
www.aging-us.com 4778 AGING 

INTRODUCTION 
 

Aging of tissue specific resident stem cells is thought to 

contribute to tissue attrition in stem cell based tissues 

both in mice and humans [1–4]. In the murine skin, 

aging-associated phenotypic and histological changes 

include an extended telogen phase of the hair cycle at 

the expense of anagen as well as miniaturization of hair 

follicle structures and loss of hair [5–7]. This loss of 

hair can be attributed to a decline in the function of hair 

follicle stem cells (alpha-6 integrinhighCD34+ cells, 

HFSC) which manifests as a decrease in colony 

formation activity in-vitro [6]. Mechanistically, the 

reduced function of HFSCs upon aging has been so far 

primarily linked to mechanisms extrinsic to HFSCs [8], 

like for example reduced responsiveness of aged  

HFSC to bone morphogenic protein (BMP) and 

NFATc1 signaling [7] or proteolysis of Collagen  

XVII (COL17A1/BP180) which induces terminal 

differentiation of HFSC towards epidermal 

keratinocytes [6]. In general though knowledge on 

HFSC intrinsic aging mechanism are limited, 

precluding rational approaches to target aging of 

HFSCs. Wnt signaling is a critical regulator of HFSCs 

generation and maintenance in young animals [9–12]. In 
the present study, we demonstrate that stem cell 

intrinsic non-canonical Wnt5a signaling drives HFSC 

aging via increasing the activity of the small 
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ABSTRACT 
 

Normal hair growth occurs in cycles, comprising growth (anagen), cessation (catagen) and rest (telogen). Upon 
aging, the initiation of anagen is significantly delayed, which results in impaired hair regeneration. Hair 
regeneration is driven by hair follicle stem cells (HFSCs). We show here that aged HFSCs present with a decrease 
in canonical Wnt signaling and a shift towards non-canonical Wnt5a driven signaling which antagonizes 
canonical Wnt signaling. Elevated expression of Wnt5a in HFSCs upon aging results in elevated activity of the 
small RhoGTPase Cdc42 as well as a change in the spatial distribution of Cdc42 within HFSCs. Treatment of aged 
HFSC with a specific pharmacological inhibitor of Cdc42 activity termed CASIN to suppress the aging-associated 
elevated activity of Cdc42 restored canonical Wnt signaling in aged HFSCs. Treatment of aged mice in vivo with 
CASIN induced anagen onset and increased the percentage of anagen skin areas. Aging-associated functional 
deficits of HFSCs are at least in part intrinsic to HFSCs and can be restored by rational pharmacological 
approaches. 
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RhoGTPase Cdc42. Wnt5a can induce a premature 

aging like phenotype in young HFSCs. Wnt5a inhibition 

in aged HFSC is able to attenuate aging-associated 

phenotypes of HFSC. Pharmacological inhibition of 

Cdc42 activity with the specific inhibitor CASIN 

enhances canonical Wnt signaling and restores 

youthfulness of aged HSFC. In-vivo treatment with 

CASIN induces early onset of anagen and increases hair 

regrowth in aged mice. 

 

RESULTS 
 

A shift from canonical to non-canonical Wnt 

signaling upon aging in HFSC 

 

Hair growth occurs in a cycle that comprises growth 

(anagen), cessation (catagen) and rest (telogen). We 

compared in our analyses primarily hair follicle from 

day 50 mice and aged mice to identify novel 

mechanisms of aging of HFSC. While the total number 

of telogen hair follicle in the back skin of young mice 

in a “normal” telogen cycle (d-50 mice) [13, 14] and 

old mice (>2 years, aged telogen) was similar [6], 

some of the telogen hair follicle in aged mice were 

miniaturized (Supplementary Figure 1A–1C). We 

further observed more asynchronized hair growth and 

a higher percentage of back skin in anagen 

(characterized by black back skin) in young (day 98, 

week 14) compared to old mice (Supplementary Figure 

1D, 1E). Overall hair follicle structures from the 

telogen area of young and old skin were though very 

similar (Supplementary Figure 1F, lower right panel). 

Aged animals remained for a longer period in telogen 

and anagen was consequently delayed compared to 

anagen duration in young animals (Supplementary 

Figure 1G). 

 

Hair growth in the murine model is driven by a 

population of stem cells that reside in the bulge and in 

the hair germ of the hair follicle. These stem cells are 

termed hair follicle stem cells (HFSCs) with the 

established markers profile of Sca-1-/lowalpha-6 

integrin (A6) highCD34+ [15, 16]. Both young and 

aged animals presented with a similar frequency in 

HFSCs determined by FACS (Supplementary Figure 

1H, 1I) as well as by CD34+ immunostaining of tissue 

sections (Supplementary Figure 1J, 1K). The colony-

forming unit (CFU) activity of sorted aged HFSCs 

was reduced (Supplementary Figure 1L), consistent 

with previously published reports [7]. In summary, 

HFSC function, but not their number, is reduced  

upon aging. 

 

Canonical Wnt/ß-catenin signaling plays a critical role 

for HFSC proliferation and the onset of anagen and thus 

hair growth in young mice. In the absence of ß-catenin, 

HFSC fail to induce anagen and fail to produce 

follicular keratinocytes [9, 10, 17]. As during aging 

initiation of anagen was delayed (Supplementary Figure 

1G), we reasoned that changes in the function of aged 

HFSCs might be linked to changes in Wnt-signaling 

[18]. Indeed, expression of canonical Wnt target genes 

like Axin-2, Lef-1, Lgr-6 and c-Myc was decreased in 

HFSCs upon aging (Figure 1A and Supplementary 

Figure 1M). Upon activation of canonical Wnt 

signaling, ß-catenin stabilizes and translocates to the 

nucleus to initiate transcription of Wnt target genes. 

Quantification of nuclear ß-catenin inside the nucleus 

by 3D quantitative immunofluorescence confocal 

microscopy demonstrated that the nuclear localization 

of ß-catenin was reduced in aged HFSC, but not its 

level of expression (Figure 1B, 1C and Supplementary 

Figure 1N). Aging of hematopoietic stem cells is for 

example by changes in the expression of non-canonical 

Wnt-ligands within the stem cell [19]. We thus tested 

expression of Wnt-ligands in young and aged HFSCs. 

Non-canonical Wnt4 and Wnt7b was decreased while 

expression of Wnt5a was increased in old HFSC (Figure 

1D). While reduced Axin-2 and Wnt4 expression was 

observed in all compartments of the follicular and 

interfollicular basal epidermis of aged mice 

(Supplementary Figure 2C, 2D), increased levels of 

Wnt5a were restricted to the basal (A-6highCD34+) and 

the suprabasal (A-6lowCD34+) compartments of HFSC 

(Supplementary Figure 2E). Among canonical Wnts, 

Wnt10a presented with elevated levels of expression in 

HFSCs upon aging (Figure 1D), while the expression of 

other well characterized ligands like Wnt1, Wnt3, 

Wnt3a was below our detection level in HFSCs (data 

not shown). 

 

Cell division cycle 42 (Cdc42) is a small GTPase of the 

Rho family. It cycles between two conformational 

states; an active, GTP bound and an inactive, GDP 

bound state [20]. Like all GTPases, in the active state, 

Cdc42 can bind distinct effector proteins to then cell-

type specifically activate distinct types of signaling 

pathways [21]. We previously reported an about 2-fold 

increase in the activity of Cdc42 in primitive aged 

hematopoietic cells [22, 23]. Indeed, Cdc42 activity was 

also about 2-fold elevated in an cell population enriched 

for aged HFSC (Sca-1-/low cells) (Figure 1E), while the 

level of Cdc42 itself remained unchanged (Figure 1F, 

1G and Supplementary Figure 1O). Increased Cdc42 

activity induces an apolar distribution of Cdc42 itself as 

well as of tubulin and other polarity proteins in aged 

HSCs [22, 24]. Similar to aged HSCs, aged HFSCs 

presented with a decrease in the percentage of cells 

polar for the distribution of Cdc42, but unlike aged 
HSCs, aged HFSCs did not show an apolar distribution 

of tubulin (Figure 1H, 1I). We also investigated, in 

addition to Cdc42 and tubulin, the distribution of Par6 
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Figure 1. Increased Wnt5a expression in aged HFSC results in a shift from canonical to non-canonical Wnt signaling. (A) 
Expression of target genes of the canonical Wnt pathway in FACS sorted young and old HFSC (Sca-1-/lowA-6highCD34+), N≥3 (B) Z-stacks and 
three-dimensional merged images of ß-catenin (red), nucleus (dapi, blue) and co-localization signal (yellow) in FACS sorted young and old 
HFSC by Immunofluorescence (C) Quantification of the ß-catenin signal in the nucleus of young and old HFSC, N=4 (D) Wnt ligand transcript 
levels in young (D-50) or old (>2years) HFSC, N≥3 (E) ICdc42-activity levels in old Sca-1-/low keratinocyte lysate compared to young Sca-1-/low 
keratinocyte measured by G-LISA, N=4; (F) Cdc42 protein levels in young and old Sca-1-/low keratinocytes (representative Western blot) (G) 
Densitometry score of Cdc42 protein levels from Western blots, N=4 (H) Representative picture of Cdc42 (red) and tubulin (green) in young 
and old HFSC, scale bar = 5µm (I) Percentage of cells with a polar distribution of Cdc42 and tubulin in young and old HFSC, N≥6 (J) 
Representative picture of a non-polar distribution of Cdc42 (red) in young HFSC from Cdc42GAP-/- as compared to HFSC from young wild type 
Cdc42GAP+/+ mice, scale bar=5µm (K) Quantification of polar distribution (percentage) of Cdc42 and tubulin in HFSC from Cdc42GAP+/+ and 
Cdc42GAP-/- mice, N≥3, P<0.05, **P<0.01, ***P<0.001 (paired student’s t test). Error bars represent s.e.m. 
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and Numb that are also polarity proteins and known to 

mark the apicobasal axis of epithelial cells. Par6 

showed a polar distribution in both young and aged 

HFSC, while the frequency of HFSCs polar for Numb 

decreased upon aging (Supplementary Figure 2F–2I). 

The Cdc42GAP protein is a negative regulator of Cdc42 

activity. Cdc42GAP-/- mice present therefore with a 

constitutive increase in the activity of Cdc42 in all 

tissues [25] and display a premature aging like pheno-

type which also includes reduced hair regeneration [25]. 

HFSC from young Cdc42GAP-/- mice were apolar for 

the distribution of Cdc42 (Figure 1J, 1K), 

demonstrating that apolarity of aged HFSC is tightly 

linked to an increased Cdc42 activity in HFSCs, similar 

to what has been previously described for aged HSCs 

[22]. 

 

Wnt5a induces aging of HFSCs 

 

Wnt5a, expressed within primitive hematopoietic cells 

or given exogenously, increases the activity of Cdc42 in 

primitive hematopoietic cells [23, 19]. Aged HFSC 

show elevated levels of expression of Wnt5a (Figure 

1D). We thus tested first whether indeed Wnt5a is also 

able to increase Cdc42 activity in HFSCs. Treatment of 

young HFSCs with Wnt5a (300ng/ml) increased the 

activity of Cdc42 to a level seen in aged HFSCs, 

without affecting the level of Cdc42 itself (Figure 2A–

2C). Young HFSCs treated with Wnt5a presented with a 

reduced frequency of cells polar for Cdc42 (Figure 2D, 

2E), which is consistent with a role of elevated Cdc42 

activity in reducing the frequency of HSCs polar for the 

distribution of polarity proteins [19]. Non-canonical 

Wnts usually antagonizes canonical Wnt signaling [26, 

27]. We therefore tested if Wnt5a inhibits canonical 

Wnt signaling in HFSC. Treatment of young HFSCs 

with Wnt5a decreased the amount of ß-catenin with a 

nuclear localization and the expression of the canonical 

Wnt target gene Axin-2 (Figure 2F–2H). Wnt5a 

treatment further reduced the colony forming activity of 

young HFSC (Figure 2I, 2J). We then reduced Wnt5a 

expression in aged Sca-1-/low keratinocytes by a 

lentiviral knockdown approach (Supplementary Figure 

3A–3C). Reduced expression of Wnt5a in aged cells re-

induced Axin-2 expression (Supplementary Figure 3D) 

and increased the colony forming activity of aged Sca-

1-/low keratinocytes (Figure 2K, 2L and Supplementary 

Figure 3E). These data show that non-canonical Wnt5a-

Cdc42 signaling antagonizes canonical-Wnt signaling in 

aged HFSCs. These data also demonstrate that the 

aging-associated decline in CFU activity can be restored 

to a youthful level by reducing the level of expression 

of Wnt5a in aged HFSCs. This implies that the cell-
intrinsic increase of Wnt5a expression in aged HFSC 

causatively contributes to the decline in function of 

aged HFSCs. 

Pharmacological inhibition of Cdc42 promotes 

anagen and hair regrowth in old mice in vivo 

 

Elevated activity of Cdc42 in aged HSCs causes aging 

of HSCs [22, 28]. We thus tested whether elevated 

levels of activity of Cdc42 seen in HFSCs might be also 

critical for aging of HFSCs. The activity of Cdc42 can 

be specifically inhibited by CASIN (Cdc42 activity 

specific inhibitor) [29, 30]. Treatment of aged Sca-1-

/low keratinocytes with 10µM of CASIN resulted in a 

reduction of Cdc42 activity to the level seen in young 

HFSCs (Figure 3A), without affecting the level of total 

Cdc42 (Figure 3B, 3C). Aged HFSCs treated with 

CASIN presented with a youthful percentage of HFSCs 

polar for the distribution of Cdc42 as well as Numb 

(Figure 3D, 3E and Supplementary Figure 4A, 4B). 

Aged CASIN treated HFSCs also presented with an 

increase in the nuclear localization of ß-catenin and 

with elevated expression of Axin-2 (Figure 3F–3H). A 

youthful level of Cdc42 activity in chronologically aged 

HFSCs restores a youthful level of cell polarity and 

canonical Wnt signaling in aged HFSCs. 

 

Canonical Wnt signaling is critical for the onset of 

anagen in HFSCs (24). As inhibition of Cdc42 activity 

via CASIN was able to increase canonical Wnt 

signaling in aged HFSCs in vitro, we finally tested 

whether inhibition of Cdc42 activity via CASIN in vivo 

[9, 11, 29] might also restore anagen onset in aged skin 

in vivo. To this end, aged mice were given CASIN twice 

a day for 5 days (Figure 4A). The level of hair growth 

was subsequently determined for up to 30 days post 

treatment (Figure 4B). Anagen onset in CASIN treated 

aged animals was analyzed by HE staining of the black 

area of the back skin (Figure 4C). Anagen areas (black 

patches) were about 3-fold more frequent in CASIN 

treated aged mice in comparison to untreated controls 

(Figure 4D). In addition, the duration of telogen in aged 

CASIN treated animals was reset to the duration of 

telogen in young (D-50) mice (Figure 4E). In summary, 

CASIN, when provided in vivo, enhanced anagen onset 

in the skin of aged mice to allow for growth of  

novel hair. 
 

DISCUSSION 
 

We report an increase in the activity of the small 

RhoGTPase Cdc42 in aged HFSCs, driven by an intrinsic 

increase in Wnt5a in HFSCs Figure 5. This negatively 

impacts HFSC function, likely by antagonizing 

canonical-Wnt signaling. Overexpression of Wnt5a in 

mice has been reported to cause an extended telogen 

period, a decrease in beta catenin/TCF reporter activity 
and loss of hair due to inhibiting of the second and third 

wave of hair follicle formation [31–33], which are 

phenotypes consistent with aging. Our data do not 
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Figure 2. Wnt5a regulates Cdc42 activity and induces an old like phenotype in young HFSCs. (A) Cdc42 activity measured using G-

LISA kit in lysate of young Sca-1-/low keratinocyte after Wnt5a treatment for 2 hours, N=4 (B) Representative Western blot on total Cdc42 
protein levels in Wnt5a treated young Sca-1-/low keratinocytes (C) densitometric score of western blot results for total Cdc42 in young Sca-1-

/low keratinocyte after 2 hours of Wnt5a treatment N=3 (D) Cdc42 (red) and tubulin (green) distribution in young and old HFSC with or without 
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Wnt5a treatment for 2 hours scale, immunofluorescence, scale bar=5µm (E) Percentage of cells polar for the distribution of Cdc42 and 
tubulin in young and old HFSC after Wnt5a treatment for 2 hours, N≥3 (F) Z-stacks and three-dimensional merged images of ß-catenin(red), 
nucleus (dapi, blue) and their co-localization (yellow) in FACS sorted young and old HFSC by immunofluoresence (G) Quantification of the ß-
catenin signal in the nucleus and cytoplasm of young, old and Wnt5a treated HFSCs, N=3 (H) Expression levels of Axin-2 in young HFSC after 
Wnt5a treatment, N=3 (I) Morphology of colonies formed by young HFSCs after Wnt5a treatment (J) Number of colony forming units in 
young, aged and Wnt5a treated HFSCs, N=3 (K) Morphology of colonies formed by old Sca-1-/low keratinocytes transduced (green) with non-
targeted scrambled (NT-GFP+) and targeted Wnt5a knock down (Wnt5aKD-GFP+) sh-RNA (L) Number of colony forming units in old Sca-1-
/low keratinocyte transduced (green) with non-targeted scrambled (NT-GFP+) and targeted Wnt5a knock-down (Wnt5aKD-GFP+) sh-RNA, 
N=3, *P<0.05, **P<0.01, ***P<0.001 (paired student’s t test). Error bars represent s.e.m. 

 

 
 

Figure 3. Inhibition of Cdc42 activity with CASIN induces a young like phenotype in old HFSCs and re-establishes canonical 
Wnt Signaling. (A) Cdc42 activity measured by a G-LISA in lysate of old Sca-1-/low keratinocyte cultured for 2 hours with the Cdc42 activity 
inhibitor CASIN, N=4 (B) Representative Cdc42 protein level in young, old and CASIN treated old Sca-1-/low keratinocytes by Western Blot (C) 
Densitometric score for the amount of Cdc42 protein in Sca-1-/low keratinocyte from young, old and old CASIN treated for 2 hours, N=3 (D) 
Distribution of Cdc42 (red) and tubulin (green) in young, old and old HFSCs cultured for 2 hours with CASIN by immunofluoresence, scale 
bar=5µm (E) Percentage of cells with a polar distribution of Cdc42 and tubulin in young, old and CASIN treated old HFSC cultured for 2hrs, 
N≥3, (F) Z-stacks and three-dimensional merged images of ß-catenin (red), nucleus (DAPI, blue) and their co-localization (yellow) in FACS 
sorted young, old and CASIN treated HFSC cultured for 2 hours by immunofluorescence (G) Quantification of the amount of nuclear ß-catenin 
in young, old and CASIN treated old HFSC cultured for 2 hours, N=3, (H) Level of expression of Wnt target genes in old HFSC cultured with 
CASIN for 6 hours, N=3, *P<0.05, **P<0.01, ***P<0.001 (paired student’s t test). Error bars represent s.e.m. 
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exclude that Wnt5a secretion from niche cells other than 

differentiated and undifferentiated keratinocytes 

(Supplementary Figure 2E) might also influence HFSC 

aging, though Wnt signaling usually acts on a very short 

range [34]. Consistent with Lim et al [12] and in 

contrast to earlier reports [15, 35, 36] our data  

support a persistent activation of canonical Wnt-

signaling in HFSC throughout both telogen and anagen 

in HFSC from young (D-50) as well as old (>2years) 

mice, as indicated by the expression of Axin-2. 

However, levels of activation are overall lower upon 

aging (Figure 1A–1C). 

Inhibition of Wnt5a or pharmacological targeting of 

Cdc42 activity by CASIN in aged HSFCs restores a 

youthful function of HFSCs both in vitro. A critical role 

of elevated activity of Cdc42 in stem cell aging [19, 37] 

is also consistent with the already published impaired 

hair regeneration phenotype of Cdc42GAP-/- mice [22, 

25]. Cdc42GAP-/- mice present with constitutively 

increased Cdc42 activity already in young animals. 

CASIN re-establishes a youthful level of canonical 

Wnt-signaling in chronologically aged HFSCs including 

elevated Axin-2 expression and nuclear beta catenin in-
vitro (Figure 3F–3H). CASIN also induces anagen onset 

 

 
 

Figure 4. In vivo treatment with CASIN induces onset of anagen in aged mice. (A) Experimental setup (B) Back skin of 

representative aged mice and aged mice treated i.p with CASIN, pictures were taken weekly (C) H&E staining of mouse back skin sections 
(longitudinal) from young, aged animals and the anagen area of skin from aged animals after CASIN treatment (D) Quantification of the size 
of the skin area with anagen in D-50, old and old CASIN treated animals N≥6 (E) Duration of telogen in young, old and old CASIN treated, N≥6, 
*P<.05, **P<.01, ***P<.001 (paired student’s t test). Error bars represent s.e.m. 
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in aged mice in vivo (Figure 4E). We recently 

demonstrated that inhibition of Cdc42 activity in aged 

mice in vivo extends the average and maximum life 

span [29]. For extension of life-span, CASIN was 

administered once for 4 days in a row instead of 5 days 

twice for experiments reported here, and provided  

at a higher overall dosage (2.4mg/kg per injection here 

vs. 25 mg/kg for the extension of lifespan). Distinct 

ways of administration of CASIN and levels in vivo 

might thus be able to elicit distinct positive biological 

effects in vivo [29]. 

 

Elevated levels of Wnt5a and increased Cdc42 activity 

alter HSFCs polarity. A role for Wnt5a and Cdc42 in 

controlling changes in cell polarity in other cell types 

have been previously reported [19, 22, 37]. A polar 

phenotype of Cdc42 in HSCs is associated with a strong 

regenerative capacity, similar to what is here reported 

for HFSCs [38]. Cdc42 itself is part of the cytoplasmic 

protein polarity complex (Par6-Cdc42-aPKC) that is 

known to regulate the activity of PKC to maintain 

apico-basal polarity in epithelial cells [39, 40]. 

Interestingly, genetic loss of atypical aPKCλ has been 

shown to alter the fate determination of HFSC [41, 42] 

with a phenotype similar to that of aged HFSCs. In 

summary, our data demonstrate that intrinsic aging of 

HFSCs is linked to an elevated activation of the Wnt5a-

Cdc42 axis that can be attenuated by targeting Cdc42 

activity in vivo. 

 

Finally, whether the number of HFSCs change with age 

still remain controversially discussed [6, 7, 43], while 

there is consensus that the function of aged HFSCs is 

reduced. For example Matsumura et al [6] reported a 

decrease in HFSC number in the hairless region of the 

back skin of aged mice, while our data support that the 

number of HFSCs is not altered upon aging. Further 

studies will thus be necessary to unequivocally address 

the level of change in the number of HFSCs upon 

aging. 

 

 
 

Figure 5. Graphical summary. 
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MATERIALS AND METHODS 
 

Animals 

 

C57BL/6 mice were obtained from the animal facility, 

Ulm University, Germany. Mice were used as D-50 

(Week-8 as young) or >2years for old until otherwise 

noted. Cdc42GAP-/- mice were obtained from the animal 

facility at CCHMC, Ohio, USA. Animals were housed 

and handled in accordance with the IACUC at CCHMC 

and the Regierungspräsidium Tübingen permission 

numbers 0.165, 1172 and 1296 respectively. 

 

Reagents 

 

The antibodies to cdc42, Numb goat polyclonal antibody, 

PAR6 and Tubulin were obtained from Abcam. The 

Alexa Fluor 488 (Donkey Anti-Rabbit and Anti-Rat IgG 

H&L) were also obtained from Abcam. The APC-alpha-

6Itg anti human/mouse CD49f was obtained from 

BioLegendR, Biotin anti-mouse Sca-1 (Ly-6 A/E) 

antibody (Clone D7) was obtained from eBioscience. 

Cy3R (Donkey Anti-Rabbit and Anti-Goat IgG H&L was 

obtained from Abcam). Dynabeads Sheep anti-rat igG 

was obtained from Invitrogen, life technologies. FcR 

block anti mouse CD16/CD32 and PE cy7 antibody was 

obtained from eBiosciences. PE-CD34 Rat anti-mouse 

CD34 was obtained by BD Pharmigen. Streptavidin-

PEcy7 was obtained from eBioscience. Sytox blue was 

obtained from ThermoFisher Scientific. 

 

Determination of the size of anagen area 

 

Black patches onto the mice skin are considered to be in 

anagen [7]. To measure the percentage of mouse back 

skin with anagen area, mice skin was shaved and 

photographed. The percentage of area of mouse back skin 

with black spots was calculated with Imaging processing 

and quantification software (Adobe Photoshop) using a 

square of 4 cm2 area as control for intensity. 
 

Paraffin sections and H&E staining 
 

For paraffin section mouse back skin was fixed in 4% 

formalin solution overnight at 4° C and was embedded 

in the paraffin. Paraffin embedded skin section were cut 

into 5-µM-thick sections and used for the staining with 

H&E and IF staining. For H&E staining paraffin section 

were deparaffinized and then rehydrated and stained 

with hematoxylin and eosin. 
 

FACS analyses and isolation of HFSC 
 

FACS isolation of HFSC was performed using 

published protocols [44, 45]. Briefly back skin of the 

mice was cut with scissors and kept in ice cold PBS. 

With the help of scalpel subcutaneous fat was removed 

and skin was kept in Dispase solution (4µg/ml), dermal 

side down and incubated overnight at 4° C. Epidermis 

was peeled out and treated with trypsin (.025%) in 

HBSS for 10 min at 37° C to get a single cell 

suspension. The stem cell fraction was enriched by 

magnetic depletion using biotinylated Sca-1Ab and the 

Dynabead system. After magnetic depletion cells were 

stained with anti-alpha-6 integrin (Biolegends, clone 

GoH3) and anti-CD34 (clone RAM) (eBioscience). 

 

Colony formation assay 

 

Colony formation assay was performed on sorted 

HFSCs (Sca-1-/lowA-6highCD34+). For this 10,000 HFSC 

were plated in lethally irradiated 3T3 feeder cells in Ca-

Mg-Free FAD basal medium containing EGF, Insulin, 

hydrocortisone supplemented with Ca-free FBS for 14 

days and medium was changed every second day.  

On day 14 cells feeder layer was removed with 

Trypsine:Versene (1:5) solution followed by fixing in 

4%PFA for 20 min and staining in 1% of Rhodamine 

and 1% of Nile blue in water [45]. 

 

Immunofluorescence staining of paraffin sections 

 

Paraffin section was used for immunofluorescence 

staining of CD34(1:200), Wnt5a (1:100) and active 

Cdc42(1:50),(EMD Millipore) [46]. Antigen retrieval 

was performed for both the antigen by boiling the 

paraffin sections after deparaffinization in Dako target 

retrieval buffer for 20 minutes (Dako, Carpentaria, CA, 

USA). Sections were blocked for nonspecific binding in 

BSA in PBS containing 10% goat serum. Primary Ab 

incubation was performed for overnight at 4° C followed 

by fluorescence conjugated secondary antibody 

incubation. DAPI was used to counterstain the nucleus. 

Stained samples were analyzed on a fluorescence or a 

confocal microscope. 

 

Immunofluorescence staining of sorted HFSC for 

polarity analysis 

 

Freshly sorted HFSC were seeded on fibronectin coated 

glass coverslips. For polarity analysis, HFSC were 

incubated for 2 hrs with 300 ng/ml Wnt5a and 10µM 

CASIN or left untreated. After incubation at 37° C, 5% 

C02 and 3% O2 in growth factor free medium, cells were 

fixed with BD Cytofix Fixation Buffer (BD 

Biosciences). After fixation cells were gently washed 

with PBS and permeabilized with 0.2% TritronX-100 

(Sigma) in PBS for 20 min and blocked with 10% 

donkey serum for 30 min. Primary Ab incubation 
followed with secondary antibody incubation were 

performed at room temperature for 1hrs. The coverslip 

was mounted with ProLong Gold Antifade reagent with 
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DAPI (Invitrogen, Molecular Probes). Cells were stained 

with an anti-Cdc42 (Millipore, rabbit polyclonal), an 

anti-ß-catenin (Millipore, rabbit polyclonal), Par6 (Santa 

Cruz Biotechnology, goat polyclonal), Tubulin (rat, 

monoclonal), followed by incubation with secondary 

antibodies conjugated with Alexa fluor 488 and Cy-5. 

Samples were imaged with an AxioObserver Z1 

microscope (Zeiss) with a X63 objective. Images were 

analyzed with Axio Vision 4.6 software. Polarity scoring 

was performed based on the localization of each single 

stained protein, if it was asymmetrically distributed with 

respect to a plane through middle of the cell. 

Alternatively, samples were analyzed with LSM710 

confocal microscope (Zeiss) equipped with a X63 

objective. Primary raw data were imported into the 

Velocity Software package (Version 6.0, Perkin Elmer) 

for further processing and conversion into three-

dimensional images. Analysis of the localization 

analysis of ß-catenin was performed using velocity 

software (percentage of ß-catenin intensity in the 

nucleus above the threshold level). 

 

G-LISA 

 

For the determination of active GTP bound form of Cdc42 

we used the G-LISA kit for Cdc42 from Cytoskeleton 

according to the protocol of the manufacturer. 

 
Reverse-transcriptase real time PCR 

 

20,000-40,000 HFSC from young and aged mice were 

lysed and processed for RNA extraction immediately 

after sorting or after treatment of CASIN and Wnt-5a 

for 2hrs. RNA was obtained with microRNA extraction 

kit (Qiagen) and whole RNA was used for cDNA 

preparation. cDNA was prepared and amplified with 

Ovation RNA amplification system V2 (Nugen). All 

real-time PCR reaction was performed using Taqman 

real time PCR reagent and primers from Applied 

Biosystem on an ABI9700HT real time PCR machine. 

 
Western blot 

 

For the measurement of protein expression, western blot 

was performed on Sca-1-/low keratinocyte or in 

keratinocyte cell lysate from back skin of young and old 

mice for Cdc42 using anti-Cdc42 (Millipore, rabbit 

polyclonal) antibody and was normalized with the actin 

blot using the Actin (Sigma) antibody. The relative 

level of expression was estimated by densitometry 

quantification. 

 
Lentivirus mediated knockdown of Wnt5a 

 

Aged mice (24-month-old) were killed; Sca1-low cells 

were isolated from the back-skin area as previously 

described. These cells were further transduced 

overnight on retronectin-coated (TaKaRa) plates with 

cell-free supernatants containing lentiviral particles 

according to reference [19, 47]. The lentivirus plasmid 

vector pLKO 1-YFP was obtained from Sigma's 

validated genome-wide TRC shRNA libraries (Sigma- 

Aldrich) and was further changed to eGFP in-house. 
 

Statistical analysis 
 

A minimum 3 and up to 6-7 replicates was done for 

experiments presented. Data are presented as mean and 

standard error means (SEM). Comparison between 

groups has been done using Student’s t-test assuming 

two tailed distribution and unequal variances. 

Differences were considered statistically significant at 

the p<0.05 level. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Functional decline of aged HFSC. (A) Young (D-50) and old (>2years) mice in telogen stage, hair shaved, (B) 

H&E staining of a longitudinal section of back skin from young (D-50) and old (>2years) mice (miniaturized hair follicle), scale bar = 100µm (C) 
Number of telogen hair follicle counted per 10X field picture of telogen mice skin of young D-50 and old >2 years, N≥7 (D) Morphology of 
young (week-14) and old(>2years) mice in anagen stage after hair shaving, anagen area are encircled by white lines (E) measurement of 
anagen areas from young (week-14) and old(>2years) mice and represented as percentage of complete back skin area, N≥6 (F) 
Representative picture of H&E stained LS of back skin from, anagen area(upper panel), telogen area (lower panel) of young (week-14) and 
old(>2years) mice, yellow yarrow shows hyper proliferated bulge morphology, Scale bar = 100µm (G) Duration of telogen in young(D-50) and 
old mice(>2years) showing increase in duration of old HFSC in telogen stage, N=6 (H) FACS analysis of Sca-1-/low fraction to detect different 
cell population in young and old mice (I) Percentage of different cell population in epidermal cell suspension of skin from D-50 and Old mice 
showing no change in HFSC number, N≥14 (J) Immunofluorescence images with HFSC marker CD34 (green and nucleus (blue) in LS of telogen 
skin from young(D-50) and old mice N≥3, Scale bar = 50µm (K) Quantification of number of CD34+ cells counted per telogen hair follicle in 
young(D-50) and old (>2years) telogen hair follicle, (L) Representative picture of colony forming units from FACS sorted HFSC from young and 
old mice in telogen(left panel),Representative morphology of colonies obtained during CFU analysis (right upper panel), Quantification of CFU 
per 10,000 HFSC plated from young and old mice indicating decrease in colony forming units in old HFSC (right lower panel), (M) Transcript 
levels of canonical Wnt target genes (Lgr-5, Ccnd-1 and Lgr-6) (N) ß-catenin (O) Cdc42 in young and old HFSC N≥3,*P<.05, **P<.01, ***P<.001 
(paired student’s t test). Error bars represent s.e.m. 
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Supplementary Figure 2. Increase in Wnt5a expression upon aging is specific to a CD34+ cell population. (A) Graphical 

representation of the structure of the hair follicle and location of distinct types of stem and progenitor cells (B) dot plot of FACS analyses on 
Sca-1-/low keratinocytes showing three different cell (A-6+CD34-, A-6lowCD34+ and A-6 high CD34+) populations obtained during FACS sorting (C) 
transcript levels of Axin-2 (D) Wnt4 and (E) Wnt5a in young and old A-6+CD34-,A-6lowCD34+ and A-6 high CD34+ cells, N≥3 (F) Representative 
picture of the distribution of Numb (red) in young and old HFSC, immunofluorescence, Scale bar =5µm (G) Percentage of cells polar for Numb 
in young and old HFSC, N≥3 (H) Distribution of Par-6 (red) in young and old HFSC, immunofluorescence, Scale bar =5µm (I) Percentage of cells 
polar for Par-6 in young and old HFSC, N≥4, *P<.05, **P<.01, ***P<.001. (paired student’s t test). Error bars represent s.e.m. 
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Supplementary Figure 3. Suppression of expression of Wnt5a in old HFSC induces a young-like phenotype. (A) Experimental 
setup (B) Representative FACS plot showing percentage of transduced cell in scrambled shRNA and Wnt5a knock-down shRNA transduced 
cells on day 7 post transduction, N≥3 (C) level of expression of Wnt5a in scrambled shRNA and Wnt5a knock-down shRNA transduced cells on 
day 7 post transduction, N≥3 (D) Expression of canonical Wnt-target genes in scrambled shRNA and Wnt5a knock-down shRNA transduced 
cells on day 7 post transduction, N≥3 (E) Representative picture of green colony formed by a transduced old Sca-1-/low keratinocyte, 
surrounding fibroblast feeder cells are non-green, N≥3. *P<.05, **P<.01 (paired student’s t test). Error bars represent s.e.m. 
 

 
 

Supplementary Figure 4. CASIN treatment of aged HFSCs restores a youthful level of cell polar for Numb. (A) Representative 
picture of Numb (red) in young, old and CASIN treated HFSC, Immunofluorescence, N≥3 (B) Percentage of cells polar for Numb in young, old 
and old CASIN treated HFSCs, N≥3. Scale bar =5µm, *P<.05. (paired student’s t test). Error bars represent s.e.m. 


