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Modificationwith SUMOprotein hasmany key roles in eukaryotic systemswhich renders the identification of its target proteins and
sites of considerable importance. Information regarding the SUMOylation of a protein may tell us about its subcellular localization,
function, and spatial orientation.Thismodification occurs at particular and not all lysine residues in a given protein. In competition
with biochemicalmeans ofmodified-site recognition, computationalmethods are strong contenders in the prediction of SUMOyla-
tion-undergoing sites on proteins. In this research, physicochemical properties of amino acids retrieved from AAIndex, especially
those involved in docking of modifier and target proteins and optimal presentation of target lysine, in combination with sequence
information and random forest-based classifier presented in WEKA have been used to develop a prediction model, SUMOhunt,
with statistics significantly better than all previous predictors. In this model 97.56% accuracy, 100% sensitivity, 94% specificity, and
0.95 MCC have been achieved which shows that proposed amino acid properties have a significant role in SUMO attachment.
SUMOhunt will hence bring great reliability and efficiency in SUMOylation prediction.

1. Introduction

Posttranslational modifications on proteins offer spectacular
diversity and functional variety to an organism’s otherwise
constrained proteome. SUMOylation is one such PTMwhose
vast expanse of biological implications in organisms has
brought it under attention; still till nowmany of its functional
outcomes are not known. To name a few, SUMOylation is
involved in transcriptional regulation [1–3], mRNA meta-
bolism [4], apoptosis [5, 6], nuclear and subcellular transport
[7, 8], protein trafficking [9], signal transduction [10], regula-
tion of DNA damage and replication, cell-cycle progression,
competition with other members of the ubiquitin family [2,
11, 12], prevention or promotion of deacetylation [13], chro-
mosome segregation [14], structural integrity of chromatin
andmany proteins, andmitosis [15]. It has been reported to be
involved in the perception of sound as well [16]. Also, it is
known to participate in early developmental processes like
cell differentiation, specification, division, and lineage com-
mitment [17]. SUMOylation of a target protein can change
its localization in a cell by altering its intermolecular and
intramolecular interactions [18]. Hence, by determining

whether a protein is SUMOylated or not, vital evidences can
be gathered regarding its function and spatial association [19].

SUMO, amember of the ubiquitin family, ismade up of 97
amino acids and is also called Smt3p, Pmt2p, PIC-1, GMP-1,
Ubl1, and Sentrin [20]. It mostly modifies proteins present
in the nucleus, cytoplasm, and sometimes the plasma mem-
brane of eukaryotic cells [17]. SUMO proteins are highly con-
served across eukaryotic proteomes. In mammals, including
humans, there are four isoforms of SUMO called SUMO 1,
SUMO 2, SUMO 3, and SUMO 4; in yeasts there is only one
SUMO protein while plants produce at least eight SUMO
isoforms [21]. SUMO 1, SUMO 2, and SUMO 3 are expressed
throughout an organism’s body [2] with the latter two having
greater sequence similarity as compared to SUMO 1 [22].
SUMO 4 dominates in lymph node, kidney, and spleen in
mammals [23], having resemblance with SUMO 2 and 3 and
a dominant occurrence in kidney [24].

SUMOylation can occur in either the cytoplasm or the
nucleus depending on the locality of the target protein,
though the modification may afterwards be responsible for
regulation of production and change in its localization [2]
mostly from other parts of cell to the nucleus. RanGAP1,
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which controls the transportation of ribonucleoproteins
across the nuclear pore complex, was identified as the first
SUMO target [25]. Before SUMOylation, this protein mainly
resides in the cytoplasm and afterwards associates itself with
the cytoplasmic fibers of the nuclear pore complex [25]. All
essential components of SUMOylation are present at the
nuclear pore complex which shows its involvement in nuclear
import or even retention of any incoming proteins within
the nucleus [26, 27]. However, TEL protein, modified at K99,
dominates in the cytoplasm while TEL mutated and hence
unable to be SUMOylated at this residuemostly resides in the
nucleus, pointing towards possible role of SUMOylation in its
export [28].

Since SUMOylation is a part of a very wide array of bio-
logical and cellular processes, even a minor dysfunction in
the pathway can result in severe pathological conditions like
cancer. Neurodegenerative diseases including Huntington’s
disease [19], Alzheimer’s disease, Parkinson’s disease [29],
and neuronal intranuclear inclusion disease [9] often have
anomalies in the SUMOylation pathway involved in their
onset. Also, type I diabetes [30] and familial amyotrophic
sclerosis [13] have SUMOylation dysfunction as a frequent
part of their beginning.

SUMO proteins attach covalently to lysine, which mostly
lies in consensus motifΨKXE [31], whereΨ is any hydropho-
bic amino acid, K is the target lysine residue, X is any of the
twenty encoded amino acids, and E is glutamic acid, with
the help of SUMO E2-conjugation enzyme, ubc9 [31]. In
mammals, any one of the four isoforms of SUMO conjugates
to target protein as an individual molecule or in the form of
polymeric chains [32] at target lysine. The enzymes working
the SUMOylation pathway are E1-activating enzyme, E2-
conjugating enzyme, and E3 ligase. The SUMO pathway can
be categorized into maturation, activation, conjugation, and
finally ligation at target site (Figure 1). First of all, SUMO is
processed by SUMO-specific proteases (SENPs) [33] to cleave
its terminal into an exposed diglycine motif at the carboxyl
end, converting it from immature tomature protein.Themat-
uration process of all three major SUMO proteins is identical
inmammals [34]. Secondly, activation ofmature SUMO takes
place through an ATP-dependent thioester bond formation
between SUMOandUBA2/AOS1, a heterodimeric E1-activat-
ing enzyme [2]. Direct linkage occurs between SUMO and
UBA2 subunit of the heterodimer. This enzyme is called
SAE1/SAE2 or Sua1/hUba2 in humans [34]. The yeast homo-
logue of UBA2 subunit is Uba2p, which together with Aos1
was the first activating enzyme to be discovered [35] while the
human homologue is hUba2 [36]; both act in the same way.
The third step in this pathway is catalyzed by E2-conjugating
enzyme, Ubc9. Activated SUMO is transferred from E1-
activating enzyme to a cysteine residue in Ubc9. In contrast
to other enzymes involved in the process, Ubc9 is the only
type of enzyme identified in its category [31, 37]. It is Ubc9
which identifies the consensus or nonconsensus sequence at
target site for subsequent conjugation [38]. In the final step,
SUMO is attached to target protein with isopeptide bond
between the exposed diglycine on carboxyl terminal of
SUMO and the 𝜀-amino group of target lysine in protein with
the help of E3-ligating enzyme. Three distinct characteristics

of ligating enzymes in SUMOylation pathway have been
sketched through research: (i) they should be able to directly
or indirectly associate with the target protein, (ii) they should
be able to bind with their preceding enzyme, ubc9, in the
pathway, and (iii) they should be capable of transferring
SUMO to target protein or another SUMO in case of poly-
SUMOylation [34]. RanBP2 which is a nuclear pore protein
[39], TOPORS [40, 41], PIAS proteins [42], Pc2 [43] which
is polycomb group protein, and RNF4 [44] have all been
identified to have E3 ligase activity in SUMOylation pathway.

Nearly all research on SUMO attachment has pointed
out the significance of ΨKXE motif, but on the other hand,
SUMOylation has been reported to occur in regions outside
of this consensusmotif aswell: in nonconsensus sites. Xu et al.
[21] reported 26% SUMO occurrence in nonconsensus while
Xue et al. [45] reported 23% such cases in bulk data used to
develop their respective prediction servers. For example,
there are four core histones, H2A, H2B, H3, and H4, that are
frequently SUMOylated. However, none of the SUMOylated
sites in these histones conform to the common consensus
motif [46]. Several other consensus motifs have been pro-
posed including NDSM and PDSM. NDSM proposes that
negatively charged amino acids around the target lysine
enhance SUMOylation [47] while PDSM is based on
ΨKXEXXSP motif, both being only an extension of the
original common motif [48].

An analysis of available PDB structures of several protein
targets having 57 reported SUMOylation sites revealed 54 of
the sites to be exposed on the surface while only 3 were buried
within the proteins’ globular structure [21]. Also, research has
led to the conclusion that SUMOylation is greatly enhanced
when the target lysine is forced to adopt a favorable confor-
mation [49]. From this behavior it can be inferred that the
conjugation enzymes and ligases have sequence preference
since they come into direct contact with target protein.
SUMOylation pathway requires only three enzymes, speci-
ficity of subcellular localization and appropriate presentation
of target residue on globular structure [2]. In case of other
PTMs, a variety of enzymes with their target recognition and
modification systems bring out varied site preference; typi-
cally they are not focused on any one type of residue. The
major role in SUMOylation is played by only few enzymes
discussed above; it suffers from the lack of efficient target
recognition and modification systems, thus emphasizing the
importance of motif and sequence information on the target
protein as a device of recognition in the pathway.

Including sequence information as a principal contrib-
utor of computational prediction performance can provide
rational computational tools, but focusing entirely on the
consensus motif is not preferable as it can result in missing
many true positives that lie in nonconsensus regions along
with high false positive rate due to the many consensus sites
that are actually not SUMOylated. In view of the occurrence
of SUMO at both consensus and nonconsensus, sites it is pro-
posed that other than the raw amino acid sequence around
a SUMOylatable lysine residue there are factors of appro-
priate presentation and exposure of lysine and adjacent
residues including steric hindrance, hydrophobicity, polarity,
and entropy, playing a crucial role in determining whether
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Figure 1: The SUMOylation pathway: the SUMO pathway is categorized into maturation, activation, conjugation, and ligation. First of all,
SENPs convert immature SUMO to mature SUMO by exposing diglycine motif at carboxyl terminal. This mature SUMO is activated by
AOS1/UBA2 (E1—activating enzyme) with the help of ATP-dependent reaction. Activated SUMO conjugates with E2—conjugating enzyme
ubc9—which finally transfers it to target lysine on substrate protein with the help of E3 ligase.

a residue shall undergo SUMOylation or not. However, two
residues downstream and one residue upstream of the target
lysine play the most important role in SUMOylation [2, 50,
51].

We have employed different peptide lengths centered on
lysine residues experimentally proved to undergo SUMOy-
lation with sixteen amino acid properties (Table 1) from
AAIndex to develop a prediction model named SUMOhunt.
These amino acid properties were chosen on the basis of their
contribution in increasing structural complementarity and
association between incoming SUMO and target protein.
Promising accuracymeasures obtained on SUMOhunt devel-
oped by combining these properties with sequence informa-
tion in the vicinity of target lysine and random-forest based
algorithm presented in data mining software WEKA [52]
have opened new paths for the development of an efficient
prediction method.

2. Materials and Methods

2.1. Dataset. 452 modified lysine instances (positive instan-
ces) were obtained from dbPTM [53], from training sets
and sites supplemented for SUMOpre [21] and SUMOsp [45]
and in the publication titled SUMO targets and Site Prediction:
Combining Pattern Recognition and Phylogenetic Conserva-
tion by Xue et al. [54]. Primary sequences around these
residues were retrieved from UniprotKB [55] in the form of
21-mer peptides: SUMOylated lysine residue had 10 residues

Table 1: Physicochemical properties used to shape SUMOhunt.
They were chosen because of their potential contribution in docking
of SUMO with substrate protein at the target site.

Amino acid property AAIndex Year reported
Hydrophobicity PRAM900101 1990
Polarity GRAR740102 1974
Bulkiness ZIMJ680102 1968
Hydropathy index KYTJ820101 1982
Accessible surface area RADA880106 1988
Residue accessible surface area in
tripeptide CHOC760101 1976

Percentage of buried residues JANJ780102 1978
Entropy of formation HUTJ700103 1970
Side-chain volume KRIW790103 1979
Side-chain’s contribution to stability TAKK010101 2001
Buriability ZHOH040103 2004
Hydrophilicity value HOPT810101 1981
Molecular weight FASG760101 1976
Transfer free energy to surface BULH740101 1974
Steric parameter CHAM810101 1981
Isoelectric point ZIMJ680104 1968

upstream and 10 residues downstream of it. Standard single
letter code was used for every amino acid residue.

Removal of redundant information gave 293 modified
residues within 181 proteins (S1). The remaining 7346 lysine
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residues in these proteins, that is, lysine residues not reported
to be modified, were assumed to be unmodified (negative
instances) from a total lysine count of 7639 as calculated from
MAPRes [56], and 21-mer peptides were generated for them
as well. Such cases that were reported as both modified and
unmodified were considered modified.

It is better to use numerical data for the development of a
predictor, so every amino acidwas encoded furthermorewith
the coefficients given in numeric matrices of chosen amino
acid properties (Table 1) in the AAIndex [57]. Each peptide
could be represented by a 16∗21 dimension feature vector;
that is, it could have 336 possible feature dimensions vectors.

This data was made workable with WEKA [52] by con-
verting all the information into CSV format followed by con-
version to ARFF.

2.2. Training the Prediction Program. InWEKA [52], random
forest algorithm was trained using the ARFF generated.
With default settings, ten trees were trained to vote for the
class of each given instance. The random forest was trained
using a dataset that had equivalent amount of modified
and unmodified instances; the unmodified instances were
randomly selected from the larger bulk of 7346 sites.

The choice of 21-mer peptide length around the target
lysine site was tested against the same sites being present in
11-mer and 7-mer peptides as well. Each peptide in the latter
categories could be represented in 16∗11 = 176 and 16∗7 =
112 dimension feature vectors, respectively. Hence, three
datasetsmade in exactly the samemanner were obtained.The
datasets were not “formally” divided into training or test sets
for accuracy measurement; instead percentage split inWEKA
[52] was employed for this purpose to optimize the size of
train and test. The dictated percentage of the original data
including the most ideal-to-train instances is extracted and
used as training data while the rest is used to test (S2 and S3).

Accuracy measures were calculated using

SN = TP
TP + FN

,

SP = TN
TN + FP

,

MCC = (TP × TN) − (FP × FN)
√((TP + FP) (TP + FN) (TN + FP) (TN + FN))

.

(1)

2.3. Cross-Validation and Evaluation. To test our predictor’s
power, we used the methods of Xu et al. [21], that is,
self-consistency test, k-fold cross-validation, and jack knife
(leave-one-out cross-validation). Specificity, sensitivity, accu-
racy, and correlation coefficient for these tests were computed
(Figures 2 and 3).

Self-consistency test: it is predicted whether a given instance
is positive or negative using the rules of the training dataset
itself. This is done for each and every instance in the training
dataset.
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Figure 2: Comparison of accuracy measures (𝑦-axis) at several 𝑘-
fold cross-validations, LOOCV and self-consistency test (𝑥-axis).
In 𝑘-fold cross-validation, after dividing dataset into 𝑘 sections,
typical training procedure is conducted using 𝑘−1 sections while the
remaining one is used as test. This is repeated 𝑘 times until every set
has been used as test exactly once. For eight 𝑘-fold cross-validations
performed, the value of 𝑘 was kept from 3 to 10 having average AC
at 81%, SN at 83%, SP at 79%, and MCC at 0.66. LOOCV is a type
of 𝑘-fold cross-validation in which 𝑘 is equal to the number of total
instances. It has the similar average as 𝑘-fold. Self-consistency is a
type of test in which prediction of every instance is done using the
rules of the training dataset itself. This is done for each and every
instance in the training dataset. In this test, 100% result is achieved
for all accuracy measures.

𝐾-fold cross-validation: here the dataset is randomly divided
into 𝑘 sections. Typical training procedure is conducted using
𝑘 − 1 sections while the remaining one is used as test. This is
repeated 𝑘 times until every set has been used as test exactly
once.

Jack knife cross-validation: this is also called leave-one-out
cross-validation and is an extension of the 𝑘-fold cross-
validation, having 𝑘 equal to the exact number of instances
in the dataset.

2.4. Algorithm. The random forest algorithm [58] in WEKA
[52] is built on decision tree classification. The said number
of decision trees is generated with each tree having paths
and nodes. Every node then uses rules derived from patterns
in the data to decide between two or more paths. A given
instance is classified by the last rule. To develop and grow the
decision trees, a random selection of inputs and features is
done at each node.

Voting on the class for a given instance is then carried out
by the trees. Significant increase in classification accuracies
have been observed if assortment of classifier trees is used
and allowed to vote for the most popular class. Often random
vectors are generated which govern the growth of each tree in
the assortment. To see how a random forest actually shapes
its model we should know that inherently for the 𝑘th tree
a random vector Θ𝑘 is generated, independent of all the
previous vectors produced, but it has the same distribution.
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Figure 3: Area under theROC (𝑦-axis: true positive rate (fraction of true positives out of total positives) and𝑥-axis: false positive rate (fraction
of false positives out of total negatives)) of 10-fold cross-validation, self-consistency test, and LOOCV-ROC curve depicts the performance
of a classifier by plotting true positive rate versus the false positive rate. The greater the area under the curve, higher is the performance of a
classifier. For 10-fold cross-validation 89% area under the curve is obtained, for LOOCV it is 88%, while for self-consistency it is a full 100%.
At the end, ROC for classification of test set has been done with an AUC of 1.

Now a tree is grown using the training set provided and Θ𝑘,
which makes a classifier ℎ(x, Θ𝑘); here x is the input vector.
The nature and dimension of Θ𝑘 depends on its use in the
construction of the tree. After a large number of trees have
been generated, they then vote for the most popular class.

It is difficult to interpret models developed through
random forest [58]; but there are certain features whichmake
it suitable for the prediction of PTMs: a mixture of discrete
and continuous descriptors, binary, or multiclass data can
be proficiently treated with random forest algorithm. This
algorithm is successful even when there is a lot of disorder
in the data [59].

3. Results

3.1. Frequency Analysis. The number of different types of
amino acid residues prevalent around the modified sites
was analyzed (Table 2) with all results substantiated through
corresponding frequency plot (Figure 4) of the same dataset.
Results confirm the prevalence of the ΨKXE motif; approxi-
mately only 24% modified sites in this research lack the con-
sensus motif. At −1 position or in place of Ψ, it is not just
any hydrophobic amino acid; the data based on 293 modified
instances has a significantly higher occurrence of hydropho-
bic amino acids with aliphatic side chains: Val (73 occur-
rences), Leu (45), and Ile (92) as compared to those with
aromatic side chains: Phe (9), Tyr (2), Trp (0), andHis (1) and
other hydrophobic residues. In place of X or at +1 position a
dominance of polar amino acids including Glu (33), Gln (43),
and Thr (32) is there. The bulky aromatic: Trp (3), Tyr (4),
and His (4) and small-size amino acids: Asn (6) and Cys (3)

are in a significantly lesser proportion. At +2 position, polar
residuesGlu andAsp are prevalent with 224 and 13 existences,
respectively.

The incidence of Trp andCys is strikingly low at all twenty
positions around the target lysine, the highest being only
11 for Cys at position +10. The other three aromatic amino
acids Phe, Tyr, and His also do not prevail around the target
lysine, supporting the imperative role of a catalytically favor-
able presentation of lysine in its SUMOylation. Aromatic
molecules could potentially compromise this presentation
leading towards the unavailability of target lysine to incoming
SUMO.

3.2. Optimum Window Length for Prediction. In order to
derive a good predictionmodel, the optimumwindow length
of the peptides used for its training has to be determined. As
shown in Figure 5, values for all four accuracy measures are
highest for peptides of window size 7 as compared to others.
For 93% split (discussed in Section 2.2) of original dataset to
train (7% is test) at window size 21 lowest accuracy of 87.8%
is encountered in comparison to 92.7% at 11 window size and
97.56% at 7 window size. MCC and sensitivity show signif-
icant ascensions: from 75% for 21-mer peptide to 95% for
7-mer peptide and from 85% for 21-mer to 100% for 7-mer,
respectively. Specificity does not show any major improve-
ment or decrease among the three peptide lengths. Interest-
ingly, an evaluation conducted for the same accuracy mea-
sures against window size during development of SUMOpre
[21] also resulted in the samewindow size being chosen as the
best length.Hence, with all the information and comparisons,
window size 7, which has 3 residues downstream and 3
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Figure 4: Frequency plot developed for all modified and unmodified instances with ten residues upstream and downstream of the target
lysine; the plots are quite different from each other as expected. In the case of modified sites, there is a dominance of the conventional ΨKXE
motif.Ψ is hydrophobic amino acid. Results show that aliphatic hydrophobic residues including valine, leucine, and isoleucine are dominant
as compared to aromatic ones. K is the target lysine residue. X is any amino acid, which the results have shown it to be predominantly polar
like glutamic acid, glutamine, and threonine. E is glutamic acid. In the dataset used here, about 76% sites follow the consensus motif.

Table 2: Frequency analysis (occurrence in numbers) of all amino acid residues around modified target lysine in experimentally proved
positive dataset of 293 instances.

Residue −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10
Ala: A 7 23 24 21 19 17 28 21 24 14 0 13 2 13 9 17 17 18 15 13 18
Arg: R 7 16 10 10 11 16 16 14 13 4 0 10 2 13 9 6 9 7 21 14 16
Asn: N 14 11 9 13 13 13 12 8 12 0 0 6 1 14 9 12 5 12 14 8 5
Asp: D 13 18 16 18 10 11 14 13 16 1 0 10 13 17 32 45 20 24 13 23 13
Cys: C 6 2 8 2 8 2 1 2 7 2 0 3 1 1 2 1 7 3 4 5 11
Glu: E 26 21 21 27 21 28 20 13 23 10 0 33 224 18 34 24 31 37 39 26 19
Gln: Q 10 13 13 17 22 15 19 12 21 3 0 43 2 13 13 13 8 13 12 17 20
Gly: G 17 17 17 14 14 16 14 15 22 4 0 4 6 18 14 12 14 12 12 13 12
His: H 11 8 10 5 7 5 7 7 3 1 0 4 1 4 6 6 6 7 10 8 6
Ile: I 11 14 8 2 19 10 9 14 11 92 0 8 3 9 12 6 6 11 10 9 10
Leu: L 28 22 24 30 18 30 29 22 24 45 0 20 5 22 26 26 18 22 28 21 27
Lys: K 24 19 12 21 21 20 19 32 31 10 293 21 9 25 28 15 20 16 10 22 16
Met: M 14 5 11 7 3 4 10 5 4 6 0 14 2 6 7 7 8 8 3 4 2
Phe: F 8 4 7 12 10 8 6 6 6 9 0 6 5 9 4 13 12 9 7 7 6
Pro: P 26 18 30 33 29 29 27 33 14 6 0 14 7 54 24 17 40 23 15 22 23
Ser: S 23 30 21 28 28 29 29 29 24 6 0 21 4 20 21 37 25 30 27 30 34
Thr: T 18 16 15 11 16 21 17 15 14 5 0 32 3 11 14 14 20 10 10 9 14
Trp: W 3 2 4 2 0 0 1 3 1 0 0 3 0 1 0 4 1 3 0 2 2
Tyr: Y 3 8 7 4 3 4 6 2 6 2 0 4 1 7 8 6 8 7 13 12 6
Val: V 14 20 22 13 19 14 9 27 17 73 0 24 2 17 18 8 10 11 17 15 14

residues upstream of the target lysine residue, is the most
rational choice for our prediction model.

3.3. Prediction Accuracy and Stability of Model. Prediction
accuracy was measured using varied sequence lengths, with
and without physicochemical properties. The addition of
information on physicochemical properties of amino acid
residues produced powerful accuracies given in Table 3.
From the several models generated, the best with the cho-
sen window size was further substantiated by testing its
stability through three procedures discussed in Section 2.3.
In Figure 2, accuracy measures for several 𝑘-fold cross-
validations, jack-knife and self-consistency tests have been

visualized. Results of the former two types of tests were all of
nearly equal values with small deviations from mean while
the latter varied significantly towards greater robustness;
ROC for these tests can be observed in Figure 3. Average
values of 𝑘-fold tests and LOOCV for AC remained at 82%,
SN at 86%, SP at 80%, and MCC at 0.66. The last type of test,
self-consistency, gave a 100% result as shown in Figure 2.

4. Discussion

The large range of biological processes and localizations
populated by SUMO targets presents a great motivation to
unravel information regarding SUMOylation and its targets
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Table 3: Accuracy measures on 21-mer, 11-mer, and 7-mer peptides containing target lysine with different combinations of data divided into
training and test sets.

% age split +ve train −ve train AC% SN% SP% MCC AUC +ve/−ve in test
21 window size
On train 293 291 100 100 100 1.0 1.0 293/291
66% 182 203 82.41 81 84 0.67 0.89 111/88
80% 233 234 88.03 95 80 0.76 0.92 60/57
90% 263 263 89.65 96 82 0.79 0.94 30/28
92% 268 269 93.61 96 90 0.87 0.98 25/22
94% 271 278 94.28 95 92 0.87 0.99 22/13
93% 269 274 87.80 85 93 0.75 0.97 24/17
11 window size
On train 293 291 99.82 99 100 0.99 1.0 293/291
66% 192 193 85.71 87 83 0.70 0.91 101/98
87% 259 249 86.84 97 78 0.75 0.89 34/42
90% 260 266 87.93 90 84 0.75 0.96 33/25
92% 266 271 89.36 88 90 0.78 0.96 27/20
93% 270 273 92.68 95 88 0.85 0.98 23/18
94% 271 278 94.28 95 92 0.87 0.99 22/13
7 window size
On train 293 291 100 100 100 1.0 1.0 293/291
66% 193 192 84.92 87 82 0.89 0.92 100/99
80% 231 236 86.32 91 80 0.72 0.92 62/55
90% 262 264 84.48 90 77 0.67 0.93 31/27
92% 269 268 91.48 96 87 0.83 0.97 24/23
93% 270 273 97.56 100 94 0.95 1.0 23/18
94% 271 278 97.1429 100 93 0.94 0.99 22/13

85 95 100

93 88 94
75 85 95
87.8 92.68 97.56

21 11 7

SN
SP

MCC
AC

Figure 5: Comparison of accuracy measures at three window sizes:
21, 11, and 7 residue peptides; a good prediction model is dependent
on optimum window size (𝑥-axis) around target lysine. Window
size 7 having 3 residues upstream and downstream is the best with
highest AC, MCC, SP, and SN (𝑦-axis) while window size 21 with 10
residues upstream and downstream has the lowest efficiency.

by all possible means. Rigorous wet-lab experiments are fre-
quently undertaken to isolate, identify, quantify, and report
SUMOylation. SUMOylated proteins have been identified in
yeast strains [51, 60] using mass spectrometry, chromatog-
raphy proteolytic digestion, and so forth, on a trial and
error basis to find target lysine residues [61]. On larger
scale, proteomes having larger and more complex proteins
with many SUMOylatable lysine residues are also analyzed

through mutational analysis. However, these randomly exe-
cuted experiments not only take up significant amount of
time but also consume physical and chemical toils that are
often futile as they result in discovering lysine residues that
do not undergo SUMOylation. These approaches focus on
identifying substrates rather than exact sites. Computational
prediction of target sites has become mandatory before
conducting experiments; this enables researchers to directly
focus on residues which are potential candidates of SUMOy-
lation. This dry-lab testing prior to corresponding wet-lab
experimentation has gained much attention due to its cost
effectiveness and power in proteomic data mining.

Till now, nine prediction models for SUMOylation have
been proposed, out of which six have reported servers includ-
ing SUMOplot [62] (web server), SUMOsp 1.0 and 2.0 [45]
(downloadable), SUMOpre [21] (web server), Boshu Liu’s
PSFS method [63] (web server), SSPFS [51] (available upon
request), and seeSUMO [64] (web server).

SUMOplot [62] was the first step in development of com-
putational server for the prediction of SUMOylation sites
but had a bias of ΨKXE sites in data. SUMOsp, 2006 [45],
was presented as SUMOsp 1.0 and SUMOsp 2.0 that were
generated using GPS and MotifX (originally developed for
phosphorylation) with sequence information only like
SUMOplot [62]. Liu et al. developed a PSFS-based prediction
model in 2007 [63] trained on hundreds of amino acid pro-
perties from which seven were selected as relevant with
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Table 4: Comparison of SUMOhunt with previous models/servers.

Predictor AC SN SP MCC AUC Training features Evaluation
process +train/−train

SUMOplot 90% 80% 93% 0.48 — Only sequence Training —/—
SUMOsp (2006)
Thd: 18 andThd: 4

92.71%
80.43%

83.6%
89.12%

93.08%
80.07%

0.5012
0.3232

0.73
— Only sequence 5-fold and

LOOCV 239+ve/—

Boshu Liu et al.
(2007) 89.18% — — — — Sequence + physicochemical

properties LOOCV 227+ve/226−ve

SUMOpre (2008) 97.71% 73.96% 97.67% 0.6364 0.87 Only sequence 5-fold CV 240+ve/6361−ve
Test: 28

SUMOsvm (2008) 97% 62% 99% 0.67 0.92

Sequence + solvent
accessibility + secondary
structure + evolutionary
profiles

5-fold CV 241+ve/ 5741−ve
Test: 27+ve/—

SSPFS (2009) 84.4% — — — — Sequence + physicochemical
properties LOOCV 191+ve/954−ve

Test: 21+ve/106−ve

SUMOtr (2010) 85% 95% 75% 0.68 0.85 Sequence + 3D structure +
hydrophobicity 5-fold CV 57+ve/711−ve

SUMOhunt 97.56% 100 94 0.95 1 Sequence + several
physicochemical properties

Training + test
10-fold CV

270+ve/273−ve
Test: 23+ve/18−ve

the help of sequential forward selection. SUMOpre, 2008
[21], was developed on the basis of sequence data only with
probabilistic model of prediction. Its accuracy of 97.7% is
impressive but at the cost of its sensitivity which is only
73.96%. SUMOsvm, 2008 [19], was developed using support
vector machines trained on sequence information, solvent
accessibility, secondary structure, and evolutionary profiles.
FindSUMO, 2008 [65], was soon after developed by the PSSM
system andwith little progress in prediction efficiency. SSPFS,
2009 [51], was developed using mRMR and nearest neighbor
algorithm trained on seven optimal amino acid properties
selected from hundreds of amino acid properties. SUMOtr,
2010 [23], introduced the use of hydrophobicity, 3D structure,
protein volume, and sequence to shape a model through tree
classification algorithms. Recently, seeSUMO, 2011 [64], was
introduced as a web server using random forest-based
algorithm for training, but due to unavailability of its full
publication, comparison and information about it have not
been included here.

Physicochemical properties including hydrophobicity,
buriability, isoelectric point, hydrophilicity, polarity, bulki-
ness, andmolecularweight of residues control the spatial flex-
ibility of target residue andhence can be very important in site
attachment by developing complementarity between SUMO,
enzymes in the pathway, and the target itself. Here, a com-
putational system (S4) for the prediction of SUMOylation
and investigation of its dependence on proposed properties
(Table 1) has been developed using random forest-based clas-
sifier provided in WEKA [52]. Different programs developed
for SUMOylation prediction are not directly comparable as
they were developed using not only different datasets but
also varied cross-validations and methods. Hence, the MCC,
which is designed to assess predictive values for models from
classes of different sizes, should be considered the primary
measure for the purpose. It has a value between +1 and −1,
with +1 being the highest level of prediction, 0 being the

average level, and −1 showing inverse prediction. Table 4
shows the reported AC, SN, SP, MCC, and AUC with their
proposed training and evaluation procedures.

In comparison to previous prediction methods that
employed highly unbalanced datasets, equivalent amounts of
modified and unmodified sites were used to train our model.
Previous research (Table 4) has used uneven data with a very
large part of the whole dataset being based on unmodified
sites. Large number of unmodified instances yields a high
specificity by making the correct prediction of nearly all such
sites possible, at the cost of lowered sensitivity. Unbalanced
dataset reduces performance and reliability so we have made
a balanced set by sampling modified and unmodified sites
in equal ratios. Moreover, approximately 24% of validated
SUMOylation sites do not conform to the consensus motif
and their representative peptides have been used in training
of this model, and hence, the specificity of our prediction
model is for both consensus and nonconsensus sequences,
reducing the difficulty faced in prediction of the latter ones.
These considerations ensure a uniformity of predictability
when the predictor comes across either known or unknown
sequences.

Prediction accuracy achieved in this research is signifi-
cantly higher than all other predictionmethods except that of
SUMOpre [21] and SUMOsvm [19], to which it is fairly equal.
However, our prediction model has exceeded all predictors
with its high MCC, sensitivity, and AUC. Particularly, the
sensitivity (correct classification of SUMOylated samples)
and MCC (the measure of the overall performance of biased
datasets) are higher than all others. On specificity (cor-
rect classification of non-SUMOylated samples) measures it
retains a similar position even after the usage of an equivalent
amount of modified and unmodified sites for training.

Based on the prediction performance, we believe that
SUMOhunt can very well be used to implement a predic-
tion server in the future that can assist as powerful and
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complementary tool for SUMOylation site identification and
that the model will be available for the purpose. Correct
analysis of this modification in all proteomes can greatly
enhance our knowledge of the mechanism and working of
many biological systems.

5. Conclusion

Generating reliable tools for identification of target sites
of SUMOylation presents a great challenge. Computational
methods of estimation can never replace experimental meth-
ods but can be of invaluable support to quicken and focus
experimentation. In this research, based on experimental
data, a prediction model has been developed that assures
of robust computational method for highly accurate and
specific SUMOylation-site prediction. Moreover, the physic-
ochemical properties proposed to be playing crucial role in
the appropriate presentation and hence rapid SUMOylation
of target lysine have brought significant improvement in
accuracy measures. This opens new paths to future work in
analyzing the effect of these amino acid properties experi-
mentally. Most importantly, based on the model presented
here, it gives the possibility of building a server for prediction
of SUMOylation sites in relation to the spatial properties of
amino acid around them and sequence information.
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