome (ARDS) or multiple organ failure (MOF) [116]. The SARS-
CoV-2 infection may also develop hepatobiliary symptoms and enzyme elevation, which
lead to liver injury. The cumulative prevalence of acute liver injury was calculated at
23.7 (16.1–33.1) per 100 patients with COVID-19 [117], with higher risk for males than
females. Direct and/or indirect bilirubin, hepatocyte integrity markers (alanine amino-
transferase (ALT) and aspartate aminotransferase (AST)), alkaline phosphatase (ALP), and
gamma-glutamyltransferase (GGT) [118] and lactate dehydrogenase (LDH) [119,120] levels
are reportedly higher in patients with COVID-19 [121,122], particularly in males. Moreover,
younger age and elevated interleukin (IL)-6 or ferritin level have recently been defined as
the strongest predictors of liver injury [123]. Of note, liver injury symptoms may appear
even without respiratory symptoms, and persistent liver damage may advance over the
patient’s entire lifetime [124].

Among the possible causes of liver injury are severe inflammatory response, anoxia,
drug induced liver injury, direct cytotoxicity and pre-existing metabolic liver disease [125].
The activation of immune responses with the cytokine storm syndrome (increased T helper
12 (Th17) and CD8 T cells, Interleukin (IL)-2, IL-6, IL-7, IL-10, tumor necrosis factor-α,
granulocyte-colony stimulating factor, interferon-inducible protein-10, monocyte chemotac-
tic protein 1 and macrophage inflammatory protein 1 alpha) [116,126,127] [3,36,37]; together
with dyshomeostastasis of hepatic biochemistry, hypoxia-reoxygenation (and hypovolemic
shock due to severe dehydration), activation of Kupffer cells and oxidative stress, intesti-
nal endotoxemia, sympathetic hyperactivity and adrenocortical system hyperactivity in
patients with COVID-19 [128] contribute to liver injury. Moreover, ischemic/hypoxic liver
injury is correlated to metabolic acidosis aggravation, calcium overloading and alterations
in the mitochondrial permeability transition pore protein [129].

The angiotensin-converting enzyme 2 (ACE2) receptors is a key cell entrance for
SARS-CoV-2, which directly contaminates hepatocytes and leads to moderate microvas-
cular steatosis and mild hepatic lobular and portal activity [130–132]. ACE2 is a zinc
metallopeptidase, with zinc ion at the catalytic site (1:1 metal/protein molar ratio) that
bind and metabolize substrates. Low zinc concentrations (~10 µM; in vitro conditions) are
indispensable for the proper enzyme functioning. Conversely, higher (~1 mM; in vitro
conditions) zinc concentrations inhibit ACE2 activity [133].

The beneficial effects of zinc therapy against viral liver infections were ascertained in
the treatment of Hepatitis C and B (HCV) and (HBV). Among different possible mechanism
are (1) antioxidant properties of zinc, (2) balance between T helper 1 (TH1) and TH2
cells, (3) zinc enhancement of antiviral effects of interferon, (4) inhibitory effects of zinc
in the HCV replicon system, and (5) hepatoprotective effects of metallothionein [134,135].
Moreover, Zinc therapy in HCV patients improves AST and ALT. Interestingly, patients
with lower zinc concentrations showed later reduction in liver enzymes following zinc
supplementation [50].

In coronaviruses, zinc inhibits both the proteolytic processing of replicase polyproteins
and the RNA-dependent RNA polymerase (RdRp) activity [136–139]. The inhibition
mechanism could be driven by zinc displacement of Mg2+ ions [140]; zinc binding to
RdRp that induce a structural change in the conformation and disables RdRp to catalyze
nucleotide incorporation; and/or high concentrations of zinc impairs viral polyprotein
processing which is integral to virus replication [141]. Moreover, Zn acts as a membrane
stabilizer that may directly prevent the entry of the virus into the cell [142].
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High-dose intravenous zinc (HDIVZn) protects various organs, including the heart,
kidneys and liver against the damage caused by hypoxia [143–146]. Zinc was shown
to limit reactive oxygen species (ROS) through different mechanisms. Zinc induce MT
mRNA and protein expression, which are involved in the intracellular defense against ROS
and nitrogen species [147]. Moreover, zinc competes with Fe2+ and Cu2+ redox reactive
ions for binding to cell membranes and proteins—and limits the production of hydroxyl
radicals via Fenton chemistry. In addition, zinc upregulates the production and activation
of antioxidant proteins, molecules and enzymes (e.g., glutathione, catalase and superoxide
dismutase) [148]. Finally, zinc ions inhibit oxidant-promoting enzymes (e.g., nitric acid
synthase and NADPH enzyme).

Elderly people are among the most vulnerable subjects, with higher risk for the
development of severe form of Coronavirus disease-19 (COVID-19) [149]. The causes of
this vulnerability remain, at the best of our knowledge, at least in part unknown. Among
the multiple factors considered, old age-related weakening of the immune system, related
to low zinc levels appears one of the most robust [150]. Zinc deficiency in the elderly
was associated with decreased or diminished T-cell response, reduced natural killer cell
activity, and depressed thymic hormone levels, which in turn increase risk of morbidity
and mortality during respiratory infections [151]. Low zinc levels have been implicated
in the pathogenesis of multiple diseases, including viral infections and gastrointestinal-
and liver diseases [152]. Moreover, in vitro studies evidenced that high zinc levels may
inhibit coronavirus replication [139]. Regarding infectious diseases, a zinc deficiency state
is generally associated to a marked susceptibility to infections [153]. In clinical practice,
serum copper-to-zinc ratio has been proposed as a tool for the evaluation of the health
status. In particular, in older people, copper-to-zinc ratio should be considered a biomarker
of the function of their immune system and their susceptibility to infections [154].

Zinc supplementation has been proposed for the management of patients affected
by COVID-19 [155]. Accordingly, zinc supplementation might exert multiple health ben-
efits to elderly people affected by COVID-19. The effects of zinc against SARS-CoV-2
infection, might be related to its ability to improve the immune response, minimize in-
flammation by protection against cytokine storm-induced multiorgan damage. Moreover,
zinc supplementation inhibits viral replication and genome transcription, and decreases
Angiotensin-Converting Enzyme 2 (ACE-2) expression through the downregulation of
silent mating type information regulation 2 homolog (SIRT1) activity ending with a de-
crease in viral entry into the cells [156].

A recent study carried out on 3473 patients admitted to hospital with severe COVID-
19, evidenced a relevant role in the administration of zinc with an ionophore in the outcome
of patients. The 1006 patients who received Zn/ionophore therapy, zinc supplementa-
tion was associated with a 24% reduced risk of in-hospital mortality (12% of those who
received Zn/ionophore died versus 17% who did not). Moreover, patients who received
Zn/ionophore were discharged home with a higher incidence as compared to patients who
did not receive the therapy [157]. Interestingly, in the same study, patients who received
zinc alone or the ionophore alone did not show any significant improvement, suggesting
that the association of zinc with ionophore have synergistic effects, and might represent a
powerful tool for COVID-19 elderly patients.

The positive influence of zinc supplementation in patients with SARS-CoV-2 infec-
tion probably is not restricted to the virus itself. ACE, a zinc metalloproteinase, is also
involved in the risk of several disease development [158]; therefore, this event may influ-
ence a possible Zn effect against COVID-19 infection. Zinc deficiency has been associated
with an increased risk of developing atherosclerosis [159]; and enhancement of oxidative
stress-related signaling processes in endothelial cells, causing endothelial dysfunction, and
finishing with endothelial cell death. Experimental data in a mouse model of atherosclerosis,
showed that low zinc in the diet promotes vascular inflammation and atherogenesis [160].
These data were at the basis of the recent hypothesis that COVID-19 might trigger the
plaque vulnerability, transforming a stable plaque into a vulnerable one [161]. As a conse-
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quence, zinc supplementation in elderly COVID-19 patients, carriers of carotic or coronary
atherosclerotic plaques, might halt the severe consequences due to the “activation” of
the plaques caused by SARS-CoV-2 infection, improving significantly then prognosis in
older patients. Zinc supplementation is recommended in all elderly patients involved in
COVID-19 pandemic, in order to reinforce their immune competence and attenuate the
dysfunctions caused, even at endothelial level, by the cytokine storm and by the multiple
molecular pathways triggered by SARS-CoV-2 [161].

8. Conclusions

Zinc ion is bound by over 3000 proteins, and in this way it is involved directly or
indirectly in many biochemical processes. Thus, zinc unbalance, mostly insufficiency, leads
to numerous pathologies. Numerous clinical trials showed that zinc supplementation can
be used not only in the prevention of diseases, but also as a treatment. Zinc pharmacological
therapy is currently used in Wilson’s Diseases and showed positive results in the treatment
of liver pathologies, namely non-alcoholic liver disease and COVID-19-related liver injury.
Zinc is absorbed in the gastrointestinal tract and the proper diet is fundamental for zinc
balance and health status.
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Results 09/28/2021.
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