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Toll-like receptor (TLR) signaling pathways constitute an evolutionarily conserved
host defense system that protects against a broad range of infectious agents.
Modeling of TLR signaling has been carried out at several levels. Structural models
of TLRs and their adaptors, which utilize a small number of structural domains to
recognize a diverse range of pathogens, provide a starting point for understanding
how pathogens are recognized and signaling events initiated. Various experimental
and computational techniques have been used to construct models of downstream
signal transduction networks from the measurements of gene expression and
chromatin structure under resting and perturbed conditions along with predicted
regulatory sequence motifs. Although a complete and accurate mathematical
model of all TLR signaling pathways has yet to be derived, many important
modules have been identified and investigated, enhancing our understanding
of innate immune responses. Extensions of these models based on emerging
experimental techniques are discussed. © 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Pattern recognition receptors (PRRs) that
specifically bind to evolutionarily conserved

pathogen-associated molecular patterns (PAMPs) play
a key role in host defense. Of the PRRs, the toll-like
receptors (TLRs) are the best characterized, both in
terms of the PAMPs they recognize and the corre-
sponding pathways that are activated in response to
their binding. To date, 10 TLRs have been identified
in humans, each of which has a homolog in mouse.
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Identifying the ligand specificity and downstream
pathways of each TLR (or combination, as TLRs
function as dimers) has been the subject of intense
research for the last 15 years.1,2 Two main TLR sig-
naling pathways have been identified: the MyD88
(myeloid differentiation factor 88)-dependent3 and
the TRIF (TIR-domain-containing adaptor protein-
inducing IFN-β)-dependent4 pathways. The MyD88-
dependent pathway is activated by all known TLRs
except TLR3, and leads to the production of proin-
flammatory cytokines. TLR3 and TLR4 can activate
the TRIF-dependent pathway, which leads to the pro-
duction of type I interferons (IFNs) against viral
infection. Hundreds of proteins have been charac-
terized as players in the innate immune response, and
thousands of genes whose expression levels change
upon TLR stimulation have been identified. Many
protein–protein interactions have been determined
for TLR signaling molecules as well.5 However, a
successful immune response requires the coordinated
interaction between all of its parts, from a molecular
to an intercellular level. Reconstructing and repro-
ducing this system-level behavior are a daunting task,
and one that is impossible to accomplish without the
development of multilevel and multi-timescale compu-
tational frameworks. In this review we will summarize
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FIGURE 1 | Multi-scale modeling of toll-like receptor (TLR) pathways. (a) The MyD88- and TRIF-dependent pathways are illustrated. Reprinted
with permission from Ref 2 Copyright 2010 Elsevier. (b) The X-ray structure of TLR3 leucine rich repeat (LRR) domains bound to double-stranded RNA.
(c) A mathematical model of a hypothetical signaling network between components A–F. (d) A heatmap of gene expression values at 10 time points.

the current models, focusing on structure, signal
transduction, and gene expression analysis (Figure 1).

STRUCTURAL MODELING OF TLRs
AND THEIR ADAPTORS

Homology modeling (Box 1) has played an important
role in the analysis of TLR signaling pathways because
a number of structural domains reoccur in various
contexts. As shown in Figure 2, each of the TLRs
contains an N-terminal leucine rich repeat (LRR)
domain, followed by a transmembrane helix and
a cytoplasmic C-terminal toll/interleukin-1 receptor
(TIR) domain. The cytoplasmic TIR domains, in turn,
bind TIR-containing adapter molecules. In the case of
the MyD88-dependent TLR4 signaling pathway, for
example, a TLR4 TIR domain homodimer interacts
directly with the TIR-containing adaptor TIRAP (TIR-
associated protein; also known as Mal).6,7 TIRAP,
in turn, interacts directly with MyD88,8 which

contains both a TIR domain and a death domain
(DD). The MyD88 DD interacts with DD-containing
IL-1R-associated kinase-4 (IRAK-4), which interacts
with DD-containing IRAK-2. Current evidence
supports a model in which each of these pairwise
interactions occurs within a large signaling complex.9

LRR Domain Models
The crystal structures of the LRRs from the TLR1/
TLR219 and TLR6/TLR220 complexes bound to
lipopeptide, the TLR4 dimer bound to myeloid dif-
ferentiation protein-2 (MD-2) and lipopolysaccharide
(LPS),15 the TLR3 dimer bound to dsDNA,21 and the
TLR5 dimer bound to flagellin22 have been solved. As
a result, it has been possible to predict the structures
of the remaining TLRs as well as their ligand bind-
ing residues. For example, homology modeling of the
TLR9 LRR domain revealed that putative nucleotide
binding sites in addition to a number of conserved
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BOX 1

COMPUTATIONAL METHODS IN SYSTEMS
BIOLOGY

Homology modeling: Known protein structures
are used as templates for predicting the structure
of a query protein sequence. Such ‘template-
based’ methods are regularly accessed in the
Critical Assessment of Techniques for Protein
Structure Prediction.10

Protein docking: The quaternary structures
of protein complexes are predicted from the
tertiary structures of the individual component
proteins. Challenges include integration of dis-
parate experimental restraints, and predicting
conformational changes that occur upon com-
plex formation.11

Ordinary differential equations (ODEs):
The dynamics of cellular systems are modeled
by using biochemical reaction equations such
as mass action or Michaelis-Menten kinetics
with respect to molecular concentrations. Here,
stochasticity inside a cell or heterogeneity of cell
population is not considered and systems evolve
deterministically.

Stochastic modeling: In a cell, there are
several sources of ‘noise’, which may cause
heterogeneity at the population level. Such noise
can be modeled by introducing random variables
or Monte-Carlo simulation.12

Flux balance analysis (FBA): Once stoichio-
metric coefficients of a biochemical network
are known, they impose a constraint on the
possible configuration of fluxes at its steady
state. FBA determines the optimal fluxes by
maximizing a suitably chosen objective function,
without requiring knowledge of each kinetic
parameter.13

Position weight matrix (PWM): PWMs are
widely used probabilistic models for sequence
motifs in computational biology.14 In the context
of this review, PWMs are used as a model of
the DNA-binding preferences of transcription
factors, and can be used to predict transcription
factor binding sites (TFBSs).

cystine residues that were shown by site-directed
mutagenesis to be essential for TLR signaling.23

Several studies have investigated the ligand binding
properties of other TLRs computationally.24–26 In one
such study, homology modeling in combination with
generation of LRR/TIR chimeras showed that, like
TLR1, TLR10 can bind to TLR2 and has a puta-
tive lipopeptide binding site, but that the downstream

signaling pathways facilitated by interaction with the
TIR domains differ.24

TIR Domain Models
A complete structural level understanding of the
TIR–TIR interactions that mediate the specific down-
stream signaling pathways remains elusive, although a
number of important advances toward this goal have
been made recently. For example, homology model-
ing indicated that the homodimerization interface of
the TLR4 TIR domains is similar to that of TLR10
(Figure 2), which involves pairing of two so-called
BB loops, and that this homodimer interface creates
a new interface for TIRAP or TRAM (TRIF-related
adaptor molecule) binding.6,7 However, one protein
docking study (Box 1) resulted in TIRAP binding
to two symmetry-related sites on TLR4,7 whereas a
more recent model supported by the sequence conser-
vation and reporter assays in mammalian cells, places
two TIRAP molecules adjacent to each other.6 The
crystal structure of TIRAP has been solved, and is
predicted to form a twofold symmetric homodimer.8

However, two models of TIRAP-MyD88 heterodimer-
ization have been proposed: one in which two TIRAP
TIR molecules interact with a single MyD88 TIR
domain,18 and the other in which two MyD88
TIR domains bind to opposite sides of the TIRAP
homodimer.8 The latter model is consistent with the
observation that residue D96 in TIRAP and R196
in MyD88 are important for the MyD88-TIRAP
interaction.8 The difficulty in experimentally deter-
mining quaternary structures of TIR domain com-
plexes is partially due to their weak binding affinities.
This, in turn, means that computational approaches,
such as protein docking, in combination with site-
directed mutagenesis and protein–protein interaction
assays, are expected to play an important role in eluci-
dating the structures of transient signaling complexes.

Death Domain Models
Recently, an X-ray crystallography study revealed the
structure of a helical myddosome complex composed
of the DDs of MyD88, IRAK-4, and IRAK-2.27 The
myddosome contains 4-6 MyD88 DDs, and 4 DDs
each from IRAK-4 and IRAK-2. While it has not yet
been determined whether the helical myddosome is
present in vivo, the authors argue that the 4-6 MyD88
DDs in the myddosome structure suggest a higher-
order clustering of TLR dimers, possibly localized
on lipid rafts.9 It is expected that further experi-
ment along with structural modeling will clarify what
implications the proposed myddosome complex has
for spatial arrangement of upstream TIR and LRR
complexes.
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FIGURE 2 | Structural domains of toll-like receptors (TLRs) and their adaptors. The canonical domains of TLRs and their adaptors are shown as 1D
bar graphs with the domains drawn to scale. Darker colors indicate experimentally determined structures while lighter colors indicate domains that
can be modeled by homology. The cartoon representations of several representative structures are drawn to scale: TLR4 leucine rich repeat (LRR)
dimer,15 TLR10 TIR (interleukin-1) receptordimer,16 TIRAP TIR dimer,17 MyD88 TIR,18 and myddosome complex.9 In the cartoon representations,
dark/light shades are used to distinguish individual chains in dimers.

As the above examples show, structural models
provide a framework for understanding the details
of macromolecular interactions in terms of their
geometry and physical properties. In order to under-
stand the biology of such interactions we need look at
larger systems of molecules.

INFERENCE OF TLR SIGNAL
TRANSDUCTION NETWORKS

Mathematical Models of Signal
Transduction Networks
Mathematical modeling of TLR signal transduction
networks allows us to ignore the internal details
of each macromolecule in order to focus on their
system-level interactions (Figure 3). Early work in
this direction focused on integrating data from
small-scale experiments. For example, Hoffmann and
coworkers28 constructed a biochemical model of the
NF-kB (nuclear factor κ-light-chain-enhancer of acti-
vated B cells)/IkB (NF-kB inhibitor) module, which
is an important component of the downstream of
TLR pathway. Their model is a large set of ordinary

differential equations (ODEs, Box 1) based on bio-
chemical parameters derived from cell population
averages. They showed that, among three isoforms
of IkB (IkBα, IkBβ, and IkBε), IkBα participates in a
strong negative feedback loop, which results in oscilla-
tory behavior of NF-kB upon tumor necrosis factor-α
(TNFα) stimulation, while the other two isoforms
dampen the oscillation. They have also observed sim-
ilar oscillatory behavior of NF-kB upon LPS stimula-
tion in MyD88 or TRIF deficient mice.29 In subsequent
papers,30,31 they hypothesized that the temporal pat-
terns of IKK (IkB kinase) activation, which leads to
the phosphorylation of IkB and the activation of NF-
kB, encode ligand-specific information of upstream
signaling. On the basis of this hypothesis, they have
modeled the NF-kB activation upon TNFα or LPS
stimulation based on experimentally measured IKK
activity patterns. These examples illustrate that it is
possible to infer the function of molecules through
mathematical models, which would be difficult if not
impossible experimentally. Details of such models and
related works were nicely summarized in Ref 32. It
is worth noting, although, that predictions by ODE
models in general largely depend on the chosen kinetic
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FIGURE 3 | Schematic picture of mathematical modeling approaches to toll-like receptor (TLR) signal transduction networks. In order to construct
mathematical models, several kinds of data, such as network topology and biochemical parameters, are required. Those data must be collected or
inferred from literature, databases, or experiments. Mathematical models allow us to predict system behavior under different conditions based on
assumed rules (or laws). Essential features of the system, such as oscillatory behavior caused by the strong negative feedback loops of IkBa or
input–output relationships among TLR receptors and transcriptional output, can be extracted through such models. Predictions can be validated using
further experiments, thus enhancing our knowledge of the system.

parameters. In the above models, the authors made
great efforts to collect data from the literature as
well as through their own experiments. However, it
is debatable whether, in the context of ODEs, one
can simply integrate data obtained in different cel-
lular contexts or parameters obtained from different
models. Nevertheless, even imperfect ODE models
provide the basis for further refinement. It is equally
important to seek modeling methods that tolerate inte-
gration of data and parameters from various contexts,
as discussed in Ref 33. Alternatively, approaches that
do not require predetermined kinetic parameters can
yield important insights, as discussed below.

Another early milestone in systems-level analysis
of TLR signaling networks was carried out by Oda
and Kitano in 2006.34 They constructed a comprehen-
sive map of known TLR signaling components based
on literature searches. The map revealed a bow-tie
structure, where divergent input signals flow into the
MyD88 ‘core’ of the network and branch out to mul-
tiple components, with much crosstalk with a few col-
lateral pathways. More recently, Li and coworkers35

analyzed a large-scale TLR signaling pathway using
flux balance analysis (FBA, see Box 1), which has
origins in the field of metabolic networks. They mod-
ified the original Oda-Kitano TLR map to meet FBA
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conditions and identified simple input–output rela-
tionships based on ligand/receptor and transcription/
anti-pathogen activities, respectively, by optimizing
the signaling flux with respect to the output flux.
This procedure significantly reduced the complexity
of the full network consisting of 752 distinct chem-
ical species and 909 reactions into 41 relationships
between 14 receptors and 6 outputs. They further sim-
plified the network by identifying redundant pathways
and identified eight critical biochemical reactions,
which specifically affect the pathways of reactive oxy-
gen species (ROS), IL-1-induced NF-kB activation and
MyD88-mediated NF-kB/AP-1 activation. Because it
is not yet clear how analyses based on steady-state
behavior like FBA apply to the dynamics of TLR signal
transduction networks, it will be important to validate
such predictions experimentally. In addition, some of
the discussion in Ref 35 was apparently based on an
earlier misidentification of TLR2 as an LPS receptor,
which has been subsequently shown to be a result of
contamination. Thus, in spite of the great effort made
in curating the original network, this example indi-
cates that continuous collaboration between experts
in computational and immunology fields is very
important.

Combining Gene Expression and Regulatory
Sequence Motifs
While the above network models are based on known
components and topologies of TLR signal transduc-
tion, it is of great interest to infer the yet unknown
components and regulatory relationships by computa-
tional approaches. A strategy often used is to predict
shared regulatory motifs in the regulatory regions of
co-expressed genes (Box 2). Despite the apparent sim-
plicity of this approach, it is hampered in practice
by the low specificity and sensitivity of transcription
factor binding site (TFBS) prediction using position
weight matrices (PWMs)36 (see Box 1). Neverthe-
less, because experimental identification of regulatory
sites is expensive and labor intensive, computational
predictions are often used to provide a first hint or
hypothesis, which can subsequently be tested by wet
lab experiments. An example of one such study started
from sets of genes with similar expression profiles in
macrophages after TLR stimulation.37 The authors
next scanned promoter sequences of these genes with
a set of PWMs, and identified possible regulatory rela-
tionships between TFs and clusters of co-regulated
genes. These relationships were subsequently com-
bined with additional gene expression data in order
to predict causal relationships between regulators and
target genes. An important detail was their use of

BOX 2

BASIC REGULATORY NETWORK
INFERENCE STRATEGIES

Network inference approaches utilize large-scale
sequence and expression data to reconstruct bio-
logical networks. A relatively simple approach
to network inference is based on the assump-
tion that co-expressed pairs of genes have some
level of interaction (Figure 4). Typically, a pair-
wise comparison of the expression profiles of
all genes is made, and a network is constructed
where each pair of significantly correlated genes
is connected by an edge. Importantly, correlation
of expression does not necessarily imply a causal
relationship, and is not able to distinguish direct
interactions from indirect ones. A number of
strategies have been developed that attempt to
solve the above problem, such as the use of time-
lagged correlation of expression, and various
integrative approaches.38 The latter typically use
transcription factor binding sites in the regula-
tory regions of target genes to predict direct reg-
ulatory interactions (Figure 4). Although a num-
ber of successful applications to mammalian data
have been reported,37,39 noisy expression data
and the relatively small size of regulatory sites
make network inference a non-trivial problem.
In addition, the use of mRNA levels as estimator
for gene activity introduces an additional layer
of complexity, as regulation of translation, post-
translational modifications, and cellular localiza-
tion are known to play an important role in
the regulation of gene activity.40,41 Here, fur-
ther advances in measuring protein abundance
and post-translational modifications,42 such as
phosphorylation43 will allow for a better under-
standing of TLR signaling.

time-lagged correlation between the expression of TFs
and their candidate target genes, allowing for the
prediction of causal TF-target relationships. Among
the important genes they identified, known regulators,
such as NF-kB, interferon regulatory factors (IRFs),
and AP-1, were found as well as a previously
unidentified regulator, TGIF1.

Rather than attempting to explain the regula-
tion of transcription on a large scale, some studies
have performed detailed dissection of a small set of
genes or regulatory sites. In one such study, Leung
and coworkers focused on genes that are under the
regulation of two NF-kB binding sites.44 They found
that in these genes both sites are required for the
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FIGURE 4 | Levels of complexity in network inference. By integration of additional types of data with expression data, the inference of
increasingly complex networks becomes possible. Regulatory motif data can be used to add directionality to gene expression-based networks, while
increasing amounts of epigenetic data will in the near future allow us to construct genome-wide networks including distal regulatory enhancers as
well as traditional network components.

activity of the gene, and that swapping the sites alters
the NF-kB family members that bind to them. More
importantly, they found that the combination of the
two sites affects which coactivator binds to the bound
NF-kB dimer, and that even a single nucleotide within
the NF-kB site can change the cofactor specificity. In
another study, Giorgetti and colleagues showed that
clusters of NF-kB binding sites could be used in a non-
cooperative way to process increasing levels of NF-kB
into gradual increments of transcriptional response.45

This result was in sharp contrast with the widely
accepted view that graded increases in TF concentra-
tion result—through cooperative binding—in a digital
transcription initiation signal. These two findings are
indicative of a wide variety of features that contribute
to different transcriptional responses.

Network Inference from Large-Scale
Perturbations
A number of studies have analyzed the activity of
transcriptional regulators by systematic perturba-
tion experiments. Recently, for example, Amit and
coworkers reconstructed the regulatory relationships
among transcripts whose expression levels depend

on TLR stimulation.46 They observed transcriptional
expression levels for 118 predetermined target genes 6
h after LPS stimulation in dendritic cells. The cells
were independently perturbed using small hairpin
RNA (shRNA) for 144 candidate regulators. The
resulting gene expression levels were used to define
statistically significant activating and repressing rela-
tionships between regulators and target genes. As a
result, they identified 1728 activations and 594 repres-
sions. Although their results likely contain a significant
number of indirect regulations, their study neverthe-
less quantified interactions between components in
the inflammatory and antiviral programs of dendritic
cells with unprecedented breadth. This is an example
where, in the case of DNA-binding proteins, sequence
analysis or ChIP-seq experiments, discussed below,
might help to distinguish between direct and indirect
interactions. Using a similar perturbation approach,
along with predicted TF activities, Suzuki and cowork-
ers examined 52 TFs in human myeloid leukaemia
cells.47 In these perturbation studies, genome-wide
data were first used to select a smaller set of represen-
tative genes. These representatives included candidate
regulators for perturbation experiments, and also a
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subset of genes for which expression changes will be
measured. Narrowing down the number of genes of
interest is an important step because it maximizes
the information obtained from a given experiment.
Although cell types and stimuli were different, the
results of both studies suggest that the gene expres-
sion in a single immune cell type is controlled by a
substantial number of core regulators and additional
fine-tuners.

Future Perspectives
Although most studies on the regulation of tran-
scription have focused on the roles of TFs and their
binding sites, additional levels of regulation exist, one
being the structural state of the chromatin (Figure 4).
Transcription can be regulated on an epigenetic level
by various mechanisms (see reviews 11, 48), and it
is likely that some TFs are associated with differ-
ent epigenetic changes. Importantly, it has become
clear that primary (or immediate-early) response
genes and secondary response genes in TLR signal-
ing differ fundamentally in their chromatin structure,
as well as their tendencies to have preassembled
RNA-polymerase II at their promoters, dependence
on chromatin remodeling for induction, and asso-
ciation with CpG islands.49–51 Although a number
of studies have elucidated interactions between TFs
and histone modifiers,52–56 in general, the causal
relationships between these features are still unclear.
Nevertheless, our current understanding suggests that
any approach aiming at modeling or explaining the
dynamics of gene expression during the immune
response should try to incorporate the fact that sev-
eral classes and subclasses of regulatory regions exist,
and that they are likely to be under the control
of fundamentally different regulatory mechanisms
(see review 48).

Recent studies have attempted to combine chro-
matin structure and histone modification data with
the analysis of regulatory networks. In general, these
approaches aim to use epigenetic features as a mea-
sure of accessibility of DNA sequences or activity
of genes, and to use this as prior knowledge in the
discovery of regulatory motifs. One example is the
study by Ramsey et al.57 who focused specifically on
macrophages. After combining ChIP-seq data for a
number of TFs with histone acetylation (HAc) data,
the authors observed that TFBSs often occur within
local minima of HAc ChIP-seq signals within HAc-
rich regions. Based on this observation they defined a
‘valley score’ and they showed that the use of this score
in combination with PWM scores could improve TFBS

prediction accuracy. The improvement was variable
from TF to TF though, suggesting that depending on
the biological function of the TF, different epigenetic
features might lead to better predictions. Approaches
such as CENTIPEDE58 and simpler methods59 that
aim to computationally predict TF binding events
using a limited amount of experimental data yet with
an accuracy similar to that of ‘gold-standard’ ChIP-
seq experiments are therefore likely to continue to
play an important role in system-level analyses of
transcriptional regulation.

CONCLUSION

Computational modeling has played an important
role in the study of TLR signaling. Since many of its
components are shared between organisms as diverse
as mice, insects, and worms, sequence homology
has guided many pioneering experiments that have
revealed key biochemical functions in these path-
ways. Computational analysis of the macromolecular
structures along with site-directed mutagenesis has
provided insight into the mechanism of signaling
pathways in normal and diseased states. Accu-
rate mathematical modeling of signal transduction
dynamics is a challenging goal due to our incomplete
knowledge of the components and their interactions.
However, the general topology of the TLR signal-
ing network in mammals has been established. Gene
expression data in parallel with controlled perturba-
tions will enable current models to be continuously
refined. Extensions of these models wherein struc-
tural information is integrated with network-based
signaling models are expected to provide a more quan-
titative description of TLR signaling in the future. The
increasing number of public databases, such as the
innateDB,60 ImmGen61 and Macrophages.com,62 and
tools63,64 will enable further refinement by facilitat-
ing data sharing and interpretation, and establishing
standards. Finally, it must be acknowledged that
immunology is still very much an experimental disci-
pline. The emergence of new experimental techniques,
especially those that quantify gene and protein expres-
sion levels, as well as epigenetic and post-translational
modifications, is expected to add depth to our under-
standing. However, we are convinced that in order to
understand the immune response on a system’s level,
and the interactions between its various parts, the
future contribution of computational methodologies
will be invaluable. We believe that the studies we
have discussed above will be a foundation for future
developments.
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