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Abstract.
Background: Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized as rapid and progressive cognitive
decline affecting 26 million people worldwide. Although immunotherapies are ideal, its clinical safety and effectiveness are
controversial, hence, treatments are still reliant on symptomatic medications. Concurrently, the Streptomyces genus has
attracted attention given its pharmaceutically beneficial secondary metabolites to treat neurodegenerative diseases.
Objective: To present secondary metabolites from Streptomyces sp. with regulatory effects on proteins and identified
prospective target proteins for AD treatment.
Methods: Research articles published between 2010 and 2021 were collected from five databases and 83 relevant research
articles were identified. Post-screening, only 12 research articles on AD-related proteins were selected for further review.
Bioinformatics analyses were performed through the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)
network, PANTHER Go-Slim classification system (PANTHER17.0), and Kyoto Encyclopedia of Genes and Genomes
(KEGG) Mapper.
Results: A total of 20 target proteins were identified from the 12 shortlisted articles. Amyloid-�, BACE1, Nrf-2, Beclin-1,
and ATG5 were identified as the potential target proteins, given their role in initiating AD, mitigating neuroinflammation,
and autophagy. Besides, 10 compounds from Streptomyces sp., including rapamycin, alborixin, enterocin, bonnevillamides
D and E, caniferolide A, anhydroexfoliamycin, rhizolutin, streptocyclinone A and B, were identified to exhibit considerable
regulatory effects on these target proteins.
Conclusions: The review highlights several prospective target proteins that can be regulated through treatments with Strep-
tomyces sp. compounds to prevent AD’s early stages and progression. Further identification of Streptomyces sp. compounds
with potential anti-AD properties is recommended.
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INTRODUCTION

Neurodegenerative diseases, such as Alzheimer’s
disease (AD) and Huntington’s disease (HD), are dis-
eases characterized by the progressive loss of neurons
[1]. They are becoming the primary focus within
the scientific community given their severe health
threats that cause significant disabilities in the age-
ing population and a burden on families, healthcare,
and society in managing patients [2, 3]. Approxi-
mately 36–47 million people suffer from dementia,
a common symptom of neurodegenerative diseases,
and this number is expected to multiply to 66 million
and 115 million people by 2030 and 2050, respec-
tively, as a result of the aging global population [4–6].
Specifically, AD is characterized by memory loss
due to the severe loss of nucleus basalis choliner-
gic neurons, typically seen in advanced AD patients.
In addition, the accumulation of amyloid-� (A�) and
phosphorylated tau proteins leads to the deposition
of senile plaques and the formation of neurofibrillary
tangles (NFTs), respectively, contributing to proto-
typical lesions [3]. Due to its widespread distribution,
AD impairs many essential physiological and cogni-
tive functions, ranging from attention and memory
to psychiatric symptoms, such as apathy and depres-
sion [7]. AD is the 5th leading cause of death, which
claimed 1.55 million lives in 2019, with 1.02 and 0.54
million deaths reported in women and men, respec-
tively [8, 9].

The Streptomyces genus is a major producer
of pharmaceutically valuable secondary metabolites
with diverse bioactivities, including antibiotics and
anti-cancer agents [10]. In recent years, Strepto-
myces have gained increasing interest as many of its
compounds exhibit neuroprotective activities in var-
ious neurodegenerative diseases, including multiple
sclerosis and Parkinson’s disease [11]. Considering
the promising features of Streptomyces-derived com-
pounds, this study performed a scoping review on
secondary metabolite compounds or extracts from
Streptomyces sp. with regulatory effects on AD-
related proteins in the last decade. This approach
would determine the interactions between Strepto-
myces compounds and prospective AD-related target
proteins, potentially providing an alternative treat-
ment against AD.

METHODS

The Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) checklist was
used as a guideline for this scoping review [12].

Table 1
Inclusion and exclusion criteria for selecting study

Inclusion Criteria Exclusion Criteria

Publication Period
(2010–2021)

Publication before 2010

English language studies Non-English studies
Full-text available Duplicate articles
Original research articles Review articles
Streptomyces metabolites in

Alzheimer’s disease
Irrelevant studies to

Streptomyces metabolites in
Alzheimer’s disease

In vitro and in vivo studies Clinical trials
Papers on neurodegenerative

disease and dementia
Meta-analysis, systematic

reviews, mini-reviews

Literature search strategy

A collection of articles on Streptomyces sp.
secondary metabolites related to neuroprotection
in AD was obtained by conducting an exten-
sive literature search using different keywords
and subject headings. Five electronic databases
(PubMed, Ovid Medline, ScienceDirect, Embase,
and Scopus) were used to search for relevant
original research articles published within the
last 10 years (January 2010–December 2021).
The search terms included “Alzheimer’s disease”,
“Alzheimer’s”, “Streptomyces”, “Streptomyces sp.”,
“Actinomycete”, “Neuroprotection”, “Neuroprotec-
tive”, “Proteins”, “Genes”, “Secondary metabolites”,
and “metabolites”. The terms were searched in titles,
abstracts, and Medical Subject Headings (MeSH)
keywords using Boolean operators for defined search
results.

Study eligibility and selection

The eligibility of the compiled articles was deter-
mined by screening the title and abstract using a set of
inclusion and exclusion criteria (Table 1). The short-
listed research articles were then subjected to full-text
review, and only research articles that fulfilled the
inclusion criteria were selected for data extraction.

Screening and data extraction

A preliminary literature search was carried out
using specific search terms. After removing duplicate
articles, the articles were imported into Covidence
(https://www.covidence.org/). Then, the articles were
subjected to title and abstract review. Any papers
aside from original research articles or those unre-
lated to AD studies were also removed. Subsequently,
the shortlisted articles were subjected to full-text

https://www.covidence.org/
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review based on this study’s inclusion and exclu-
sion criteria (Table 1). The review and selection
process were assessed by two independent review-
ers. If any disagreements or conflicts arose, a third
independent reviewer would assist in resolving the
decision-making. The selection and exclusion pro-

cesses are outlined in the PRISMA 2020 flow chart
(Fig. 1).

Bioinformatics analysis

Three different bioinformatics tools were
employed to investigate and analyze the potential

Fig. 1. PRISMA flow chart (2020) PRISMA, Preferred Reported Items for Systematic Review and Meta-analysis [12] outlining the step-
by-step process involved in the selection of studies included for this scoping review. *n, number.
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AD-related proteins: 1) Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) data (http://
string-db.org) (version 11.5), 2) PANTHER Clas-
sification System (PANTHER17.0) (http://www.
pantherdb.org), and 3) Kyoto Encyclopedia of Genes
and Genomes (KEGG) Mapper.

RESULTS

Literature search and selection

Using several search terms (Streptomyces AND
Neuroprotection AND Alzheimer’s disease AND
metabolites), 256 articles were first retrieved from the
five databases. After 46 duplicates were removed, the
inclusion and exclusion criteria were used to screen
the remaining articles, producing 135 full-text arti-
cles. These articles underwent further independent
screening by two reviewers, of which 83 articles were
deemed credible for further screening based on the
AD model. Finally, 12 articles were shortlisted for
detailed data extraction (Fig. 1).

Characteristics of included studies

The scoping review focused on past studies per-
taining to neuroprotection (n = 83) based on initial
assessment studies (Fig. 1). Approximately 14.5%
of the research articles (12 out of 83 studies) were
selected based on the AD model. In addition, data
were extensively extracted from these selected stud-
ies, primarily focusing on protein regulation by
Streptomyces compounds (Table 2). The summary
of the compiled studies showed that cumulatively,
the highest number of articles on Streptomyces com-
pounds in AD was published in Asia (70%), while
the remaining 30% were published equally from
Europe, South America, and North America (10%
each) (Fig. 2A). Spain has the highest number of
published articles with 25% (3 out of 12 research
articles), followed by China, India, and South Korea
(16.7% each), and the United States of America, Iran,
and Chile (8.3% each) (Fig. 2B).

Replicability of proteins

From the 12 shortlisted articles, 53 proteins were
extracted, and their replicability was assessed. Only
38% of the proteins (20 out of 53) were reported in
two or more research articles and chosen for fur-
ther analysis (Fig. 3). Notably, 2 proteins (A� and
BACE1) were reported in 5 articles, while the tau

protein was described in 4 articles. Furthermore, 5
proteins (ERK, JNK, IL-1�, BECN1, and GSK3�)
were mentioned in 3 articles. Another 2 articles
described 13 proteins, and the remaining proteins
were stated in a single article (Fig. 4).

PPI network analysis using STRING

The Protein-Protein Interaction (PPI) network was
constructed by uploading the 20 shortlisted proteins
to the STRING database (https://string-db.org) to
evaluate their differential expression and alteration
of protein interactions. The PPI network success-
fully mapped 20 nodes (interactions) with 63 edges
and 14 expected edges, with the PPI enrichment
p-value (p < 1.0 e-16) analyzed at high confidence
(0.700) minimum required interaction score. In addi-
tion, three distinctive protein clusters involved in the
A� and tau metabolism were generated using the K-
means clustering, which were; GSK3� (GSK3B), PS1
(PSEN1), ERK (MAPK1), JNK (MAPK8), BACE1
(BACE1), A�(APBB1) and tau (MAPT), neuroinflam-
mation; iNOS(NOS2), IL-6 (IL6), IL-1� (IL1�), p62
(SQSTM1), p65 (RELA), TNF-� (TNF), IL-10 (IL10),
p38 (MAPK14); and autophagy: mTOR (MTOR),
Beclin-1 (BECN1), ATG5 (ATG5), AKT (AKT1), and
Nrf-2 (NFE2L2), as shown in Fig. 5.

Functional annotation analysis via PANTHER

The 20 shortlisted proteins represented as genes
were classified using PANTHER GO-Slim based
on the gene ontology domain: PANTHER pathway.
Accordingly, nearly 30% of the genes (6 out of
20) were present in the AD-amyloid secretase path-
way consisting of MAPK1, PS1, APBB1, MAPK14,
BACE1, and MAPK8. On the contrary, 20% of the
genes (4 out of 20) comprise the AD-presenilin path-
way, including PS1, APBB1, BACE1, and GSK3B.
Interestingly, both pathways show three common
genes; PS1, APBB1, and BACE1. Figure 6 shows
the pathway classification of the 20 proteins in the
AD-amyloid secretase pathway (P00003) and AD-
presenilin pathway (P00004).

KEGG mapper

The functional role of these 20 shortlisted pro-
teins in AD pathogenesis was assessed using the
KEGG pathway. Around 75% of the total proteins
(15 out of 20) were successfully mapped in the
AD pathway map (hsa05010) in Homo sapiens, as

http://string-db.org
http://www.pantherdb.org
https://string-db.org
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Table 2
Summary of findings extracted from the selected Streptomyces-treated studies (n = 12) in Alzheimer’s disease model. It includes Streptomyces

species, secondary compounds, and its effect on the AD-related protein regulations

Streptomyces Species Country Secondary
compounds

Regulation Protein Reference

Streptomyces sp.
CA-237351

Spain Streptocyclinones A
and B

↑ Nrf-2 [13]

↓ iNOS, p65, ERK 1/2, pJNK
and p38, IL-1�, IL-10,
TNF-�, tau protein, BACE1

↔ GSK3� & IL-6
Streptomyces

hygroscopicus
China Rapamycin ↑ A� degradation enzyme

(IDE), neuronal nuclei
(NeuN) antigen,
autolysosomes, LC3-II/I.
Beclin-1, Beta-catenin,
Wnt3a, pGSK-3B

[14]

↓ A�PP, BACE1, PS1, t-Tau,
PHF-1, p62, GSK3�,A�

Streptomyces sp. WON17 South Korea Rhizolutin ↑ GFAP, BCL-2 [15]
↓ Caspase-3, �-sheet-rich A�

fibrils, IL-1�
Streptomyces sp. Lt 005 Spain Anhydroexfoliamycin ↑ GSK3� [16]

↓ tau, JNK, BACE1
↔ ERK

Streptomyces caniferus Spain Caniferolide A ↑ Nrf-2, IL-10 [17]
↓ p65, IL-1�, IL-6, TNF-�,

iNOS, p38, JNK, tau,
BACE1, ERK

Streptomyces strain HM4 Iran Chloroform Extract ↓ A� [18]
Streptomyces

hygroscopicus
Chile Rapamycin ↑ SV-2 [19]

Streptomyces sp. UTZ13 South Korea Bonnevillamides D
and E

↓ A� [20]

Streptomyces
hygroscopicus

India Rapamycin ↑ p62, beclin-1, ATG-5, P13K,
AKT, CREB,synapsin-I,
SYP, PSD95, CHRM2,
DAD2 receptor,
NMDAR2,AMPAR2,
AChE

[21]

↓ mTOR
Streptomyces

scabrisporus.
India Alborixin ↑ LC3B-II, beclin-1, ATG7,

ATG5 and ATG12, PTEN
[22]

↓ SQSTM1, p-AKT p-MTOR
and RPTOR

Streptomyces.
qinglanensis 172205

China Enterocin ↓ A� [23]

Streptomyces
hygroscopicus

USA Rapamycin ↑ �-CTF [24]

↓ sA�PP�, ADAM-10
↔ ADAM-17, BACE1 and PS1,

A�PP

(↑) Upregulated, (↓) Downregulated, (↔) Inconsistent regulation.

highlighted in green (Fig. 7) indicating these pro-
teins are involved directly in the pathogenesis of
AD. A total of 15 proteins, which consisted of
AKT (AKT1), BACE1 (BACE1), mTOR (MTOR),
GSK3� (GSK3B), A� (APBB1), IL-6 (IL6), IL-1�
(IL1�), tau (MAPT), iNOS (NOS2), ERK (MAPK1),
JNK (MAPK8), PS1 (PSEN1), p65 (RELA), TNF-

� (TNF), and Beclin-1 (BECN1), were involved
in multiple pathways, including axonal transport
defects, impaired autophagy, impaired neuronal
insulin signaling, long-term reduction in potentia-
tion, microglial inflammation, A� and tau processing,
apoptosis, and dysfunctional mitochondria. Notewor-
thy, 25% of the total proteins (5 out of 20) namely
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Fig. 2. Publication on Streptomyces compounds in Alzheimer’s disease models in the last decade. A) Articles published (%) on implications
of Streptomyces compounds in Alzheimer’s disease model in the last 10 years (2010–2021) based on continents. B) Breakdown of published
articles (%) by countries in the last decade.

Fig. 3. The summary of selected research articles and identified proteins. A) 14.5 % of the total articles (12 out of 83 articles) were selected
based on the Alzheimer’s disease model. B) From the 12 independent research articles around 53 proteins were identified to play a role in
Alzheimer’s disease. C) Only 38% of total proteins (20 out of 53 proteins) were shortlisted as they were present in more than two research
articles. The list of shortlisted proteins used for further STRING, PANTHER, and KEGG analysis.

Nrf-2 (NFE2L2), ATG5 (ATG5), IL-10 (IL10), p38
(MAPK14), and p62 (SQSTM1) may play an in-direct
role in AD pathogenesis.

Differentially expressed AD-related proteins

In AD pathogenesis, 70% of the proteins (14 out
of 20) are upregulated, while the remaining 30% (6
out of 20) are downregulated. In comparison, it also
shows that 35% of the proteins (7 out of 20) were
inconsistently regulated when treated with Strep-
tomyces sp. compounds or extract (Table 3). The
remaining 45% (9 out of 20) proteins were con-
sistently downregulated while the remaining 20%

Fig. 4. Replicability of proteins identified across 12 independent
Streptomyces-treated studies.(Created in BioRender.com).
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Fig. 5. The STRING plot depicts the functional interrelationships of proteins analysed using the STRING 11.5 database. It shows 20
nodes (interactions) and 63 edges represent the protein and protein-protein interaction with an enrichment p-value (p < 1.0e–16). Three
distinctive clusters were generated using K-means clustering shown in blue (MTOR, BECN1, ATG5, AKT1, NFE2L2), red (NOS2, IL6, IL1�,
SQSTM1, RELA, TNF, IL10, MAPK14) and green (GSK3B, PSEN1, MAPK1, MAPK8, BACE1, MAPT, APBB1) clusters involved autophagy,
neuroinflammation and beta-amyloid and tau metabolism respectively. *The genes of proteins are italicized.

Fig. 6. PANTHER analysis of shortlisted proteins from 12 independent Streptomyces-treated studies. The classification of proteins present
in more than two research articles were analysed using PANTHER gene ontology of 20 selected proteins based on PANTHER Path-
way; Alzheimer’s disease-amyloid secretase pathway (P00003) and Alzheimer’s disease-presenilin pathway (P00004). The Venn diagram
shows overlapping between two pathways producing three (3) specific proteins; PSEN1 (PSEN1), amyloid-�(APBB1) and BACE1(BACE1).
(Created in BioRender.com).
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Fig. 7. Only 15 proteins (75%) consisted of AKT (AKT1), BACE1 (BACE1), mTOR (MTOR), GSK3� (GSK3B), amyloid-� (APBB1),
IL-6 (IL6) IL-1� (IL1�), tau (MAPT), iNOS (NOS2), ERK (MAPK1), JNK (MAPK8), PS1 (PSEN1), p65 (RELA), TNF-� (TNF), and
beclin-1 (BECN1) were successfully mapped highlighted in green in the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway of
Alzheimer’s disease in Homo sapiens (hsa05010). *The genes of respective proteins are italicized. Published with permission from Kanehisa
Laboratories.

(4 out of 20) of the proteins were consistently
upregulated.

DISCUSSION

A� immunotherapies are designed to target
A� clearance through either active immunization

(vaccines) or passive immunization (monoclonal
antibodies). With the latter being favorable for its
effectiveness and suitability in elderly population,
and convenient termination upon patient’s reports
of adverse side effects [49]. However, clinical data
were unsatisfactory causing failed drugs includ-
ing solanezumab, bapineuzumab, and crenezumab
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Table 3
The summary of proteins regulations in Alzheimer’s disease compared to Streptomyces studies based on their respective clusters

Pathway (Cluster) Proteins Regulation References
Alzheimer’s disease Streptomyces studies

Autophagy (Blue) mTOR ↑ ↓ [21, 22, 25]
Beclin-1 ↓ ↑ [14, 21, 22, 26, 27]

ATG5 ↓ ↑ [21, 22, 28]
Akt ↓ ↑ [21, 22, 29]

Nrf-2 ↓ ↑ [13, 17, 30, 31]
Neuroinflammation (Red) IL-10 ↓ ↔ [13, 17, 32, 33]

IL-1� ↑ ↓ [15, 17, 34, 35]
p62 ↓ ↔ [14, 21, 36]

iNOS ↑ ↓ [13, 17, 37]
p65 ↑ ↓ [13, 17, 38]

TNF-� ↑ ↓ [13, 17, 39]
p38 ↑ ↓ [13, 17, 40]
IL-6 ↑ ↔ [13, 17, 41]

A� & tau metabolisms (Green) GSK3� ↑ ↔ [13, 16, 42]
PS1 ↑ ↔ [14, 24, 43]
ERK ↑ ↔ [13, 17, 44]
JNK ↑ ↓ [13, 16, 17, 45]
A� ↑ ↓ [15, 18, 20, 23, 46]

BACE1 ↑ ↔ [13, 14, 16, 17, 47]
Tau ↑ ↓ [13, 14, 16, 48]

(↑) Upregulated, (↓) Downregulated, (↔) Inconsistent regulation.

Fig. 8. The chemical structures of Streptomyces sp. compounds with neuroprotective potential in Alzheimer’s disease model.

showing little-to-no clinical effects [50]. Despite
these setbacks, four new monoclonal IgG1 anti-
body drugs were developed namely donanemab
(LY3002813), gantenerumab (RO4909832), adu-
canumab (BIIB037), and lecanemab (BAN2401)

demonstrating promising clinical results leading to
gantenerumab (RO4909832) being FDA-granted as
breakthrough therapy while the latter two received
FDA-approval for A� immunotherapies [50, 51].
Despite significant improvement on cognition, these
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immunotherapies may not have clinical significance
due to its effect size [52]. A� immunotherapies
are shrouded with safety concerns mainly amyloid-
related imaging abnormalities (ARIA) including
ARIA-edema (ARIA-E) and ARIA-hemosiderosis
(ARIA-H) [53]. These drugs have been observed
to cause ARIA-E with following frequencies;
lecanemab (10%), donanemab (27%), gantenerumab
(30%) and aducanumab (35%) [50]. It also requires
larger expenditure of $120 billion USD per year
[52]. Therefore, it is worth exploring other options as
affordable prospective treatments for AD with lesser
side effects.

Actinobacteria are prolific producers of natu-
ral products, with Streptomyces being the majority
genus. Secondary metabolites isolated from Strep-
tomyces species possess various pharmacological
properties, including anti-cancer, anti-inflammatory,
antimicrobial, and neuroprotective, which are effec-
tive against numerous elements, ranging from
oxidative stress to neuroinflammation [13]. For
instance, flaviogeranin and indanostatin isolated from
Streptomyces sp. RAC226 and RAI20, respectively,
demonstrated neuroprotective properties [54, 55].
Therefore, this scoping review examined the effects
of Streptomyces sp. compounds or extracts on reg-
ulating various AD-related proteins and identifying
prospective target proteins for AD treatment.

Based on the 12 independent studies selected
in this review, 10 compounds (Fig. 8), including
rapamycin, alborixin, enterocin, bonnevillamides D
and E, caniferolide A, anhydroexfoliamycin, rhizo-
lutin, streptocyclinone A and B, and a chloroform
extract (Table 2), were identified to exhibit con-
siderable regulatory effects against 53 proteins.
However, only 20 proteins were shortlisted, compris-
ing 3 distinctive clusters from the STRING analysis:
autophagy, neuroinflammation, and amyloid-beta
and tau metabolism (Fig. 5). The proteins involved in
these pathways were either up- or downregulated in
AD pathogenesis. Conversely, Streptomyces-treated
studies showed that these compounds have opposite
effects on the protein regulations, while several pro-
teins, such as IL-6, BACE1, ERK, GSK3�, PS1, p62,
and IL-10, were inconsistently regulated (Fig. 9).

Amyloidosis in Alzheimer’s disease

Five articles showed that A� was consistently
downregulated when treated with Streptomycessp.
compounds, including rhizolutin, rapamycin, ente-
rocin, bonnevillamides D and E, and chloroform

extract. In contrast, their expressions were upregu-
lated in AD pathogenesis [14, 15, 18, 20, 23]. In
general, A� is released from the amyloid-� protein
precursor (A�PP) by �-secretase (BACE1) and �-
secretase, producing neurotoxic A� fragments. In
the first rate-limiting step, the N-terminus of the A�
is cleaved by �-secretase, followed by �-secretase
cleaving the C-terminus of A�. The resulting for-
mation of A� oligomers is then polymerized into
aggregated A� before being converted into plaques.
This leads to kinase activation, such as GSK3�,
ERK2, and CDK5, leading to the hyperphosphory-
lation of microtubule-associated tau proteins, which
are polymerized into insoluble NFTs. Subsequently,
these proteins induce microglia recruitment, trig-
gering a local inflammatory response that causes
neurotoxicity and neuronal death, giving rise to AD
[56]. Hence, targeting the earlier stages by inhibit-
ing the activity of BACE1 before the formation of
A� oligomers may provide a novel treatment against
AD.

Although BACE1 is an ideal target candidate for
treatment as it initiates the amyloidogenic path-
way, however, past studies reported that BACE1 was
inconsistently regulated [13, 14, 16, 17, 24]. When
treated with a well-known and established Strep-
tomyces hygroscopicus-derived compound known
as rapamycin, showed that BACE1 expression was
insignificant in murine neuroblastoma cells overex-
pressing the “Swedish” mutant APP6965aa isoform
(SweAPP N2a), as reflected by the increased amy-
loid production. This was also corroborated by
the enhanced �-Carboxyl-Terminal Fragment (�-
CTF) level of A�PP and the decreased soluble
A�PP alpha (sA�PP�), a neuroprotective cleavage
product. The findings suggest that the �-secretase
activity was inhibited by rapamycin, like the
inhibition of �-secretase disintegrin and metallopep-
tidase domain-10 (ADAM-10) [24]. The suppressed
ADAM-10 pathway initiates the amyloidogenic path-
ways typically reported in AD [57]. However, Chen
et al. (2019) refuted the suggestion with a contra-
dicting finding, revealing that the A� production in
A�PP/PSEN1 transgenic mice was reduced follow-
ing treatment with rapamycin, which downregulated
the expression of A�PP-cleaving enzymes, including
BACE1 and PS1.

It should be noted that rapamycin is an established
mTOR inhibiting drug, although its downregulation
reduces A�42, A� plaques, and NFT levels and
improves AD-like cognitive deficits. It also serves
a multifaceted role in normal cellular functions, such
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Fig. 9. Protein expression of profiles of 20 proteins obtained from 12 independent Streptomyces-treated studies. A) Shows the protein
regulations in Alzheimer’s disease pathogenesis. B) The protein regulations in Streptomyces-treated studies. (Created in BioRender.com).

as gene translation and cellular growth. However,
it was agreed that prolonged intake of rapamycin
leads to severe side effects due to the inhibition of
the mTOR pathway [28]. Noteworthily, two clin-
ical trials (NCT04200911 and NCT04629495) are
being conducted to investigate the long-term use
of rapamycin in older adults with MCI and early-
stage AD. Although NCT04200911 has reported
adverse side effects including altered mental status
and headache in participants, however, both studies
are still in its preliminary stages and incomplete, as
neither could provide supporting evidence on the fea-
sibility of rapamycin as long-term usage in treating
AD thus far [58, 59]. Therefore, rapamycin may not
be an ideal Streptomyces sp. compound for long-term
AD treatment.

The contradicting BACE1 regulation from the
two studies supports the notion that rapamycin is
unsuitable for AD treatment. Therefore, other Strep-

tomyces sp. compounds with prospective targets
against BACE1 should be identified and considered.
Examples of Streptomyces sp. compounds that were
shown to downregulate BACE1 expression include
caniferolide A, anhydroexfoliamycin, and strepto-
cyclinone B isolated from Streptomyces caniferus,
Streptomyces sp. Lt 005, and Streptomyces sp. CA-
237351, respectively [13, 16, 17]. Therefore, A�
and BACE1 remain the prospective target proteins
to inhibit the amyloidogenic pathway in AD.

Autophagic improvement

The accumulation of autophagosomes contain-
ing amyloid-beta and tau proteins contributes to the
intracellular build-up of toxic peptides in dystrophic
neurites, leading to AD progression [60–62]. Pre-
viously, five proteins, consisting of ATG5, AKT,
Beclin-1, Nrf-2, and mTOR, were identified to play
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a role in autophagy through downregulation in AD,
except for mTOR. Interestingly, all proteins showed
counteracting results when treated with different
Streptomyces sp. compounds (Fig. 9), indicating
that these proteins are potential targets. Given this,
targeting these proteins involved in autophagy is
advantageous as an alternative treatment approach.

BECN1 is involved in autophagy by promoting
the removal of toxic peptides and preventing neu-
ronal death by maintaining basal autophagy and
protein turnover. Additionally, BECN1 plays a cru-
cial role in several membrane transports responsible
for autophagy, phagocytosis, and endocytosis [36].
The reduced BECN1 gene and protein expression
in AD patients’ brain tissue results in autophagy
defects, similar to the abnormal accumulation of
subcellular vesicles, producing toxic A�PP metabo-
lites. Meanwhile, BECN1 deletion in human APP
(hAPP)-transgenic mice in vivo model increased
A� plaque deposition, neuronal loss, and the accu-
mulation of A�PP and its metabolites, particularly
A�PP C-terminal fragment peptides [27]. On the con-
trary, mRNA and BECN1 protein expressions were
upregulated in mice brains with AD when treated
with rapamycin [14, 21], although the latter reported
an insignificant Beclin-1 protein expression. Addi-
tionally, 24-hour treatment with alborixin, a known
Streptomyces scabrisporus compound, enhanced the
BECN1 expression in both N9 cells and primary neu-
ronal cells (C57BL/6) [22].

On top of that, ATG5 plays a significant role
in autophagy, as its downregulation leads to either
partial or total autophagy inhibition [63]. The knock-
down effect of the ATG5 gene in AD patients
results in the accumulation of ubiquitinated proteins,
triggering neuronal loss [26]. When microglial N9
cells were treated with alborixin, the ATG5 expres-
sion was upregulated, as reflected by the enhanced
autophagic activities in the lysosomal removal of
A�1–42. Such an occasion was due to the PTEN sup-
pression of the P13K-AKT pathway [22]. In another
study, rapamycin treatment in an in vivo Wistar rats
model increased the ATG5 mRNA expression in the
hippocampal region when treated with A�1–42 via
autophagic induction [21].

Mitigating neuroinflammation

The accumulation of A� and tau proteins caused
by autophagic dysregulation activities stimulates
microglial cells to remove these proteins. How-
ever, the removal process is impaired as the system

becomes overwhelmed, leading to prolonged acti-
vation and enhanced inflammatory response [41].
Various pro-inflammatory cytokines, including TNF-
�, IL-6, IL-1�, and small-molecule messengers, such
as nitric oxide further damage the brain cells as
they become more susceptible to oxidative stress-
mediated cell death [41, 64]. For instance, Nrf-2 was
shown to play a dual role in the fine-tuning feedback
loop resulting from an elevated level of oxidative
stress in combination with the autophagic process
through the AMP-activated protein kinase upregu-
lation and mTOR downregulation [65]. Nrf-2 also
activates numerous antioxidative enzymes, including
catalase, superoxide dismutase, and glutathione per-
oxide, to mitigate reactive oxygen species and protect
from neuroinflammation [16]. Furthermore, Nrf-2
upregulation prevents the transcription of NFkB,
which comprises p65, c-Rel, p50, RelB, and p52.
Consequently, the nuclear expressions of p65/p50 are
downregulated, which prevents the induction of pro-
inflammatory genes, suppressing neuroinflammation
[13].

Recently, caniferolide A and streptocyclinone A
and B were isolated from Streptomyces caniferus
and Streptomyces sp. CA-237351, respectively. Inter-
estingly, the nuclear Nrf-2 levels in BV2 microglial
cells were significantly enhanced when pre-treated
with these compounds. Comparatively, caniferolide
A produced the highest effect on its expression at the
lowest concentration of 0.001 �M, implying that it
is a potent Nrf-2 activator compared to streptocycli-
none A and B. The authors also identified that all
three compounds downregulated the nuclear NFkB-
p65 expression in BV2 microglial cells due to their
relation with the NFkB in oxidative stress [13, 17].
This evidence supports the association between the
upregulation of Nrf-2 and the suppression of the
NFkB expression, subsequently mitigating inflam-
matory response.

The upregulation of Nrf-2 also provides suf-
ficient neuroprotection against oxidative stresses
through increasing antioxidant activities, as reflected
by the increased glutathione (GSH) levels when
treated using all three compounds. This indicates
that these compounds could improve the GSH
enzyme expressions, including glutathione peroxi-
dase and glutathione transferase, in tackling oxidative
stress. Furthermore, these compounds diminished the
release of pro-inflammatory cytokines, including IL-
1B, TNF-�, and IL-6. However, IL-6 downregulation
was only detected when BV2 microglial cells were
treated with caniferolide A. The iNOS expression
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was also downregulated, reducing the release of nitric
oxide in the BV microglial cells [13, 17].

FUTURE DIRECTIONS AND
LIMITATIONS

This scoping review sets out to identify the reper-
toire of research and extent of the knowledge on
Streptomyces sp. compounds in AD in both in vitro
and in vivo models. These findings provide com-
pelling evidence on utilization of Streptomyces sp.
compounds in treating AD as the compounds have
demonstrated regulatory effects on the AD-related
proteins whether it is involved direct-or-indirectly
in the pathogenesis of AD. Although, these find-
ings achieved its objective, it is limited by restricted
focus on the primary outcome of the regulatory effect
these compounds possess on AD-related proteins.
However, a consideration must be taken as these com-
piled studies used different cell lines and animals
for their in vitro and in vivo models respectively.
Although commonly used for neurodegenerative dis-
ease research, these models have varying phenotypic
and genotypic makeups, as well as constraint in their
ability in accurately represent the complex physiolog-
ical, morphological, and functions of the brain when
investigating AD pathophysiology. Therefore, it may
contribute to the varying effect of regulatory expres-
sion of these proteins when treated with Streptomyces
sp. compounds seen by the contradicting results when
treated with similar compounds in between models.
Hence, better models should be considered including
3D models and pathological-specific animal models
for preliminary studies for future Streptomyces sp.
Compounds [66–68].

The exclusion of clinical trials was due to limited
available information on Streptomyces sp. com-
pounds in AD. Hence, clinical trial data are absence
in this analysis, although it is not primary focus of
this, it provides a future direction on unexplored ter-
ritories. This highlights the infancy of the area of
research due limited clinical studies of Streptomyces
sp. compounds in treating AD with the exception of
rapamycin. Therefore, it is worth expediting the pre-
clinical investigations in supporting the suitability
and effectiveness of these compounds as drug-lead
candidates prior to clinical trials [69]. This may
provide a holistic and comprehensive information
in justifying the prospect of Streptomyces sp. com-
pounds as disease-modifying agents in treating AD.

CONCLUSION

The scoping review in this study identified 20
prospective target proteins consist of A�, BACE1,
JNK, ERK, PS1, GSK3�, IL-6, p38, TNF-�, p65,
iNOS, p62, IL-1�, IL-10, Nrf-1, Akt, ATG5, BECN1,
and mTOR to treat AD based on their regulatory
behaviors when treated with ten Streptomyces sp.
compounds. These target proteins are responsible
for various pathways, including neuroinflammation,
autophagy, A�, and tau metabolism. BACE1 and
A� are involved in AD initiation, and their inhibi-
tion may prevent the early stage of AD progression.
Similarly, specific proteins involved in autophagy,
such as BECN1 and ATG5, are considered target
proteins that can improve autophagic activities, such
as lysosomal and phagocytotic, to remove toxic A�
peptides in neuronal cells, subsequently preventing
AD. Nrf-2 is also among the target proteins, as it
plays a dual role in autophagy and anti-inflammatory
mechanisms to treat AD. This protein minimizes neu-
roinflammation by upregulating the expression of
anti-inflammatory proteins, such as GSH and IL-10,
while downregulating pro-inflammatory cytokines,
including TNF-�, IL-6, and IL-1B. Overall, it is
recommended to carry out further research and iden-
tification of other Streptomyces sp. compounds with
potential anti-AD properties to treat AD effectively.
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