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A B S T R A C T

Background: Alopecia areata (AA) commonly displays as non-scarring, irregular hair loss. Experimental and 
clinical research have specifically implicated autoimmunity and genetics in the disruption of anagen hair folli-
cles. AA patients’ scalp lesions and peripheral blood mononuclear cells (PBMCs) exhibited an immune state 
imbalance. Numerous studies attempt to establish a connection between the occurrence and prognosis of AA and 
the epigenetic modulation of gene expression by long noncoding RNA (lncRNA) and microRNA (miRNA). The 
current study aimed to examine the serum levels of nuclear enriched abundant transcript 1 (NEAT1) and its 
target miRNA101 (miR-101) in AA and investigate the ability to use them as diagnostic biomarkers in the 
disease.
Methods: Seventy-two AA patients were included in this prospective cohort study. Demographics, patient history, 
laboratory characteristics, and treatments were recorded. The miR-101 and NEAT1 levels were evaluated.
Results: Serum NEAT1 levels were lower in AA patients, but there was no significant difference. However, there 
was no substantial disparity in NEAT1 level regarding other disease characteristics. There was a substantial 
positive association between NEAT1 and miR-101 levels among cases. On the other hand, the results showed a 
markedly low mean of miR-101 levels among patients, but the miR-101 marker shows no significant difference 
regarding different disease characteristics. The specificity and sensitivity test for the miR-101 marker shows a 
significant specificity of 60 % and sensitivity of 75 % with a p-value of 0.001 and a cut-off value of 0.897.
Conclusions: The current research determined that miR-101 works as a diagnostic biomarker for AA.

1. Introduction

Alopecia areata (AA) typically manifests as non-scarring, sporadic 
hair loss [1]. Alopecia universalis, alopecia totalis, or ophiasis hair loss 
are characteristics of severe forms of alopecia [2,3]. The global inci-
dence of AA varies from 0.1 % to 0.2 %. Approximately 1.7 % of the 

entire population is at risk of developing autoimmune disorders as AA 
throughout their lifetime [4]. AA is linked to a higher risk of mental 
health issues and cardiovascular disorders, in addition to its obvious 
cosmetic effects [5]. Experimental and clinical investigations have 
implicated autoimmunity and genetics, specifically concerning the 
destruction of anagen hair follicles [6,7]. AA patients’ scalp lesions and 
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peripheral blood mononuclear cells (PBMCs) exhibited an immune state 
imbalance [8]. Moreover, AA is a complex genetic autoimmune cuta-
neous condition for which its molecular foundation is unknown [9]. 
Immunological homeostasis is modulated by regulatory T cells (Treg), 
which avert autoimmune disorders. The control of Treg activity is 
intricate, and a number of non-coding RNAs (ncRNAs), apart from 
transcription factors, cytokines, and receptors, have been demonstrated 
to impact T cell development and functionality [10]. Though the aeti-
ology of AA is complicated, dysregulation of Th1, Th2, and Th17 cyto-
kines has been documented. Investigations have revealed varying 
relationships for several of these cytokines [11].

Noncoding RNAs (ncRNAs), including lncRNAs (>200 nucleotides) 
and small ncRNAs like miRNAs (~20 nucleotides), serve an essential 
role in the control of diverse physiological processes [12]. In addition, 
ncRNAs can operate as natural miRNA sponges or competing endoge-
nous RNAs (ceRNAs); they interact and modulate one another by bat-
tling for attachment to shared microRNAs [13,14]. Numerous pieces of 
research have demonstrated that these ncRNAs are abnormally 
expressed and are essential in controlling numerous multigenetic dis-
orders in humans, such as neurological conditions, malignancies, and 
autoimmune disorders [15–17]. Several studies demonstrated that the 
PBMCs of individuals with autoimmune conditions like myasthenia 
gravis and systemic lupus erythematosus (SLE) displayed altered ex-
pressions of lncRNAs that can serve as diagnostic biomarkers [18–20]. A 
recent study uncovered that one thousand lncRNAs throughout hair 
follicle growth are differentially expressed in dermal papilla cells [21].

Long noncoding RNA nuclear paraspeckle assembly transcript 1 (lnc- 
NEAT1) is thought to regulate autoimmunity and inflammation 
[22–25]. In particular, lnc-NEAT1 can target miR-125a and miR-21 to 
regulate inflammation [22]. In addition, lnc-NEAT1 stimulates 
fibroblast-like synoviocyte proliferation and the creation of inflamma-
tory cytokines in rheumatoid arthritis by regulating miR-204-5p [24]. 
Through regulating exosome-mediated macrophage polarization, 
lnc-NEAT1 modifies the inflammatory process in inflammatory bowel 
disorders [26]. Additionally, lnc-NEAT1 is involved in the clinical field 
of autoimmune disorders. For instance, lnc-NEAT1 expression is dysre-
gulated among individuals with SLE relative to healthy individuals [25].

MicroRNAs are a subclass of short non-coding RNAs that are crucial 
for post-transcriptional gene control and have evolved to be conserved 
throughout evolution. It has been reported that a number of miRNAs are 
essential for T cell differentiation, maturation, and activation [27]. 
MiR-101 was additionally identified to play a role in various 
cancer-related biological events, like angiogenesis, drug resistance, 
proliferation, metastasis, apoptosis, and invasion [28]. However, 
miR-101 is associated with non-malignant diseases like multiple system 
atrophy (MSA) [29], HBV-associated chronic hepatitis [30], gestational 
diabetes mellitus (GDM) [31], and acute kidney injury (AKI) [32]. The 
implication of miRNAs in AA pathogensis and their influences on in-
flammatory marker release were confirmed by previous reports [33–35]. 
Furthermore, NEAT1 exhibits interaction with miR-101 and suppresses 
its level in multiple cancer cells [36–40].

Recently, biomarkers have gained importance in the pharmaceutical 
discovery process. Identifying biomarkers indicating the degree of 
severity and progression of AA may be utilized to precisely evaluate the 
disease activity and response to therapeutic interventions. Nonetheless, 
this is the first research to assess the serum NEAT1 levels and its target 
miR-101 in AA and determine their diagnostic utility in the disease.

2. Materials and methods

Ethical statement

This work applied the ethical standards of the relevant national and 
institutional committees on human experimentation with the 2008 
revision of the 1975 Helsinki Declaration. The research and scientific 
ethics committee of the Faculty of Medicine at Fayoum University 

approved all procedures involving human subjects or patients [Code: 
R489]. Before taking part in this research, all patients supported written 
informed consent. Strengthening the Reporting of Observational Studies 
in Epidemiology (STROBE) recommendations were carried out in 
creating the ensuing manuscript [41].

2.1. Patient selection and study design

This case-control work involved 72 AA patients. However, the con-
trol group comprised 60 middle-aged, healthy people with no previous 
record of any chronic diseases. They were normal with no complaints; 
their clinical examination and routine labs (CBC, urine, and stool ana-
lyses) were unremarkable. The inclusion and exclusion criteria are 
described as following.

Inclusion criteria Exclusion criteria

1 Patients with AA
2 Patients without receiving any 

systemic medication for at least four 
weeks prior to the investigation 
starting

3 Patients who had not received any 
topical treatment for at least two 
weeks before the research started.

1 Lactating and pregnant females
2 Patients with another autoimmune 

disorder, including pernicious anemia, 
SLE, and Hashimoto thyroiditis

3 Patients with malignancies of the 
hematological and solid types, such as 
leukemia and breast cancer.

2.2. Laboratory investigations

The miR-101 and NEAT1 relative expressions were examined. Ten 
milliliter blood sample was withdrawn using vacutainer equipment. 
Blood specimens have been drawn into tubes containing separator gels. 
After 15 min, the tubes were subjected to centrifugation for 10 min at 
4000×g. Following being separated from whole blood that had coagu-
lated, the serum was stored until it was used to extract RNA at − 80 ◦C 
[42].

2.3. RNA extraction

RNA extraction was conducted using a miRNeasy (Qiagen, Valencia, 
CA, USA) extraction kit with 100 μl of serum sample volume. The re-
action mixture was first provided with 500 ml of QIAzol lysis reagent 
before being left at room temperature (RT) for 5 min. Subsequently, 
chloroform (100 μl) was placed in; however, the mixture was vortexed 
for 15 s and left at RT for 2–3 min. Subsequently, centrifugation was 
carried out at 12,000×g and 4 ◦C for 15 min. Then, 100 % ethanol (1.5 
times) was inserted in the tube after removing the top aqueous phase. 
Each 700 μl of this mixture was centrifuged at 8000 g for 15 s at RT in a 
2 ml gathering vial on an RNeasy Mini spin column. After transferring 
the mixture throughout each column, 700 μl of buffer RW1 was incor-
porated, and the mixture was centrifuged at 8000×g for 15 s at RT. The 
column was then centrifuged at RT and 8000×g for 15 s after intro-
ducing 500 μl of buffer RPE. The column was transferred into a new 1.5- 
mL collecting tube and subjected to centrifugation for 2 min at 8000×g. 
The RNA was subsequently eluted by directly pipetting RNase-free water 
(50 μl) onto the column and centrifuging it at 8000×g for 1 min. After 
the sample was extracted, any residual DNA was removed using DNase, 
and then the DNase Max Kit was utilized (Qiagen, Valencia, CA, USA) to 
reverse-transcribe it into cDNA. The RNA was measured using a Nano-
Drop 2000 (Thermo Scientific, Waltham, MA, USA) spectrophotometer 
at 260/280 nm.

2.4. Reverse transcription

RNA (1 μg) was reverse transcribed using a high-capacity cDNA 
reverse transcription (Applied Biosystems, Foster City, CA, USA) kit, as 
directed by the manufacturer (incubated for 60 min at 37 ◦C, for 5 min at 
95 ◦C, and then preserved at 4 ◦C).
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2.5. The ncRNA expression by quantitative real-time PCR (qPCR)

Primers and Qiagen’s miScript SYBR Green PCR kit were employed 
for qPCR. The levels of miR-101 gene expression were measured using 
an internal control, C/D box snoRNA (SNORD 68) [43]. In previous 
research, the use of GAPDH as an internal control for serum lncRNA has 
been employed [44]. Predesigned primers for NEAT1 were obtained 
from Qiagen, Valencia, CA, USA (Accession No: NR_028272.1, Cata-
logue No: 330,701 LPH15809A). The primer sequences of GAPDH are 
reverse: 5′-TGGAAGATGGTGATGGGATT-3′ and forward: 
5′-CCCTTCATTGACCTCAACTA-3′. The primers for MiR-101 (Catalogue 
No.YP00204536) and SNORD 68 (Catalogue No. 33712) were obtained 
from Qiagen, Germany.

The PCR cycling conditions protocol was followed: 10 min at 95 ◦C, 
40 cycles at 95 ◦C for 15 s, and 60 ◦C for 60 s. The procedure used the 
Rotor-Gene Q System on a 20-μl reaction mixture (Qiagen). Using the 
cycle threshold (Ct) method, endogenous control of the target genes was 
assessed. The ΔCt of microRNAs was determined by deducting the Ct 
values of SNORD 68 from miR-101. By deducting the GAPDH Ct values 
from the lnc-NEAT1 Ct values, the ΔCt of lncRNAs was determined.

The miR-101 expression levels were determined via equation 
(2)− ΔΔCt [45]. Fold changes for the control were assigned to 1. A fold 
change of less than one indicated down-regulation, whereas a fold 
change greater than one indicated up-regulation [46].

2.6. Statistical analysis

The process of data collection and coding was conducted in order to 
facilitate the handling and evaluation of the data. The data was entered 
twice into Microsoft Access. Data analysis was carried out employing the 
Statistical Package for Social Science (SPSS) software version 22 on 
Windows 7 (SPSS Inc., Chicago, IL, USA). Simple descriptive analyses 
use the arithmetic mean as a measurement of central tendency, per-
centages, and numbers for qualitative data, and standard deviations as a 
measurement of dispersion for quantitative parametric data. The inquiry 
involved quantitative data analysis, which was assessed for normality 
using the one-sample Kolmogorov-Smirnov test. Subsequently, suitable 
inferential statistical tests were chosen. For quantitative, non- 
parametric data, to compare two independent groups, the Mann- 
Whitney test was used. For quantitative parametric data, a t-test is 
employed for comparing quantitative measures between two indepen-
dent groups. Sensitivity and specificity tests were used for evaluating 
novel test with ROC (Receiver Operating Characteristics) curve. Bivar-
iate Pearson correlation test to test the correlation among variables. A p- 
value below 0.05 was deemed significant.

3. Result

3.1. Demographic and disease character in different study groups

Our results showed no significant difference in sex and age between 
groups with a p-value over 0.05. Among alopecia cases, 61.1 % show 
gradual onset of disease; however, in 80.6 % of cases, the onset time was 
late, with the mean number of attacks (1 ± 0.8) ranged between (1 and 
5) attacks, 63.9 % of them treated with steroids. All cases showed a 
progressive course, complaint stress, and showed no associated disease 
or manifestations.

For clinical findings, among alopecia cases, 69.4 % showed one 
patch, and 16.7 % of cases had an affected beard. The mean extent 
percentage is 6.64 ± 18.6. All cases lack afflicted eyebrows, eyelashes, 
fingernails, or body hair. Moreover, all cases lack white hair (Tables 1 
and 2).

3.2. Comparisons of NEAT1 and miR-101 markers fold change between 
cases and controls

Table 3 demonstrates that the mean levels of fold change of miR-101 
are significantly low, with a p-value below 0.05 among cases with 
negligible disparities in NEAT1 level between groups (Fig. 1).

3.3. Expression levels of NEAT1 and miR-101 in different disease 
characteristics among cases

Female cases showed a lower mean NEAT1 level in comparison to 
male patients (p-value = 0.003). In addition, patchy variants had a 
lower level of NEAT1 than the totalis type, but without significant dif-
ference. Further, there was no marked distinction in the NEAT1 level 
regarding other disease characteristics. The miR-101 marker showed no 
significant difference as regards different disease characteristics among 
cases (Table 4).

3.4. Correlation between NEAT1 and miR-101 fold change and study 
variables

The NEAT1 level positively correlates with the number of attacks and 
the level of miR-101 among cases. Furthermore, miR-101 shows no 
marked correlation with the patient’s age, number of attacks, or lesion 
extent, p-value >0.05 (Table 5).

Table 1 
Comparisons of demographic characters.

Variables Cases (N = 72) Control (N = 60) p-value

Age (years) 29.1 10.6 31.9 8.6 0.09
Sex
Female 52 72.2 % 37 61.7 % 0.3
Male 20 27.8 % 23 38.3 %

Table 2 
Frequency of various clinical results between study participants.

Variables (n = 72) Clinical data

Number %

Scalp lesion
One patch 50 69.4 %
Two patches 6 8.3 %
Three patches 6 8.3 %
Four patches 6 8.3 %
Frontal, vertex, bitemporal, occipital, marginal 2 2.8 %
Totalis 2 2.8%
Beard
None 60 83.3 %
Affected 12 16.7 %
Other non-affected areas
Eyebrow (non-affected) 72 100 %
Eyelashes (non-affected) 72 100 %
Nail (non-affected) 72 100 %
White hairs (non-affected) 72 100 %
Body (non-affected) 72 100 %

Mean ± SD Median/Range

Extent of lesion (%) 6.64 ± 18.6 20 (1–100)

Table 3 
Comparisons of NEAT1 and miR-101 markers fold change.

Variables Cases (n = 72) Control (n = 60) p-value

Median 
of fold change

IQR Median 
of fold change

IQR

NEAT1 0.884 2.79 0.96 0.06 0.70
miR-101 0.754 0.962 0.915 0.11 0.001*
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3.5. Predictive power of miR-101 and NEAT1 in AA patients

The sensitivity and specificity test for the miR-101 marker shows a 
significant specificity of 60 % and sensitivity of 75 % at a cut-off of 0.897 
and p-value of 0.001. On the other hand, NEAT1 levels show no sig-
nificant sensitivity to differentiate between cases and controls, with a p- 
value of 0.07 (Fig. 2).

4. Discussion

AA is a widespread issue that impacts nearly all age groups. It is 
thought to be a source of concern, particularly in women, for psycho-
logical or cosmetic purposes. AA is a prevalent, progressive condition 
linked to hair follicle cycle abnormalities. Various mechanisms precisely 
regulate the regression (catagen), rest (telogen), and cyclic phases of 
hair growth (anagen) in hair follicles [47]. Since the precise processes 
driving AA and successful targets for therapy are not known, patients 
with hair loss currently have limited treatment options [48]. The 

majority of current medical approaches are palliative, necessitating 
improvements in AA diagnosis and clinical therapy. Nonetheless, the 
precise mechanism related to hair follicle cycling involving microRNAs 
and noncoding RNAs remains obscure. Non-coding RNAs, or ncRNAs, 
are found all over the human genome. Non-coding RNAs (ncRNAs) are 
important modulators of numerous biological activities, including cell 
division, the cell cycle, death, and epigenetic modification [49]. The 
current work aimed to examine the serum NEAT1 and miR-101 levels in 
AA patients and determine their correlation with the degree of severity. 
To the best of our knowledge, this was the first study to investigate the 
levels of NEAT1 in patients with alopecia areata.

Serum levels of NEAT1 were lower in patients with AA, but there was 
a substantial disparity between the patient group and healthy controls. 
There was no marked disparity in NEAT1 levels regarding other disease 
characteristics. The NEAT1 level shows a positive association with the 
miR-101 level among cases. In contrast, NEAT1 levels demonstrate no 
significant sensitivity to distinguish between cases and controls. In 
agreement with our results, Ding and coworkers reported a reduction in 
NEAT1 expression; however, there was no substantial disparity in 
androgenetic alopecia. Moreover, they hypothesized that lncRNA 
NEAT1 absorbs 10 miRNAs, indicating a possible role for lncRNA NEAT1 
in epidermal cell proliferation. They identified six ceRNA networks 
involved in the hair follicle cycle: Neat1/Tug1-miR-22-3p-Cdkn1a, 
Neat1-miR-27a-3p-Plk2, Neat1-miR-27b-3p-Gspt1, Neat1-miR-30a/ 
e− 5p/miR-146a-5p-Notch1, Neat1-miR-126a-3p-Slc7a5, and Neat1/ 
Tug1-miR-148a-3p-Gadd45a/Mafb/Mitf [47]. Additionally, NEAT1 is 
linked to cutaneous tumorigenesis [50].

Our findings revealed a significantly low mean miR-101 concentra-
tion among cases, but the miR-101 marker shows no significant differ-
ence regarding different disease characteristics. Specificity and 
sensitivity tests for the miR-101 marker show a significant specificity of 
60 % and a sensitivity of 75 % at a cut-off value of 0.897 p-value of 
0.001.

In accordance with our findings, numerous studies have linked miR- 
101 to autoimmune diseases. Particularly, Yang et al. discovered that 
miR-101 influences inflammatory marker release like IFN, IL-10, TNF-α, 
and IL-1 in SLE through the control of the MAPK pathways [34], as 
inhibiting p38 MAPK activation lowers IL-6 and IFN-γ in SLE [35].

In addition, Wang and colleagues discovered that the IL-1b level in 
non-small-cell lung cancer (NSCLC) is significantly elevated. IL-1b 
inhibited miR-101 expression and induced a rise in its target gene 
levels, Lin28B, a suppressor of the tumor-suppressive let-7 family of 
microRNAs. NSCLC cell proliferation and migration were stimulated by 

Fig. 1. Box plot for NEAT1 and miR-101 fold change in AA patients compared 
to controls.

Table 4 
Comparisons of NEAT1 and miR-101 fold change in different disease charac-
teristics among cases.

Variables NEAT1 miR-101

Median IQR p-value Median IQR p-value

Sex
Male 1.1 2.6 0.003* 0.78 0.84 0.3
Female 0.75 7.3 0.61 0.92
Variant
Patchy 0.59 2.6 0.18 0.42 0.88 0.24
Totalis 1.96 2.01 0.87 0.01

Table 5 
Correlation between NEAT1 and miR-101 markers and study variables.

Variables NEAT1 miR-101

r p-value r p-value

Age (years) *0.023 0.8 0.12 0.17
Number of attacks 0.30 0.01* 0.16 0.2
Extent of lesion (%) 0.15 0.2 0.19 0.1
miR-101 0.52 0.001* – –

Fig. 2. ROC curve for NEAT1 and miR-101 markers in alopecia cases diagnosis.
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the IL-1b/miR-101/Lin28B pathway, which is dependent on 
cyclooxygenase-2 (COX-2) activity. This signaling connects inflamma-
tion signaling to NSCLC cancer cell migration and proliferation and thus 
could partially clarify inflammation-induced tumorigenesis. Additional 
investigations are required to figure out the precise pathway through 
which miR-101 could influence the pathogenesis of AA [51]. In agree-
ment with our results, Wang and coworkers demonstrated down-
regulation of the mouse homologs of three miRNAs (mmu-miR-1, 
mmu-miR-101a and mmu-miR-705) predicted to target Icos and 
Cxcl11. The miR-101 family has been reported to facilitate 
Roquin-mediated degradation of ICOS mRNA [52]. Further studies with 
a large sample size are needed to clarify the role of miR-101 and NEAT1 
in AA and their relation to different variants and the prognosis of the 
disease.

5. Conclusion

In summary, this work found that miR-101 possesses the opportunity 
to act as a diagnostic biomarker for AA. The small number of subjects 
that participated in the current investigation presents a limitation. To 
validate the current findings and demonstrate the potential for 
employing them as diagnostic targets in AA, additional investigation is 
needed.
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