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Sirtuins are protein factors that can delay aging and alleviate age-related diseases

through multiple molecular pathways, mainly by promoting DNA damage repair, delaying

telomere shortening, and mediating the longevity effect of caloric restriction. In the

last decade, sirtuins have also been suggested to exert mitochondrial quality control

by mediating mitophagy, which targets damaged mitochondria and delivers them

to lysosomes for degradation. This is especially significant for age-related diseases

because dysfunctional mitochondria accumulate in aging organisms. Accordingly, it

has been suggested that sirtuins and mitophagy have many common and interactive

aspects in the aging process. This article reviews the mechanisms and pathways

of sirtuin family-mediated mitophagy and further discusses its role in aging and

age-related diseases.
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INTRODUCTION

Aging is an inescapable part of human life, and it is a multi-factorial, complex process. During
aging, changes in metabolic levels, organ function and gene expression occur in the body, leading to
the emergence of several age-related diseases and pathological processes, such as neurodegenerative
diseases, cancer, intervertebral disc degeneration (IVDD), and other degenerative changes (Taneike
et al., 2010; Rugarli and Langer, 2012; Vara-Perez et al., 2019; Xie et al., 2019). In the past, the
treatment of these age-related diseases was mainly focused on treating diseases after they occurred.
With the growing awareness of the relevance of the cellular aging process itself to these age-related
diseases, there is a growing awareness of the importance of early screening, preventive care, and
suppression of specific risk factors (Hou et al., 2019). As the pathways and mechanisms of aging, as
well as the greatest risk factors for age-related diseases are being investigated, potential targets for
delaying aging and ameliorating age-related diseases have emerged. For example, early restriction
of caloric intake in rats prolonged their lifespan and also inhibited the development of age-related
diseases (Mccay et al., 1975; Omodei and Fontana, 2011; Madeo et al., 2019). In addition to this,
molecularmechanism related to the insulin-like signaling pathway, the target of rapamycin, sirtuins
and NAD+ has received increasing attention.

As the main ATP-producing organelles of cells, mitochondria play a crucial role in maintaining
cellular metabolism and homeostasis. Numerous previous studies have found that mitochondrial
dysfunction contributes to the aging process and a variety of age-related diseases (Rugarli and
Langer, 2012; Palikaras et al., 2015; Wiley et al., 2016). There are multiple ways to maintain
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mitochondrial homeostasis and mitochondrial quality control
in living organisms, such as mitochondrial biogenesis,
fusion, fission and mitophagy, whereby the latter plays
an especially important role. Mitophagy is a specialized
autophagic pathway that selectively removes damaged and
dysfunctional mitochondria, reducing the accumulation of
mitochondrial debris and ROS production. Mitophagy is
critical for mitochondrial quality control and homeostasis
(Ashrafi and Schwarz, 2013). Autophagy is mainly classified into
macroautophagy, microautophagy and molecular chaperone-
mediated autophagy. Macroautophagy is what we usually call
autophagy, which is the main regulatory catabolic mechanism
used to degrade long-lived proteins and organelles (Levine
and Kroemer, 2008). The process includes the formation
and prolongation of the isolation membrane around the
cargo, the isolation membrane wrapping around the cargo to
form autophagosome, and the fusion of autophagosome with
lysosomes to form autolysosome and degrade the cargo (Levine
and Kroemer, 2008). mTOR, as a metabolic receptor, is a key
and central molecule in the initiation phase of autophagy. mTOR
activation negatively regulates the ULK1 complex (a bridge
connecting upstream mTOR and downstream autophagosome
formation). In addition, ATG genes promote autophagosome
formation through ATG12, ATG5 and LC3 complexes (Levine
and Kroemer, 2019). Mitophagy, similar to autophagy, involves
several processes that recruitment of ubiquitin-autophagy
adaptors or activation of mitophagy receptors, recruitment and
elongation of isolation membrane/phagophore, autophagosome
formation, autophagosome-lysosome fusion, and degradation
of autophagosomal contents by lysosomal hydrolases (Tanida,
2011). Different from autophagy, mitophagy can be mediated by
various pathways, including ubiquitin-autophagy (PINK/Parkin)
andmitophagy receptors (BNIP3, NIX, FUNDC1, etc.) pathways.
The specific molecules involved in the mitophagy process will
be described following. Interestingly, autophagy and mitophagy
sometimes have different or even opposite effects.

The sirtuins (SIRT1-7) are an evolutionarily conserved family
of NAD+-dependent deacetylases that are involved in a variety
of cellular metabolic processes through the deacetylation of
target proteins (Table 1) (Chang and Guarente, 2014). The first
identified sirtuin protein was the silencing information regulator
2 (SIR2) from Saccharomyces cerevisiae. SIR2 was originally
described as a chromatin silencing component that represses
gene transcription at selected loci (Klar et al., 1979). Growing
evidence suggests that sirtuins are not only important energy
status sensors, but also protect cells from metabolic stress,
regulate the aging process, and alleviate age-related diseases
(Chang and Guarente, 2014). Another very important function of
sirtuin is to regulate mitophagy. sirtuinmembers exhibit different
cellular localization patterns. SIRT6 and SIRT7 are located in
the nucleus and show different subnuclear localization patterns,
while SIRT2 is found in the cytoplasm. SIRT1 is located in
the nucleus and cytoplasm. Finally, SIRT3, SIRT4, and SIRT5
are localized predominantly in mitochondria (Michishita et al.,
2005). Different intracellular localization allows sirtuins to exert
different roles. Disruption of mitochondrial membrane potential
is a potent trigger of mitophagy, and SIRT3 targets (for instance

ATP5O subunit of ATP synthase and complex I) promote flux
through oxidative metabolism, generating the electrons needed
to restore the proton gradient, playing a role in maintaining
mitochondrial membrane potential in response to mitochondrial
stress (Ahn et al., 2008; Yang et al., 2016).

Since sirtuin function and mitochondrial dysfunction both
influence the aging phenotype, this review proposes that sirtuin-
mediated mitophagy plays a remarkable role in aging and age-
related diseases. We further summarize the mechanisms and
pathways of mitophagy activation by sirtuins, and explore the
relationship between mitophagy, aging and age-related diseases.
Finally, this review discusses the problems and development
prospects in the research on sirtuin-mediated mitophagy.

METHODS

This review used as keywords SIRT1-7, mitophagy, autophagy,
aging and related diseases to select relevant papers listed in
the public available PubMed database (https://pubmed.ncbi.
nlm.nih.gov/). Exclusion criteria for the references included
duplicated research. The PubMed database was accessioned lastly
on March 2022.

The Mechanism of Sirtuin-Mediated
Mitophagy
In the ubiquitin pathway, the PINK1/Parkin-dependent
ubiquitin pathway is the most extensively studied to date. First,
damaged mitochondria need to recruit PINK/Parkin to the
mitochondrial surface. In healthy mitochondria, the Ser/Thr
kinase PINK1 is maintained at low levels by voltage-dependent
proteolysis (Narendra et al., 2010). In mitochondria that sustain
damage, mitochondrial membrane potential depolarization
effectively triggers mitophagy. PINK1 rapidly accumulates on
the surface of mitochondria and forms dimers. Then, the Ser228
and Ser402 residues of PINK1 are autophosphorylated, leading
to the recruitment of Parkin to the mitochondrial membrane
and activation of its E3 ubiquitin ligase activity (Nguyen
et al., 2016a). The ULK1 complex also is recruited to promote
the recruitment of Parkin by PINK to the mitochondrial
surface by phosphorylating Parkin at Ser108 (Iorio et al.,
2021). The next autophagy adapters (p62/SQSTM1, NBR1,
NDP52/CALCOCO2, TAX1BP1, and OPTN) play an important
role. These autophagy adapters contain both a ubiquitin-binding
domain that recognizes ubiquitin chains and an LC3 (a member
of the ATG8 family) interaction region (LIR) that acts to
recruit phagophore membranes wrapped in LC3 (Zaffagnini
and Martens, 2016). Then, phagophore membranes wrapped
by the ATG8 family are recruited to the surface of damaged
mitochondria by autophagy adapters. Interestingly, OPTN can
form directly a complex with ATG9 vesicles (Yamano et al.,
2020). NDP52 can also bind directly to the ULK1 complex
(Vargas et al., 2019). The cascading reaction: ubiquitylation-
OPTN-ATG9/LC3, and ubiquitylation-NDP52-ULK1/LC3.
During phagophore membranes elongation to form an isolation
membrane, RABGEF1, an upstream factor of the Rab GTPase
cascade, is recruited to damaged mitochondria via the ubiquitin
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TABLE 1 | Properties and functions of SIRT famliy related with aging.

Sirtuins Cellular

localization

Activity Regulated molecules Related pathologies Functions in aging

SIRT1 Nucleus and

cytoplasm

Deacetylase,

ADP-ribosyl-transferase

PINK1/Parkin, UCP2,

AKT, PGC-1α, FOXO1/3,

mTOR, MFN2, AMPK

XPA,

A-T,

Cardiac dysfunction,

Cardiac remodeling,

Neurodegeneration,

Ischemia/reperfusion injury,

Osteoarthritis,

Osteoporosis,

Kidney fibrosis etc.

Lifespan, extension,

Oxidative stress, DNA

repair, Cell cycle arrest

SIRT2 Cytoplasm Deacetylase,

Demyristoylase

PINK1/Parkin, PGC-1α,

FOXO3a

Neurodegeneration, Intervertebral

disc degeneration

Cell cycle regulation,

Longevity, Genome stability

SIRT3 Mitochondria Deacetylase,

Decrotonylase

PINK1/Parkin, FOXO3a,

AMPK, PGC-1α, MnSOD

Cardiac aging, Ischemia/reperfusion

injury, Diabetes complications,

Osteoarthritis,

liver injury,

Neuronal inflammation

Mitochondrial function,

Oxidative stress, longevity

SIRT4 Mitochondria Deacetylase,

ADP-ribosyl-transferase,

Lipoamidase

OPA1 Mitochondrial function Tumor suppression,

Apoptosis

SIRT5 Mitochondria Deacetylase,

Desuccinylase,

Demalonylase

UCP1 Brown adipose tissue Oxidative stress

SIRT6 Nucleus

(chromatin)

Deacetylase,

ADP-ribosyl-transferase,

Demyristoylase,

Depalmitoylase

AMPK, PGC-1α Myocardial vulnerability to

ischemia/reperfusion injury, Diabetic

Cardiomyopathy

Lifespan, extension,

Genome stability, Telomere,

maintenance

SIRT7 Nucleus

(nucleolus)

Deacetylase,

Desuccinylase

Histone H3K18 Antagonizes human stem cell aging,

Mitochondrial function

Genome stability, Stress

resistance

chain. RABGEF1 directs Rab proteins Rab5 and Rab7 to damage
mitochondria. the Rab cycle assembles ATG9 vesicles and
extends the isolation membrane to wrap mitochondria (Heo
et al., 2018). In addition, FOXO1 is also thought to increase
Rab7 expression. Finally, in autophagosome-lysosome fusion.
ATG8 family proteins are associated with elongated isolation
membranes and are required for autophagosome-lysosome
fusion (Nguyen et al., 2016b).

In the mitophagy receptor pathway, mitophagy receptors
on the mitochondrial surface (BNIP3/NIX, FUNDC1, etc.) are
activated by stress signals. Similarly, these mitophagy receptors
also contain an LIR motif, thereby recruiting the ATG8 family,
and mediating the formation of phagophore membranes and
isolationmembranes. Interestingly, BNIP3/NIX can interact with
PINK/Parkin to promote autophagy. NIX is ubiquitinated by
Parkin, which in turn promotes the targeting of the mitophagy
adapter NBR1 to promote autophagosome formation (Gao et al.,
2015). In addition, BNIP3 interacts with PINK1 to promote the
accumulation of PINK1 on the outer mitochondrial membrane,
leading to the translocation of Parkin to the mitochondria
(Zhang et al., 2016).

mTOR, a serine/threonine kinase, is a key factor in the
regulation of autophagy and a major regulator of cellular
metabolism (Kim and Guan, 2015). The upstream regulator
of mTOR is the growth factor/PI3K/AKT signaling pathway.

Growth factors such as insulin and IGF activate the PI3K/AKT
signaling axis. Activated AKT is directly phosphorylated,
thereby activating mTOR. One study suggested that AKT
phosphorylation inactivates the downstream effector FOXO
transcription factor. And FOXO can inhibit mTOR through
multiple mechanisms (Chen et al., 2010). In addition, AMPK,
a sensor of cellular energy levels, directly phosphorylates
RAPTOR, leading to a decrease in mTOR activity through
metastable inhibition (Gwinn et al., 2008). mTOR negatively
regulates autophagy by inhibiting the autophagy-initiating ULK
complex through phosphorylation of a complex including
ATG13 and ULK1/2. In addition, mTOR inhibits ULK1 stability
by suppressing the phosphorylation of Beclin-1 regulator 1
(AMBRA1) (Nazio et al., 2013). SIRT1 and SIRT3 can act
upstream of the PINK1/Parkin pathway to activate mitophagy,
and also via many other pathways. Sirtuins regulate transcription
factors and enzymes such as HIF-1α, PGC-1α, FOXO1,
PPARγ, etc. Moreover, sirtuins can directly influence mitophagy
by interaction with and/or post-translational modification of
mitophagy proteins such as ATG5, ATG7, and ATG8. Moreover,
they can indirectly increase the expression of mitophagy-related
proteins such as mTORC1, PARK1, Beclin-1, BNIP3, etc. (Lee
et al., 2008; Huang et al., 2015; Sun et al., 2015). There is growing
evidence that sirtuins are key factors in the mitophagy process as
well as its effects on aging and age-related diseases.
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FIGURE 1 | The pathway of SIRT1-mediated mitophagy. PARP1 competes with SIRT1 for NAD+, resulting in inhibition of the SIRT1-PPARGC1A-UCP2 axis, which

leads to an increase in mitochondrial membrane potential and inhibition of mitophagy. miR-22 inhibits the SIRT1/PGC-1α axis and decreases PINK1/Parkin

expression, suppressing mitophagy. SIRT1 deacetylates FOXO1/3 and enhances mitophagy directly or by activating the FOXO1/3-PINK1-Parkin axis. SIRT1

deacetylates the K655 and K662 sites of MFN2 and enhances mitophagy. 17b-E2 increases SIRT1 and AMPK expression and decrease the expression of mTOR,

thus enhancing mitophagy.

SIRT1 and Mitophagy
In a variety of age-related diseases and pathological
processes, such as Alzheimer’s disease (AD), cardiac fibrosis
and dysfunction, and kidney fibrosis, SIRT1 can active
PINK1/Parkin-dependent mitophagy through a variety of
pathways (Figure 1), resulting in positive and negative effects on
these diseases (Scheibye-Knudsen et al., 2014; Liu et al., 2020b;
Wang et al., 2021; Zhao et al., 2021b).

PGC-1α Pathway
SIRT1 mediates mitophagy through direct deacetylation of
PGC-1α or indirect activation of PGC-1α in a variety of
pathological processes.

PGC-1α, as a key factor of mitochondrial biogenesis, can be
activated due to deacetylation by SIRT1. PARP1 (a DNA repair
enzyme) mediates the loss of SIRT1 activity due to sustained
DNA damage response. PARP1 activation depletes NAD+
and attenuates SIRT1 activity. SIRT1 regulates PPARGC1A,
and the transcription factors family PPARGC1A/PGC-1α in
turn regulates UCP2. UCP2 regulates mitochondrial membrane
potential. Therefore, the activation of PARP1 may lead to

deactivation of the NAD+-SIRT1-PPARGC1A-UCP2 axis and
increase the mitochondrial membrane potential, leading to
PINK1 cleavage and defective mitophagy (Scheibye-Knudsen
et al., 2014). It was also proposed that PARP1 activation can
act by attenuating the NAD+-SIRT1-PGC-1α axis. Attenuating
in SIRT1 regulates the downstream molecule UCP2 through
a decrease in deacetylated PGC-1α, leading to depolarization
of the mitochondrial membrane potential and an increase in
mitochondrial ROS, resulting in defective mitophagy (Fang et al.,
2014). PARP1 activation drives an accelerated aging phenotype
and this can be partially normalized by pharmacological
intervention with PARP1 inhibitors or compounds that increase
NAD+ (Fang et al., 2014). The PGC-1α pathway can also be
activated by SIRT1 in the cardiovascular system. In doxorubicin-
induced cardiomyopathy, the role of mitophagy in DOX-induced
cardiotoxicity is controversial. Some experiments have shown
that DOX inhibits mitophagy and mitochondrial biogenesis (Liu
et al., 2019; Wang et al., 2019b, 2021; Xu et al., 2020). Inhibiting
miR-22 and knocking out miR-22 affected the SIRT1/PGC-
1α pathway and increased expression of PINK1/Parkin to
regulate mitochondrial biogenesis and mitophagy, alleviating
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cardiac fibrosis and cardiac dysfunction (Wang et al., 2021).
Specifically, miRNAs repress the expression of their target genes
primarily by targeting their 3’untranslated regions (UTR). miR-
22 can suppress SIRT1 gene expression through the UTR site,
thereby repressing the protein expression levels (Huang et al.,
2013). However, there are also reports that DOX can enhance
mitophagy by activating the PINK1/Parkin pathway, thus causing
cardiotoxic damage (Yin et al., 2018).

Mitophagy elevation might be a protective mechanism against
oxidative stress-mediated ROS production through the SIRT1-
PGC-1α axis (Liang et al., 2020; Zhao et al., 2022). This axis
is also involved in C2C12 myotubes (Chang et al., 2021a),
cardiac dysfunction in doxorubicin-induced cardiomyopathy
(Wang et al., 2021), and podocyte injury in diabetic nephropathy
(Zhou et al., 2019).

FOXO1 Pathway
FOXO1 activation by SIRT1 deacetylation can act on multiple
processes of mitophagy, such as promoting ULK1 complex
formation and isolation membrane elongation.

In cardiac remodeling, some studies have suggested that
SIRT1 can deacetylate the transcriptional factor FOXO1 (FOXO
proteins play important roles in a variety of intracellular
functions including metabolism, stress resistance, longevity and
tumor suppression) to activate mitophagy, thereby ameliorating
mitochondrial dysfunction and cardiac aging (Ren et al., 2017).
FOXO1 increased the expression of Rab7, as a small GTP-binding
protein that mediates late autophagosome-lysosome fusion,
increasing mitophagy flux (Hariharan et al., 2010). The SIRT
1 activator SRT1720 was found to rescue impaired mitophagy
and myocardial contractile function in aging (Ren et al., 2017).
In the SIRT1/FOXO1 axis, experiments have suggested that
SIRT1-mediated FOXO1 deacetylation and Rab7 upregulation
lead to increased starvation-induced autophagy, thus helping to
maintain stable cardiac function during starvation (Hariharan
et al., 2010).

FOXO1 also interacts with PGC to co-regulate mitochondrial
biogenesis and mitophagy. In podocytes from diabetic mice,
PGRN (progranulin, a secreted glycoprotein) deficiency
exacerbates mitochondrial damage and dysfunction (Zhou
et al., 2019). High glucose-induced mitochondrial dysfunction
was attenuated by treatment with recombinant human PGRN
to enhance mitochondrial biogenesis and mitophagy (Zhou
et al., 2019). PGRN maintained mitochondrial homeostasis
through PGRN-SIRT1-PGC-1α/FOXO1 axis-mediated
mitochondrial biogenesis and mitophagy. SIRT1 increased
the DNA-binding ability of FOXO1 by deacetylating its, and
potentiated its transcription activity to promote mitophagy
via the PINK1/Parkin pathway and thereby protect against
podocyte injury under HG conditions (Zhou et al., 2019). In
AD, the SIRT1/FOXO axis may also play an important role. The
authors of a recent study argued that physical exercise alters
the NAD+/NADH ratio and enhances expression of SIRT1 in
the brain, thereby upregulating mitophagy by activating the
FOXO1/3-PINK1-Parkin pathway to attenuate cognitive decline,
improve synaptic dysfunction, and decrease the Aβ burden in
Alzheimer’s disease (Zhao et al., 2021b).

AMPK/mTOR Pathway
AMPK/mTOR plays an important role in SIRT1-mediated
mitophagy as an energy receptor regulating the activation of the
ULK1 complex. Mitophagy also has a non-negligible positive
effect on osteoarthritis (OA) and IVDD. Researchers observed
reduced mitophagy function of chondrocytes in articular
cartilage of patients with osteoarthritis, which accelerated
apoptosis and cartilage degeneration (Rockel and Kapoor, 2016).
Estrogens, specifically 17b estradiol (17b-E2), treatment for
disorders of articular cartilage metabolism and postmenopausal
OA. In this model, the RT-PCR results demonstrated that
17b-E2 promotes the expression of SIRT1 mRNA and protein
(Mei et al., 2020). 17b-E2 also increases p-AMPK [a metabolic
energy sensor, which is activated when the cell energy charge
decreases (AMP/ATP ratio increases)], and mitophagy-related
proteins, decrease p-mTOR expression, and then activates
mitophagy in chondrocytes (Price et al., 2012; Mei et al., 2020).
SIRT1 activation can also enhance mitophagy in osteoblasts
in osteoporotic rats through the PI3K/AKT/mTOR axis (Yang
et al., 2019). In IVDD, the SIRT1-mitophagy axis can also
ameliorate intervertebral disc degeneration and high-magnitude
compression-induced senescence of nucleus pulposus cells (Xie
et al., 2019; Wang et al., 2020b).

Treatment with D-galactose leads to significant senescence
of cardiomyocytes, shortened telomeres, increased cellular
senescence marker proteins p21 and p53, as well as reduced
mitophagy mediated by reduced expression of SIRT1 and
PINK1/Parkin in aging mice (Hong et al., 2021). Acacetin
enhances the mitophagy proteins PINK1, Parkin, and LC3II
via SIRT1-mediated activation of SIRT6 and pAMPK, thereby
enhancing mitophagy, reversing the aging-related mitochondrial
membrane potential depolarization, and alleviating D-galactose-
induced cardiac senescence (Hong et al., 2021).

Other Pathways
In ischemia/reperfusion (I/R) injury of the liver, biochemical
analysis revealed that the vast majority of losses of both SIRT1
and mitofusin 2 (MFN2) (a mitochondrial outer membrane
protein that has diverse functions such as mitochondrial
fusion and metabolic regulation) after I/R occurs in old
hepatocytes rather than young cells. Co-overexpression of
both proteins resulted in SIRT1 deacetylated K655 and K662
residues near the C-terminus of MFN2, leading to the activation
of autophagy/mitophagy, which prevented mitochondrial
dysfunction and reduced cell death after reperfusion (Biel et al.,
2016; Chun et al., 2018). However, the mechanism of how
MFN2 enhances mitophagy is not well understood, possibly
because MFN2 may be involved in autophagosomes-lysosomes
fusion through interaction with the Ras-associated protein
Rab7 (Zhao et al., 2012). On the other hand, MFN2 may
mediate the recruitment of Parkin to damaged mitochondria.
Parkin binds to MFN2 in a PINK1-dependent manner; PINK1
phosphorylates MFN2 and promotes its Parkin-mediated
ubiquitination. Excision of MFN2 in mouse cardiomyocytes
prevents depolarization-induced Parkin translocation to
mitochondria and inhibits mitophagy (Chen and Dorn, 2013).
Another study of I/R injury in the liver also proposed that
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enhancing SIRT1-mediated autophagy can protect against I/R
injury (Cho et al., 2017).

In a recent study, cardiomyocytes subjected to H/R were
damaged due to excessive reactive oxygen species and decreased
mitophagy (Chang et al., 2021b). TMBIM6, a calcium channel-
like protein, can interact with calcium signaling proteins
to inhibit apoptosis of the endoplasmic reticulum pathway
and regulate cell survival and death. Quercetin increased the
expression of TMBIM6, while short interfering RNA transfection
of SIRT1 further inhibited the expression of TMBIM6. Therefore,
treatment with Quercetin regulated mitophagy through the
SIRT1/TMBIM6 axis and inhibitedH/R-induced oxidative stress-
induced damage (Chang et al., 2021b). However, the mechanism
of interaction between SIRT1 and TMBIM6 needs to be
further elucidated.

In acute kidney injury and kidney fibrosis, enhanced
mitophagy can also alleviate related symptoms via the activation
of the SIRT1/PINK1/Parkin axis (Gao et al., 2020; Liu et al.,
2020b). Important roles of SIRT1-mitophagy have also been
found in many other diseases, such as polycystic ovary syndrome
(PCOS) (Yi et al., 2020), glioblastoma (Yao et al., 2018), spina
bifida aperta (Zhao et al., 2021a), age-related hearing loss
(Xiong et al., 2019), and prostatic intraepithelial neoplasia (Di
Sante et al., 2015). An increasing number of SIRT1-mediated
mitophagy pathways have been identified in various diseases
and aging processes, providing a basis and guidance for future
therapeutic targets.

SIRT3 and Mitophagy
SIRT3, similar to SIRT1, acts as an important factor in the
resistance to aging of multiple organs and related diseases, and
also relies onmultiple pathways to activate mitophagy (Figure 2).

FOXO3 Pathway
SIRT3, similar to SIRT1, deacetylates FOXO3, thereby activating
the ubiquitination-dependent mitophagy pathway. SIRT3-
mediated FOXO3a activation also enhances mitochondrial
fission and mitophagy through PINK1/Parkin activation and
creates a cardioprotective environment during aging (Das
et al., 2014). Similarly, there is also a study that suggests that
activation of the SIRT3/FOXO3a/Parkin signaling pathway
can protect against atherosclerosis (AS) (Ma et al., 2018).
Furthermore, a study proposed that SIRT3 activates Parkin-
mediated mitophagy through FOXO3a deacetylation, which
is beneficial to the regulation of diabetic cardiomyopathy (Yu
et al., 2017). Conversely, a study concluded that SIRT3/FOXO3a-
mediated excessive mitophagy and autophagy will aggravate
anoxia/reoxygenation injury (Wu et al., 2020). In addition, H/R-
induced cardiomyocyte injury will activate excessive autophagy,
and inhibition of excessive autophagy can significantly reduce
H/R damage, thereby improving the survival of cardiomyocytes
(Shi et al., 2017). It may be inferred that autophagy and
mitophagy have different or even opposite roles in cardiac I/R
injury. SIRT3-mediated mitophagy plays a role not only in
primary cardiovascular disease, but also in secondary cardiac
diseases, such as diabetic cardiomyopathy (DCM). SIRT3
activation upregulates Parkin expression and mitochondrial

recruitment, thereby enhancing mitophagy and alleviating the
phenotype of DCM (Wang et al., 2019c).

In complications of diabetes, such as diabetic keratopathy
(Hu et al., 2019) and diabetic nephropathy (Feng et al., 2018),
SIRT3 overexpression promotes wound healing under high
glucose (HG) conditions by activating FOXO3a/PINK1/Parkin
axis-mediated mitophagy (Hu et al., 2019). Moreover,
SIRT3/FOXO3a/Parkin axis-mediated mitophagy activation
protects against oxidative liver injury (Chen et al., 2020),
neuroprotective (Zhang et al., 2020b), aging (Tseng et al., 2013)
and inclusion body myositis (Koo et al., 2019).

Reduce ROS
SIRT3 maintains ROS levels in the normal range to protect
organisms from oxidative stress-induced pathology (Pi et al.,
2015; Katwal et al., 2018). As a mitochondrial fidelity protein,
SIRT3 directs energy generation and regulates ROS scavenging
proteins by activating direct manganese superoxide dismutase
(MnSOD) enzymatic dismutase activity (Tao et al., 2014). SOD2
is acetylated at lysine 68 and 122 and this acetylation decreases
SOD2 activity. SIRT3 deacetylatesMnSOD, leading to an increase
in SOD2 enzyme activity (Tao et al., 2014). In hypertensive
cardiac remodeling, SIRT3 deacetylates FOXO3 to activate
FOXO3-dependent antioxidants, MnSOD and catalase, while
suppressing reactive oxygen species (ROS), thereby blocking the
cardiac hypertrophic response. It was found that SIRT3 could
promote angiogenesis by enhancing PINK1/Parkin pathway-
mediated mitophagy to attenuate mitochondrial dysfunction
(Wei et al., 2017).

Immunoprecipitation and western blot assays also suggest
that the activity, expression, and deacetylation of mitochondrial
MnSOD and PGC-1α were reduced in the aging heart (Li
et al., 2018b). It was also found that the expression level of
SIRT3 was significantly lower in the myocardium of aged mice
compared with that of young mice (Li et al., 2018b). The reduced
PGC-1α and MnSOD expression, deacetylation, and activity
were improved by SIRT3 (Li et al., 2018b). In addition, the
reduction of SIRT3 in the aging myocardium allows for increased
acetylation of P53 and binding to Parkin. Acetylated P53 binds
to Parkin and blocks its ectopic position, leading to a decrease
in mitophagy (Li et al., 2018b). SIRT3 regulates mitochondrial
biogenesis and mitophagy while also promoting mitochondrial
oxidative stress resistance by altering the acetylation of MnSOD
and enhancing its ability to scavenge ROS, thereby attenuating
cardiac dysfunction of the aged heart (Zhao et al., 2018).

Other Pathways
There are also studies showing that SIRT3 can activate
Bnip3 expression and mitophagy through the ERK-CREB
signaling pathway to ameliorate non-alcoholic fatty liver
disease (Li et al., 2018a). The ERK-CREB signaling pathway
is the upstream mediator of mitophagy activation. SIRT3
overexpression increased p-ERK content, p-CREB, and NIBP3
levels, and blockade of the ERK pathway significantly inhibited
Bnip3 expression. These data suggest that SIRT3 controls
Bnip3 expression through the ERK-CREB signaling pathway
(Li et al., 2018a).
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FIGURE 2 | The pathway of SIRT3-mediated mitophagy. SIRT3 deacetylates FOXO3, which activates MnSOD, inhibits ROS production. FOXO3 deacetylated by

SIRT3 also enhances mitophagy directly or via the PINK1/Parkin axis, thereby inhibiting ROS production. SIRT3 enhances AMPK activity, thereby directly enhancing

mitophagy or indirectly enhancing mitophagy by increasing mitochondrial membrane potential.

The role of SIRT3-mediated mitophagy in cardiac I/R injury
is controversial. A recent study suggests that augmenting
mitochondrial fusion and activating the AMPK/SIRT3 signaling
pathway can increase the mitochondrial membrane potential
and improve mitophagy, thereby protecting against cardio-
cerebrovascular I/R injury (Liu et al., 2020a). However, the
article did not explain the specific mechanism of interaction
between AMPK and SIRT3. On the contrary, some studies
suggest that in SIRT3+ cells, phosphorylation of LKB1 (an
upstream kinase of AMPK) is increased, which increases AMPK
activity. Thus, SIRT3may be enhancing autophagy levels through
the LKB1-AMPK-mTOR axis (Zhang et al., 2018; Han et al.,
2020).Additional sirtuin family-mediated mitophagy pathways
may be discovered in the future, which will provide new ideas
for future interventions in related diseases and aging.

Other Sirtuins and Mitophagy
As members of the same family, sirtuins share several similar
functions, such as deacetylation, and are collectively involved
in aging and the progression of related diseases. SIRT2 is the
most abundantly expressed sirtuin in the brain, and was found
to be expressed exclusively in growth cones of postmitotic cells

and cytoplasmatic neuritis (Harting and Knoll, 2010). SIRT2
was considered to act as a tubulin deacetylase that regulates
microtubule network acetylation, and overactivation of SIRT2
may result in loss of mitochondrial potential, further leading
to a dysfunction in autophagy/mitophagy (Silva et al., 2017).
Treatment with the specific SIRT2 inhibitor AK1 treatment or
SIRT2 knockout in mice can recover microtubule stabilization
and improve autophagy/mitophagy, favoring cell survival in AD
by eliminating toxic Aβ oligomers (Silva et al., 2017). SIRT2 can
also deacetylate PGC-1α and FOXO3a. In response to oxidative
stress, SIRT2 can deacetylate FOXO3a to transcriptionally
activate the SOD2 gene and Bim gene, which reduces cellular
ROS levels. Furthermore, as Bim is a pro-apoptotic factor, SIRT2
promotes cell death when cells are under severe stress (Wang
et al., 2007). Consistent with previous findings, SIRT2-deficient
mice exhibited increased oxidative stress, decreased ATP levels
and alteredmitophagy in brain cells.Mitophagy factor ATG5may
be a SIRT2 downstream deacetylation target. Because a difference
in ATG5 acetylation was observed in lysates from the cortex from
Sirt2-/- mice (Liu et al., 2017).

SIRT4 is localized to mitochondria. Interestingly, SIRT4
expression may promote stress-induced autophagic flux, but
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also decrease PINK1/Parkin-associated mitophagy, leading to
an increase of mitochondrial content (Lang et al., 2018).
SIRT4 activation shifts mitochondrial fusion, resulting in the
downregulation of mitophagy during aging via the GTPase OPA1
(L-OPA1), which promotes mitochondrial fusion (Lang et al.,
2018).

SIRT5 is considered to be a mitochondrial desuccinylase
and demalonylase. In brown adipose tissue, SIRT5-KO elevates
protein succinylation of two lysine residues in UCP1, K56 and
K151, while reduced function of UCP1 may result in impaired
mitochondrial respiration and defective mitophagy (Wang et al.,
2019a). However, excess succinylation of UCP1 due to SIRT5
inhibition may induce autophagy/mitophagy and mitochondrial
dysfunction (Zhang et al., 2020a). SIRT5 inhibition can also result
in glutaminase succinylation to regulate ammonia production.
Ammonia can also activate mitophagy, as evidenced by the
measurement of mitophagy markers BNIP3 and PINK1/Parkin
(Polletta et al., 2015).

A recent study found a role for SIRT6 in diabetic
cardiomyopathy (DCM) (Yu et al., 2021). Long-term diabetes
reduces cardiac melatonin membrane receptor expression and
decreases myocardial SIRT6 and AMPK-PGC-1α-AKT signaling.
AMPK appears to alleviate DCM and improve mitochondrial
quality control through multiple pathways. Activation of the
AMPK-PGC-1α pathway reduced mitochondrial division in the
diabetic heart by inhibiting Drp-1 phosphorylation. AMPK-
PGC-1α-mediated activation of Nrf1-Tfam (promoter of the
nuclear gene encoding a subunit of the mitochondrial oxygen-
phosphate complex) promoted mitochondrial biogenesis in
the diabetic heart. AMPK also enhanced mitophagy through
the ULK1 pathway (Yu et al., 2021). Melatonin treatment
enhances mitophagy and mitochondrial biogenesis by activating
SIRT6 and AMPK-PGC-1α-AKT signaling, thereby inhibiting
the progression of DCM and subsequent myocardial ischemia-
reperfusion injury (Yu et al., 2021).

Although there is no evidence of direct induction of
mitophagy by SIRT7, a study has shown that SIRT7 can act as a
histone H3K18-specific deacetylase to indirectly affect mitophagy
by controlling mitochondrial biogenesis, ribosomal biosynthesis,
and DNA repair (Yan et al., 2018). Furthermore, deficiency of
SIRT7 results in a loss of heterochromatin and accelerates human
mesenchymal stem cell (hMSC) senescence (Bi et al., 2020).
Overall, the mechanisms through which other sirtuins mediate
mitophagy are not well understood, but remain highly relevant
to mitochondrial function. Accordingly, there are many possible
mechanisms waiting to be studied in the future.

Mitophagy in Aging and Age-Related
Diseases
Healthy mitochondria are essential for many basic cellular
processes, including energy production, metabolite synthesis,
and lipid metabolism. Mitochondrial mass is mainly regulated
by mitophagy. When mitophagy is impaired, mitochondrial
dysfunction leads to impaired energy homeostasis and ultimately
cellular dysfunction, with implications for aging and multiple
age-related diseases, such as cancer, cardiovascular diseases,

neurodegenerative diseases and senile osteoporosis (Figure 3)
(Palikaras et al., 2015; Fang et al., 2016; Zhang et al., 2017; Ziegler
et al., 2018; Fang, 2019; Chen et al., 2021; Guo et al., 2021).

Mitophagy Dysfunction Leads to Cellular Senescence
In a previous study, it was found that autophagy can extend
the life span of Saccharomyces cerevisiae (Alvers et al., 2009).
Subsequently, autophagy was also found to be required for
lifespan extension in Caenorhabditis elegans and Drosophila
melanogaster with reduced food intake, TOR or insulin/IGF-1
signaling (Hars et al., 2007; Simonsen et al., 2008; Toth et al.,
2008; Alvers et al., 2009). Knockdown of the Atg7 and Atg12
genes or depletion f Beclin1 suppressed the long-lived phenotype
of wild-type and longevity gene mutant nematodes (Toth et al.,
2008). This study implies that autophagy is the common
downstream process of distinct longevity-related pathways.
Furthermore, specific enhancement of ATG8 expression in brain
extends the average lifespan of fruit flies and promotes resistance
to oxidative stress (Simonsen et al., 2008). This result implies that
the effects of autophagy on aging at different sites are different.
Although a large body of past research suggests that autophagy
inhibits strongly aging, it does not reveal the pathways through
which autophagy affects aging and the specific roles played by
various types of autophagy.

Subsequent studies found that deregulation of cellular
mitochondrial content is the common denominator of aging and
numerous pathological conditions (Artal-Sanz and Tavernarakis,
2009; Kaeberlein, 2010). Mitochondria gradually accumulate
with age in wild-type C. elegans, and depletion of autophagy
regulators may be the main reason for this phenomenon
(Palikaras et al., 2015). This led to further studies focusing on the
contribution of mitophagy to longevity. When DCT-1 (a putative
ortholog to themammalianNIX/BNIP3) and PINK1 are knocked
down in wild-type strains and long-lived mutants, the lifespan
extension of mutants with moderate mitochondrial dysfunction
or that caused by caloric-restriction is abrogated. Furthermore,
DCT-1 and PINK-1 mutants are substantially more sensitive
to various stressors (Palikaras et al., 2015). Mitophagy-deficient
animals exhibit decreased ATP levels, increased mitochondrial
reactive oxygen species (mROS) production, mitochondrial
membrane depolarization, and increased oxygen consumption,
which are exacerbated under stress (Palikaras et al., 2015).

Cellular senescence is a cell state triggered by stressful insults
and certain physiological processes, characterized by a prolonged
and generally irreversible cell-cycle arrest with secretory features,
macromolecular damage, and altered metabolism (Gorgoulis
et al., 2019). Senescent cells exhibit a powerful secretory activity,
known as the senescence-associated secretory phenotype (SASP),
which can lead to a positive feedback to accelerate cellular
senescence and affect the local microenvironment of cells,
thereby possibly influencing the progression of aging and related
diseases (Zlotorynski, 2020). Although there are some differences
in SASP between different tissues and aging models, the core
components of SASP are mainly pro-inflammatory interleukin-
6 (IL-6), CXC chemokine ligand 8 (CXCL8) and monocyte
chemoattractant protein 1 (MCP1) (Coppe et al., 2008).
Mitochondrial dysfunction will induce cellular senescence and
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FIGURE 3 | SIRT-medidated mitophagy in age-related pathologies.

result in features of aging, including arrested growth and SASP.
There is evidence that mitochondrial dysfunction-induced SASP
differs from many other aging models, due to a lack of SASP-
specific mRNAs encoding IL1B, IL-6 and IL-8, along with high
levels of mRNAs encoding the other SASP factors, such as AREG
and IL-10 (Wiley et al., 2016). This indicates that mitochondrial
dysfunction causes a senescent phenotype that differs from
that caused by other senescence inducers. Similarly, widespread
targeted depletion of mitochondria through mitophagy blocks
the expression of features typical of cellular senescence, such
as the pro-inflammatory and pro-oxidant SASP and changes
in the expression of the cyclin-dependent kinase inhibitors
p16 and p21, while still preserving the cell cycle arrest
(Correia-Melo et al., 2016).

However, the mechanism through which mitochondrial
dysfunction leads to senescence is controversial. Defective
mitophagy can lead to the accumulation of dysfunctional
mitochondria and mROS, which in turn can damage nuclear
DNA, thereby activating a DNA damage response that induces
senescence (Moiseeva et al., 2009; Passos et al., 2010).
However, some experiments indicate that antioxidants which
reduce mitochondrial ROS in mitochondrial dysfunction-
induced senescent cells do not prevent the growth arrest or focal
enhancement of the DNA damage marker 53BP1 (Wiley et al.,
2016). This study suggests that a decrease of the NAD+/NADH
ratio due to mitochondrial dysfunction activates AMPK and
p53, thereby inducing cellular senescence (Wiley et al., 2016).
Dysfunctional mitochondria can also promote senescence and
SASP through the mitochondria-to-nucleus retrograde signaling

pathway. The increase of cytoplasmic chromatin fragments
(CCFs), which are extruded from the nucleus and recognized
by the innate immunity cytosolic-DNA sensing cGAS–STING
pathway in senescent cells, will activate the SASP and pro-
inflammatory genes. Specifically, the cytosolic DNA sensor
CGA generates a second messenger loop GMP-AMP (cGAMP)
that binds and activates the bridging protein STING, which
recognizes CCFs (Vizioli et al., 2020). The cGAS–STING pathway
leads to activation of NF-κB signaling that turns on transcription
of proinflammatory genes (Vizioli et al., 2020). Although the
clearance of mitochondria through mitophagy in senescent cells
did not revert growth arrest, it significantly suppressed CCFs and
the SASP (Vizioli et al., 2020). This suggests that mitochondrial
dysfunction can promote the SASP and inflammation by
activating a signaling pathway that transduces to the nucleus.
Aging is a complex process involving multiple triggers, and there
may be multiple pathways that work together, which will need to
be resolved in the future.

Regulation of Mitophagy During Aging by Sirtuins
The role and function of the sirtuin family in aging has
much in common with the function of mitophagy in aging,
and sirtuins can positively or negatively regulate mitophagy
throughmultiple pathways. Therefore, it is conceivable that there
are many intersections between these processes and that they
influence each other. For instance, sirtuins induce and maintain
mitophagy, and thus regulate mitochondrial homeostasis to
mitigate the aging phenotype.
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In a study of cardiac aging, the aging process was found to
disrupt mitophagy and mitochondrial integrity, as evidenced by
decreased levels of beclin-1, Atg7, LC3B, BNIP3, PINK1, Parkin,
UCP-2, and PGC-1α activity, increased phosphorylation of AKT
and the nuclear transcriptional factor FOXO1, as well as the
increased acetylation of FOXO1 (Ren et al., 2017). Importantly,
Akt2 ablation prolonged the lifespan and alleviated aging-
induced unfavorable changes of myocardial function. Rapamycin
and the SIRT1 activator SRT1720 improved aging-induced
contractile dysfunction and mitophagy of cardiomyocytes, the
effects of which were reversed by Akt2 activation (Ren et al.,
2017). This indicates that Akt2 ablation protects against cardiac
aging by restoring SIRT1 and FOXO1-related mitophagy and
mitochondrial integrity. However, recent experiment suggests
that aging upregulates sirtuin levels in skeletal and cardiac
muscle, but enhances protein acetylation (Yeo et al., 2020). These
inconsistencies may reflect differences between species, organs,
and methods used. As aging activates PARP1 and CD38, both
enzymes compete with sirtuin for NAD+, resulting in aging
muscles showing significant signs of mitophagy dysfunction,
mitochondrial dysfunction and oxidative stress (Yeo et al., 2020).

Another experiment found significantly lower levels of
SIRT3 expression in the myocardium of aged mice. The
myocardium of SIRT3 knockout mice exhibited significant aging
characteristics, including mitochondrial protein dysfunction,
enhanced oxidative stress and energy metabolism dysfunction (Li
et al., 2018b). The levels of senescence marker genes p16 and
p53 were upregulated by about 80 and 140%, while both the β-
galactosidase+ cell ratio and lipofuscin content were increased by
about 50%. SIRT3 deficiency increased the level of P53 acetylation
and affected Parkin-mediated mitophagy through increased p53-
Parkin binding. Importantly, therapeutic activation of SIRT3
and improvement of mitochondrial function may alleviate the
symptoms of cardiac aging (Li et al., 2018b).

Resveratrol, a polyphenolic antioxidant and sirtuin activator,
exerts a cardioprotective anti-aging effect through the activation
of SIRT1/3-Parkin-mediated mitophagy (Das et al., 2014).
Resveratrol also reduces aging in other tissues. In adipose tissue,
targeted activation of SIRT3 by epigallocatechin gallate (EGCG)
and resveratrol significantly reduced IL-6 secretion, regulated
ROS through different pathways, and ultimately delayed
cellular senescence and senescence-induced inflammatory
processes (Lilja et al., 2020). Similarly, advanced glycation end
products (AGEs) significantly aggravated the senescence of
bone marrow mesenchymal stem cells (BMSCs), while also
inhibiting mitophagy and promoting mitochondrial dysfunction.
Importantly, SIRT3 silencing may further strengthen this effect
(Guo et al., 2021). Subsequently, overexpression of SIRT3 by
intravenous injection of a recombinant adeno-associated virus
9 carrying SIRT3 plasmids to improve mitophagy significantly
alleviated BMSC senescence (Guo et al., 2021). Sirtuin-mediated
mitophagy also plays an important role in the aging of many
other organs and tissues, such as I/R injury in aged livers (Chun
et al., 2018), renal tubular epithelial cell senescence (Liu et al.,
2020b) and aging-associated neuronal inflammation (Huang
et al., 2019). Targeted therapeutic options are proposed for these
aging and age-related diseases, such as the activation of sirtuins

or the targeting of upstream and downstream molecules. While
specific clinical effectiveness remains to be studied, this research
area offers exciting new directions for extended life span.

Mitophagy in Neurodegenerative Diseases
It is well known that neurodegenerative diseases are closely
related to aging and that dysfunctional mitochondria also
accumulate in aging and neurodegenerative diseases. This
implies that mitochondria play an important role in maintaining
neuronal functional homeostasis and the progression of age-
related neurodegenerative diseases. Mitochondrial dysfunction
due to impaired mitophagy leads to ROS accumulation
and elevated cytoplasmic calcium levels, which may trigger
apoptotic and necrotic cell death cascades, leading to
cellular stress and eventually to neurodegeneration (Rugarli
and Langer, 2012; Huang et al., 2022). To date, multiple
studies have linked mitochondrial dysfunction to age-related
neurodegenerative diseases, such as Alzheimer’s, Parkinson’s and
Huntington’s disease.

Alzheimer’s disease (AD) is one of the most common
neurodegenerative diseases, and it is characterized by cognitive
dysfunction and memory loss as the main symptoms. Currently
recognized pathological hallmarks include extracellular deposits
of Aβ and intraneuronal accumulation of hyperphosphorylated
Tau protein, which can promote mitochondrial defects.
Conversely, mitochondrial dysfunction may contribute to the
pathologies related to Aβ and hyperphosphorylated Tau (p-tau)
(Kerr et al., 2017). In an APP/PS1mouse model, this vicious cycle
can be broken by activatingmitophagy. Mitophagy activation can
not only diminish Aβ1–42 and Aβ1–40 and prevent cognitive
impairment through microglial phagocytosis of extracellular Aβ

plaques, but also abolishes Tau hyperphosphorylation in human
neuronal cells and prevents memory impairment in transgenic
tau nematodes and mice (Fang et al., 2019). However, it is still
unclear if mitophagy is a cause or a consequence of Aβ and
Tau, with questions remaining as to the chronological order of
their occurrence in AD models. Interestingly, physical exercise
significantly alters the NAD+/NADH ratio, activating mitophagy
through the SIRT1-PINK1/Parkin pathway, thereby attenuating
mitochondrial dysfunction and Aβ-induced cognitive decline
in AD animal models (Zhao et al., 2021b). While it cannot be
excluded that physical exercise may act on AD through pathways
other than the mitophagy pathway, these results suggest a new
mechanism through which exercise can be good for the body.

Other member of the sirtuin family, such as SIRT2, also
exacerbates AD through attenuating mitophagy which leads to
the accumulation of Aβ and dysfunctional mitochondria. In
cells containing mtDNA from AD patients, it was found that
elevated SIRT2 levels, loss of mitochondrial membrane potential
and impaired mitophagy processes. SIRT2 loss of function
recovers microtubule stabilization and improves mitophagy,
thereby eliminating toxic Aβ oligomers and increasing cell
survival (Silva et al., 2017). Importantly, a recent study found
that mitochondrial debris released from microglia can trigger
the A1 astrocytic response, resulting in the propagation of
the inflammatory response and neuronal cell death, linking
dysfunctional mitochondria and glial cells in the brain and
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suggesting a potential new intervention for neurodegeneration
(Joshi et al., 2019). Interestingly, a recent ad study showed
that Honokiol (HKL, an extract from bark of Magnolia) can
improve the activity of SIRT3 and improve the synaptic damage,
mitophagy and mitochondrial dysfunction of hippocampal
neurons in a SIRT3 dependent manner, thus exerting anti-AD
effect (Hou et al., 2022).

Factors in the development of Parkinson’s disease (PD)
include mainly genetic and environmental factors, and aging is
one of the major risk factors. Genetic risk is usually divided
into 1) 5% of cases are familial Parkinson’s disease, carrying
heritable, disease-related single gene mutations (such as Parkin,
PINK and α-synuclein) and 2) 95% of cases are sporadic
Parkinson’s disease, with more common but less effective
genetic variants, often acting as one of the risk factors in
combination with multiple factors such as the environment
(Subramaniam and Chesselet, 2013; Barazzuol et al., 2020;
Blauwendraat et al., 2020). Previous studies have found that
familial Parkinson’s disease may be associated with mutations in
the PINK1 and Parkin genes (Subramaniam and Chesselet, 2013).
The PINK1/Parkin axis plays a significant role in the removal
of dysfunctional mitochondria, which implies that mitophagy
plays a non-negligible role in PD. Some studies suggest that
USP30, a deubiquitinase localized to mitochondria, inhibits
mitophagy mediated by protein kinase PINK1 and the ubiquitin
ligase Parkin. Thus, USP30 deficiency activates PINK1/Parkin-
mediated mitophagy to protect against motor disabilities,
ameliorate defects in dopamine levels and enhance survival upon
oxidative stress in PDmodels (Bingol et al., 2014). Mitochondrial
dysfunction was also found to be associated with neuronal
inflammation, while mitochondria-induced neuronal death has
been reported as evidence of ongoing neurodegenerative disease
(Huang et al., 2019). Parkin-mediatedmitophagy can be activated
by mitochondria acid 5 (MA-5) to attenuate neuroinflammation
by reducing mitochondrial damage and promoting cell survival
(Huang et al., 2019).

Huntington’s disease (HD) is also a neurodegenerative disease
with similar features, such as progressive neuronal loss and the
presence of pathogenic forms of misfolded protein aggregates
(mutant huntingtin mHTT) (Sonsky et al., 2021). The HD
model is characterized by a large number of dysfunctional
mitochondria. Altered expression of Sirtuins is found in
HD models and affects mitochondrial dynamics (including
mitophagy) (Neo and Tang, 2018; Franco-Iborra et al., 2021; Naia
et al., 2021; Sonsky et al., 2021). Overexpression of SIRT1 and
SIRT3 promotes antioxidant effects in HD cells and deacetylates
PGC-1α and FOXO3, thereby enhancingmitochondrial function,
biogenesis, and mitophagy (Manjula et al., 2020; Naia et al.,
2021). Moreover, mHTT can inhibit multiple steps of the process
of mitophagy, such as ULK1 activation, mitophagy receptor
recruitment, and LC3-mitophagy receptor interactions (Franco-
Iborra et al., 2021).

Mitophagy also seems to play a role in other less prevalent
neurodegenerative diseases, such as amyotrophic lateral sclerosis
(ALS). Mitophagy adapter OPTN is phosphorylated by TBK1,
which enhances the binding affinity between ubiquitin chain
and Atg8 family proteins and promotes the recruitment of

isolation membrane to mitochondria. The loss of function of
OPTN and TBK1 (ALS gene mutation site) will lead to the
impairment of mitochondrial phagocytosis and the accumulation
of damagedmitochondria (Evans and Holzbaur, 2019). Although
the specific mechanism is not clear, it is interesting to be a
potential therapeutic target for ALS.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Since sirtuins were found to extend the lifespan of Saccharomyces
cerevisiae and Caenorhabditis elegans, the mechanism of sirtuin
lifespan extension and whether it can extend the lifespan of other
species has been actively studied. With increasing research in
the last 5 years, sirtuins are increasingly recognized as being
critical for regulating mitophagy and maintaining mitochondrial
homeostasis. Taken together, the sirtuin family can activate
or inhibit mitophagy through multiple pathways, for instance
deacetylation of PGC-1α and FOXO1/3 and reduction of ROS,
thereby affecting aging and age-related diseases. By targeting
these pathways, it may be possible to delay aging.

A consensus has now emerged from many studies
of sirtuin activators that sirtuins mediated aspects of
caloric restriction (Canto and Auwerx, 2009). Sirtuin
activators can modulate aging and age-related diseases
by activating a variety of sirtuin-induced biological
functions, and have demonstrated significant aging delay
and disease mitigation in experimental models (Table 2).
Excitingly, some sirtuin activators are already in clinical
trials. For example, resveratrol acts in neurological
diseases (NCT02621554, NCT02336633, NCT00678431),
SRT2104 in inflammation (NCT01453491, NCT01154101),
and nicotinamide riboside in the cardiovascular system
(NCT02678611). Furthermore, decreased NAD+ levels during
aging reduce sirtuin activity, which may contribute to the
aging process.

However, there are still many unresolved issues. First,
while there is substantial evidence implicating sirtuins in
delayed aging and suppression of the aging phenotype through
activation of mitophagy, there are few experiments directly
demonstrating this pathway. Secondly, the effects of different
sirtuin family members on mitophagy and the mechanisms of
sirtuin-induced mitophagy in aging remain poorly understood.
Sirtuin family members are redundant in regulating lifespan
and whether other enzyme activities (excluding acetylation
activity) are involved in the aging process. Thirdly, sirtuin in
different tissues seems to have different effects. The specificity
of sirtuin-induced mitophagy for different aging tissues and
age-related diseases also merits further investigation. Fourthly,
cancer cells often use mitophagy to maintain their metabolic
reprogramming and growth. This is a negative effect of sirtuin-
mediated mitophagy. This raises the question that whether
activation of mitophagy promotes the growth of cancer cells.
Fifthly, it is still unclear about the pharmacokinetics and
pharmacodynamics of SIRT activator NAD+ precursors and the
mechanism of their transport through cell membranes into the
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TABLE 2 | The modifiers of sirtuins.

Sirtuin activators Sirtuin effect Experimental setting References

NAD+ Activates SIRT1-7 Pre-clinical and clinical Bonkowski and Sinclair, 2016; Zhao

et al., 2021a

Nicotinamide riboside NAD+ precursor Activates SIRT1-7 Pre-clinical and clinical Fang et al., 2016

SRT1720 Synthetic Activates SIRT1 Clinical Ren et al., 2017

SRT2104 Synthetic Activates SIRT1 Clinical Mercken et al., 2014

Resveratrol Natural extracts Activates SIRT1

and SIRT3

Pre-clinical and clinical Price et al., 2012; Das et al., 2014

Irisin Protein Activates SIRT3 Pre-clinical Wang et al., 2020a

Quercetin Natural extracts Activates SIRT1 Clinical Liu et al., 2020b; Chang et al.,

2021b

17b-E2 Increased SIRT1 expression Pre-clinical Mei et al., 2020

UBCS039 Activates SIRT6 Pre-clinical You et al., 2017

Sirtuin inhibitors

Nicotinamide Inhibits SIRT1 Pre-clinical and clinical Bonkowski and Sinclair, 2016

Melatonin Reduced SIRT1 expression Pre-clinical and clinical
Yi et al., 2020

Ex-527 Inhibits SIRT1 Pre-clinical Gertz et al., 2013

AK-1 Inhibits SIRT2 Pre-clinical Cheon et al., 2015

AK-7 Inhibits SIRT2 Pre-clinical Chen et al., 2015

AGK2 Inhibits SIRT2 Pre-clinical Outeiro et al., 2007

blood and cells. Hopefully, these questions will be addressed
in the future and provide a clearer direction for delaying
human aging.
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