
sensors

Letter

Smart Pack: Online Autonomous Object-Packing
System Using RGB-D Sensor Data

Young-Dae Hong 1 , Young-Joo Kim 2 and Ki-Baek Lee 3,*
1 Department of Electrical Engineering, Ajou University, Suwon 443-749, Korea; ydhong@ajou.ac.kr
2 Korea Railroad Research Institute, Uiwang 437-757, Korea; osot@krri.re.kr
3 Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Korea
* Correspondence: kblee@kw.ac.kr

Received: 7 July 2020; Accepted: 6 August 2020; Published: 9 August 2020
����������
�������

Abstract: This paper proposes a novel online object-packing system which can measure the
dimensions of every incoming object and calculate its desired position in a given container. Existing
object-packing systems have the limitations of requiring the exact information of objects in advance or
assuming them as boxes. Thus, this paper is mainly focused on the following two points: (1) Real-time
calculation of the dimensions and orientation of an object; (2) Online optimization of the object’s
position in a container. The dimensions and orientation of the object are obtained using an RGB-D
sensor when the object is picked by a manipulator and moved over a certain position. The optimal
position of the object is calculated by recognizing the container’s available space using another RGB-D
sensor and minimizing the cost function that is formulated by the available space information and the
optimization criteria inspired by the way people place things. The experimental results show that the
proposed system successfully places the incoming various shaped objects in their proper positions.

Keywords: object-packing; 3D bin packing problem; online optimization; RGB-D sensor

1. Introduction

Object-packing is one of well-known bottlenecks in logistics automation. In recent years, most of
the standard box-based logistics transportation has been successfully automated based on specially
designed warehouse and mobile robot platforms. However, packaging individual products in boxes
still requires labor. The packaging process is divided into two tasks: object-picking and packing.
The former means picking one of the items randomly arranged within a container, and it has been
tried to be automated in various directions with deep learning including the recent Amazon robotic
challenge outcomes [1–3]. The latter implies placing the picked up item in the most suitable position
in another container, and mostly it has been implemented in a theoretical way or in a hybrid form with
human collaboration [4,5].

Accordingly, it is necessary to focus on developing an autonomous object-packing mechanism,
assuming a well-implemented object-picking system (hereafter referred to as the picker) in the previous
step. The objects must be handed over one by one from the picker and placed at their proper positions
in a box of fixed size. This task can be classified as a bin packing problem (BPP), which is a classical
combinatorial optimization problem. The BPP is known to be NP-Hard and has been consistently
studied since the 1970s [6–8]. In addition, this task could be termed as 3D BPP depending on the
dimensions being used for maximizing the space use [9]. Moreover, this task is an online BPP because
the dimensions and orientations of objects are unknown before they are picked by the picker [10,11].

Sensors 2020, 20, 4448; doi:10.3390/s20164448 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-6174-6442
https://orcid.org/0000-0002-3416-9176
http://dx.doi.org/10.3390/s20164448
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/16/4448?type=check_update&version=2


Sensors 2020, 20, 4448 2 of 14

Thus, in this paper, we propose an online autonomous object-packing system using RGB-D sensor
data. The main contributions of this work are two-fold. One is the method for real-time measurement
of objects. Figure 1 illustrates the configuration of the RGB-D sensor for the measurement and an
example of the data from the sensor. When the picker moves to the center of the sensor frame, a depth
frame is captured from the sensor. After extracting the object area from this depth frame, the 2D
contour and the depth of the object are calculated using the point cloud set of the object area. The other
is the online optimization algorithm for the placement of each picked object. Figure 1 also demonstrates
the configuration of the RGB-D sensor for the available container space recognition and example of
the data from the sensor. The proposed algorithm is inspired by the way people load things. It is
impossible to obtain a global optimum without information on all objects. If the global optimum
cannot be obtained, it is best to find an efficient local optimum that minimizes the computation.
In this situation, a person tries to place things in the lowest space possible and bring them together.
The proposed algorithm is designed by reflecting these human behaviors in optimization criteria.

RGB-D sensor
for optimization

RGB-D sensor
for measurement

Picker
(vacuum suction)

Picking container

Packing container

Conveyor

Figure 1. The illustration of the proposed system and the examples of the data from the sensors.

The rest of the paper is organized as follows. Section 2 reviews the related works related to
online as well as offline 3D BPP. Section 3 discusses the method for real-time measurement of objects,
and Section 4 details the online optimization algorithm for determining the position of each picked
object. Section 5 provides the experimental results on both the real-time object measurement and
the online object placement optimization. It presents the statistical analyses about the accuracy and
computation time of the measurement. In addition, the effectiveness of the online optimization is
demonstrated with respect to the scenario of the sequential inputs of randomly generated virtual
objects. Section 6 concludes the work.

2. Related Works

A huge number of methods exists in the literature for packing problems. Most of these are
offline methods. Offline means the arrangement of objects are optimized at once based on the
previously obtained dimension information of them. In the previous offline methods, the position
of every object has been formulated as a multi-dimensional solution vector. Then, along with the
dimension information, the solution has been figured out through optimization algorithms such as
deep reinforcement learning, Quasi-Monte-Carlo tree search, genetic algorithm, space-defragmentation
heuristic approach, or beam search algorithm [9,12–15]. Since they have assumed objects as boxes,
the orientations of the objects have not been considered important. These offline methods are logically



Sensors 2020, 20, 4448 3 of 14

straight forward and guarantee the precise solution. On the other hand, if all the information about
objects has not been obtained in advance, they cannot be used. Thus, we have taken advantage of only
optimization concept from these offline methods since the object need to be passed and placed one by
one for fully automated object packing.

Online BPP has been also studied extensively in the literature. The previous studies successfully
implemented online packing processes. Some have employed the fine-tuned heuristics based on the
product packing routine [16–18] and the others have actively used deep reinforcement learning for
their methods to learn how to pack things effectively themselves through trials and errors [11,19–21].
However, due to the high computational load of online optimization or learning complexity, objects
have been assumed to be boxes without rotations or 3D problem has been decomposed into multiple
2D problems by packing objects layer by layer. Also, the container has not been monitored since the
packing process has been assumed to be ideal. In this paper, considering these issues, each object
dimension (including orientation) as well as the corresponding available packing area of a container
is measured in real time as a preliminary step of online object position optimization. In addition,
the optimization problem has been simplified using the optimization criteria inspired by the way
people load things.

3. Real-Time Object Measurement

In online 3D BPP, object information can be obtained after the picker delivers the object.
For simplicity, it is assumed that a well-implemented object-picking system is virtually implemented.
As the picking mechanism, one-point vacuum suction is assumed. RGB-D sensors are effective for
quickly and inexpensively measuring the dimensions and orientation of an object, as demonstrated
by previous studies [22–24]. In this section, we first describe the configuration of the picker and an
RGB-D sensor. In addition, the procedure for obtaining the dimensions and orientation of an object
from sensor data is explained.

3.1. The Configuration of the Picker and the RGB-D Sensor

Since the picker picks an object from the top, it is natural that the RGB-D sensor for measurement is
installed at the bottom of the object as illustrated in Figure 1. As the RGB-D sensor, Intel RealSense D435
has been employed. Among the specifications of the D435, the important factors for this configuration
are depth field of view and minimum depth distance. The depth field of view is 86◦ × 57◦(±3◦) and
the minimum depth distance is 0.105 m. In consideration of these, the centers of the picker and the
D435 infrared lens in xy-axes should match, and the distance Zpicker between the lens and the lowest
position of the picker in z-axis should be large enough. In this paper, the maximum depth of objects
Dobj is assumed to be 0.3 m and Zpicker is set to 1 m where the origin of xyz-axes is on the top center of
the lens. Figure 2 shows the configuration of the picker and the RGB-D sensor in detail.

X

Z

Y

Z

Sensor coordination system

Zpicker

D435
IR Lens

Object

Picker

Figure 2. The configuration of the picker and the RGB-D sensor.



Sensors 2020, 20, 4448 4 of 14

3.2. The Object Measurement Procedure

The overall procedure of the object measurement is summarized in Algorithm 1, and each step of
the algorithm is explained in the following.

Algorithm 1 Object Measurement

Zpicker: The lowest position of the picker from the lens in z-axis
Dobj: The maximum depth of objects
rows, cols: The rows and columns in the 2D pixel coordinate system
d(rows, cols): The depth value at (rows, cols)
Amin: The minimum area of object cross section
C: The contour of the object
w, h, d, φ: The width, height, depth and orientation of the object
W, H: The width and height of the depth frame
(px, py): The picked position in xy-axes on the object

(1) Acquire sensor data.
Capture a depth frame from D435
if the depth frame is not successfully captured then

return the error code of ’−1’
end if
Calculate point clouds from the depth frame

(2) Extract object area.
Separate the pixels where Zpicker − Dobj < d(r, c) < Zpicker
Find the contours of the separated pixels whose area is larger than Amin
if no contour is found then

return the error code of ’−2’
end if
Select the largest contour as C
if C is out of the depth frame bound then

return the error code of ’−3’
end if

(3) Calculate d, w, h and φ.
Accumulate the point clouds in C
zavg = average of the z-axis values of the point clouds
d = Zpicker − zavg
Find a rotated rectangle of the minimum area enclosing C
Calculate the scaling factor S from the point clouds
w = width pixels of the rectangle ×S
h = height pixels of the rectangle ×S
φ = rotation of the rectangle

(4) Calculate px and py.
(cx, cy) = average of the four corner positions of the rectangle in pixels
(dx, dy) = (cx - W/2, H/2 - cy)px

py

 = −S

cos(φ) −sin(φ)

sin(φ) cos(φ)

dx

dy


(5) Return w, h, d, φ, px and py



Sensors 2020, 20, 4448 5 of 14

3.2.1. Acquire Sensor Data

First, a depth frame is captured from D435. If the captured frame is not normal, the error code of
‘−1’ is returned. Then, from the depth frame, the corresponding point clouds are calculated.

3.2.2. Extract Object Area

From all the pixels in the depth frame, the pixels which are in the object area are separated.
As shown in Figure 2, the depth values inside the object area lies between Zpicker − Dobj and Zpicker.
After that, the contours enclosing the separated pixels are obtained. Among these, the contours with
the area size of less than Amin are filtered out considering sensor noises. Since the object is carried one
by one, the largest contour should represent the object area. If no contour is detected, the error code of
‘−2’ is returned. In addition, if the object area is out of the depth frame bound, the error code of ‘−3’
is returned. The examples of the separated pixels and the contour of the object area are described in
Figure 3a,b, respectively.

dy

dx
Z

Zpicker
zavg

d

(a) The separated pixels (b) The object area contour

(c) Calculation of d (d) Calculation of px and py

Figure 3. The procedure of the object measurement.

3.2.3. Calculate d, w, h, and φ

As shown in Figure 3c,d can be calculated by subtracting zavg from Zpicker. zavg is the average of
the z-axis values of the point clouds in the object area. And then, a rotated rectangle of the minimum
area enclosing the object area is obtained. By scaling the dimensions of this rectangle from the pixel
unit to real world unit, w, h, and φ can also be calculated.



Sensors 2020, 20, 4448 6 of 14

3.2.4. Calculate px and py

Since the picker cannot always pick the object at the center of the object, the picked position in
xy-axes on the object (px, py) should also be calculated. They can be carried out by a translation and a
rotation as shown in Figure 3d.

3.2.5. Return w, h, d, φ, px and py

Finally, w, h, d, φ, px and py are returned.

4. Online Object Placement Optimization

In online 3D BPP, the optimal position of the incoming object should be calculated as soon as
possible. Since there is no information about the remaining objects that have not been picked up, it is
impossible to perform global optimization using only incoming and packed object information. At this
point, it may be better to simplify the problem as much as possible. A guidance for this simplification
can be inspired by the way people place things in a container. In general, people try to: (1) place things
in the lowest space possible and (2) bring them together. These human behaviors are reflected in the
proposed optimization process. In this section, the optimization criteria and the corresponding cost
function considering the human behavior are explained. Then, the overall process of the optimization
algorithm is described step by step.

4.1. The Optimization Criteria

Criterion 1: Place things at the lowest position

Let hthres be a threshold height value and A f be the current feasible packing area in
container(global) coordinate system. The feasible packing area means a set of the 2D positions at
which the object with contour C can be placed free of side contact with others if it is above hthres height.
An example of A f is described in Figure 4. To place things at the lowest position, we need to find the
position vector p ∈ A f with the smallest hthres.

Top view

Side view

Ground level

hthres

New object

Af

B1
B2

p

b1

b2

X

Y

Z

ZY

X

Side view

Top view

Figure 4. The illustration of the optimization criteria.



Sensors 2020, 20, 4448 7 of 14

Criterion 2: Bring things together

Let Bi be the i-th segment enclosing of adjacent objects as shown in Figure 4. We can make the
objects together by minimizing ∑ dist(p, bi) where dist(j, k) means the distance between j and k and bi
is the center of mass of Bi.

Cost Function

By combining Criteria 1 and 2, the cost function can be derived as follows:

cost(p, hthres) =

{
K1 · hthres + K2 ·∑ dist(p, bi) if A f 6= ∅

1, 000, 000 if A f = ∅
(1)

where K1 and K2 are the scaling constants. We set this problem as a minimization problem and this
cost function is a function to be minimized. At first, A f should be checked. If hthres is too small,
as described in right side sub-figures of Figure 4, A f becomes empty set which means that there is
no feasible packing area with that hthres value. In this case, the corresponding cost function value is
1, 000, 000 which is an exceptionally high value meaning failure. In contrast, if A f is not an empty set,
the cost function value is calculated by a linear combination of hthres and ∑ dist(p, bi). Based on this
equation, the smaller the both hthres and ∑ dist(p, bi), the better. This is logically consistent with the
criteria. In this paper, K1 and K2 are respectively set as 1000 and 1.

4.2. The Overall Process of the Optimization Algorithm

The overall process of the optimization is summarized in Algorithm 2, and each step of the
algorithm is explained in the following.

4.2.1. Acquire Sensor Data

First, a depth frame is captured from D435. If the captured frame is not normal, the error code of
’−1’ is returned. Then, from the depth frame, the corresponding point clouds are calculated.

4.2.2. Generate 2D Depth Map

First, the 3D point clouds are transformed from the sensor coordinate system (SCS) to the
container(global) coordinate system (CCS). SCS and CCS are respectively described in the left and right
sub-figures of Figure 4. Then every point cloud (xi, yi, zi) is projected into 2D depth map by setting
the value at (bxic, byic) to zi. Since the point clouds cannot always cover every pixel in 2D depth map,
the empty pixels are sequentially occupied by linear interpolation with the adjacent pixels. In addition,
3× 3 sized mean filter is applied to the map image to reduce noises. At last, A f , Bi and bi are obtained
according to p and hthres as described in the right sub-figures of Figure 4 based on this 2D depth map
and the measured constants w, h, d, φ, px and py.

4.2.3. Run Differential Evolution (DE) Algorithm

In this paper, as the optimization algorithm, differential evolution (DE) is employed. DE is
a well-known optimization algorithm for its effectiveness in multi-dimensional single-objective
optimization problems [25–27]. By the benefit of the optimization criteria inspired by human behavior,
the object placement optimization problem becomes simplified into a low-dimensional single-objective
optimization problem and be able to solved by DE. At first, the DE algorithm is initialized with
appropriate configuration parameters. Then, for each solution candidate, the processes (1) and (2) are
performed and the cost function is calculated. Each solution candidate is formulated as a vector of
(hthres, p) and becomes the input of the cost function. The cost function output is the better the smaller.
After that, the solution candidates are updated by DE update process. This update process is repeated



Sensors 2020, 20, 4448 8 of 14

until the termination condition is met. As a result, the final solution along with its cost function value
is stored.

Algorithm 2 Optimization algorithm

SCS: The sensor coordinate system
CCS: The container(global) coordinate system

(1) Acquire sensor data.
Capture a depth frame from D435
if the depth frame is not successfully captured then

return the error code of ’−1’
end if
Calculate point clouds from the depth frame

(2) Generate 2D depth map.
Transform the 3D point clouds from SCS to CCS
Project every point cloud (xi, yi, zi) into 2D depth map by setting the value at (bxic, byic) to zi
Occupy the empty pixels of the map image by linear interpolation with the adjacent pixels
Apply 3× 3 sized mean filter to reduce noises

(3) Run differential evolution (DE) algorithm.
Initialize the DE algorithm
Set input bounds of hthres and p
Select appropriate configuration parameters
while the termination condition is not met do

for each solution candidate do
Perform (1) and (2)
Obtain A f with respect to hthres using the generated depth image
Calculate the cost function

end for
Update solution candidates using DE update process

end while
Store the final solution along with its cost function value

(4) Return hthres and p.
Repeat (3) three times
Return the solution (hthres, p) with the smallest cost function value

4.2.4. Return the Optimal hthres and p

Unfortunately, DE cannot always guarantee the solution convergence. To complement this
issue, in this paper, the DE algorithm is run three times in a row and the solution set with the
smallest cost function value is selected. Since the problem is simplified enough as mentioned above,
the computational load for the three runs keeps affordable.

5. Experiments

In the experiments, the proposed system was implemented as a software written in Python
(version 3.5.2) language with Numpy and Scipy libraries. The software was run on Linux OS
(version 16.04) with Intel i7-6900K CPU, 128GB DDR4 RAM, and NVIDIA Titan X Pascal GPU. In this
section, the detailed information about the environment settings and then the experimental results



Sensors 2020, 20, 4448 9 of 14

are provided. Please note that since the object sequence and computational environment used by
the existing methodologies has not been disclosed, the comparison by quantitative metrics has been
practically limited. However, the main advantages compared to the existing methods from a qualitative
viewpoint can be found as the following three. First, a novel method for measuring the dimensions of
objects in real time has been proposed. In the existing methods, it was assumed that the measurement
was completed in advance. However, before this paper, there have not been any studies for measuring
an object in real time during the process from picking to packing. Second, rotation is now possible
when the object is placed. The container for packing as well as the objects is not a sharp cuboid and
the sizes of the objects also vary. In addition, the actuation errors of the manipulation robots cannot be
ignored. In this condition, the effectiveness of rotating the object increases. Finally, it works robustly
against various errors that are inevitable in reality. Since the container space is monitored in real time,
the proposed method can reflect unexpected errors in optimizing the position of the next objects even
if the robot moves the object slightly out of the desired position or the objects inside the container
are tilted.

5.1. Real-Time Object Measurement

The proposed real-time object measurement system was tested with 6 kinds of beverages and they
were repeatedly measured 20 times each. Due to the virtual picker, the objects were measured hanging
from a steel frame. The measurement system had no prior knowledge of the objects at all. Since the
previous studies did not consider the situation that the objects needed to be measured in real time
during transferred by the picker, empirical comparison could not be done. Instead, the computation
time and measurement accuracy are statistically analyzed.

As shown in Table 1, the worst computation time was 35.4 ms and the frames per second of about
30 was maintained. The average errors of width w and height h were relatively greater than the others.
The depth image resolution of D435 is 1280 by 720, and considering the captured region of interest
(ROI), the ideal accuracies for w and h are between 1.0 mm to 1.5 mm. In addition, infrared diffuse
reflection at the edge of the object is not negligible, and hot noise, although not frequent, occurs. On the
other hand, depth d, orientation φ, picking position px and py showed less errors by the averaging
effect. In particular, the ideal depth accuracy of the D435 is around 1% of the distance from the object
and if the sensor is installed 1 m from the object, the expected accuracy is between 2.5 mm to 5 mm.
This implies that the proposed measurement system maximized the performance of D435. Meanwhile,
since the picking process is assumed to be in ideal condition in this paper, this d error can cause a
problem only if it is measured lower than the ground truth and the end effector is pressed from the
bottom. However, vacuum suction pickers usually have an elastic spring damper in the joint, which
can compensate for the displacement and the accompanying pressure due to an error within around
10 mm. Please note that the worst error in d was 4.8 mm. In addition, if the robot manipulator is
controlled through the force and torque feedbacks, the allowable height error may be greater. As a
result, the proposed system successfully measured the dimensions of the object in real time with
sufficiently low error rate for practical uses.

Table 1. The computation time and error of the proposed system.

Computation Time (ms)
Error

w (mm) h (mm) d (mm) φ (deg) px (mm) py (mm)

Min 20.6 2.6 1.8 0.1 0.0 0.6 0.7
Max 35.4 7.6 7.7 4.8 5.9 7.5 7.4

Average 27.6 5.0 5.1 2.4 3.2 4.3 4.1
STD 4.4 1.4 1.6 1.4 1.9 2.3 2.1



Sensors 2020, 20, 4448 10 of 14

5.2. Online Object Placement Optimization

The proposed online object placement optimization was tested using the refrigerated goods which
were actually stored in GS Retail Corp. logistic center, South Korea, during December 2019. Due to
the virtual picker issue, the test objects were also virtually generated by referencing the test products.
Each test object was generated by inheriting the dimensions of a randomly chosen test product along
with a random set of px, py and φ. The test objects were packed until hthres ≥ Hmax where Hmax is the
maximum height of the container. Total 10 containers were packed for the test. Please note that hthres
variable was quantized with amount of 10 mm and the parameters for the DE was set as the default
settings in [27].

As shown in Table 2, the worst computation time was 346.7 ms. For example, if we employ Denso
VS-650 robot as the picker, since it requires about 150.0 ms to move an object 1 m and return according
to its specification, the proposed method can pack nearly two objects in one second. This implies that
the proposed method is fast enough for online packing. In addition, the average container occupancy
ratio was 63.2%. Since various refrigerated products stored in the actual warehouse were considered,
this ratio can never be regarded as small.

Table 2. The computation time and container occupancy ratio of the proposed system.

Computation Container Occupancy
Time (ms) Ratio (%)

Min 227.1 52.2
Max 346.7 79.2

Average 293.5 63.2
STD 33.1 9.3

Figure 5 shows the snap shots of the object-packing simulation without manipulation error.
The corresponding object boundary margin was set as 1 mm. As shown in the figure, the rotation of
the objects can be taken into account. The most important thing is that the proposed packing algorithm
can make full use of multiple layers instead of the layer by layer strategies of the previous studies.
The 24th object was placed on the second layer because the object was relatively large and the feasible
area on the first layer was tight. Then, the 25th and 26th objects were placed on the remaining area of
the first layer. Similar phenomena can be seen through the 47th–50th objects. As a result, the proposed
method successfully performed online object-packing using a novel optimization process mimicking
human behavior.

Figure 6 shows the snap shots of the object-packing simulation without manipulation error.
The error was randomly generated (−3, 3) mm in position and (−3, 3)° in orientation. To take this
error into account, the corresponding object boundary margin was set as 5 mm. As shown in the
figure, the proposed method showed robust performance against the unexpected manipulation errors.
This also implies that even though the object may be tilted when the robot manipulator releases the
object, the proposed method monitors the container space in real time and is able to reflect it to the
following object placement.

Finally, the actual object-packing process using a standard container and the products used in
actual logistic is demonstrated in Figure 7. Left column shows the RGB images and the Right column
shows the generated depth maps. The white square represents the placement position of the next object
which is calculated through the proposed optimization method. Instead of a manipulator, the objects
were moved by hand to the desired position. As shown in the figure, the proposed method successfully
calculated the optimized placement position with respect to serial inputs.



Sensors 2020, 20, 4448 11 of 14

1st object 2nd object 3rd object 4th object

23rd object 24th object 25th object 26th object

47th object 48th object 49th object 50th object

Figure 5. The snap shots of the object-packing simulation without manipulation error (object boundary
margin of 1 mm).

1st object 2nd object 3rd object 4th object

23rd object 24th object 25th object 26th object

47th object 48th object 49th object 50th object

Figure 6. The snap shots of the object-packing simulation with manipulation error (position error of
[−3, 3] mm, orientation error of [−3, 3]° and object boundary margin of 5 mm).



Sensors 2020, 20, 4448 12 of 14

Figure 7. The snap shots of the actual object-packing process.

6. Conclusions

In this paper, a novel online object-packing system was proposed. In the proposed method,
the dimensions of every incoming object could be measured in real time and the desired position of
the object could be optimized in online way. The dimensions and orientation of the object were carried
out using an RGB-D sensor when the object was picked by a manipulator and moved over a certain
position. The optimal position of the object was calculated by recognizing the container’s available
space using another RGB-D sensor and minimizing the cost function that is formulated by the available
space information and the optimization criteria inspired by human behavior. The experimental results
showed that through the proposed method, the dimensions of the object were successfully measured
in real time with sufficiently low error rate for practical uses. In addition, the objects were effectively
packed at their desired position making full use of multiple layers. Most importantly, the proposed
method had high practical potential in that various refrigerated products stored in actual warehouses
were considered.

Author Contributions: K.-B.L. and Y.-J.K. conceived and designed the methodology and experiments; K.-B.L.
performed the experiments; Y.-D.H. analyzed the data; K.-B.L. wrote the paper; Y.-J.K. and Y.-D.H. reviewed and
edited the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant from R&D Program of the Korea Railroad Research Institute,
the Research Grant of Kwangwoon University in 2018, Korea Electric Power Corporation (R17XA05-20), Basic
Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of
Science and ICT (NRF-2019R1F1A1062979) and “Human Resources Program in Energy Technology” of the Korea
Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of
Trade, Industry & Energy, Korea (No. 20194010201830).

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Matsumoto, E.; Saito, M.; Kume, A.; Tan, J. End-to-end learning of object grasp poses in the Amazon
Robotics Challenge. In Advances on Robotic Item Picking; Springer: Berlin, Germany, 2020; pp. 63–72.

2. Le, T.; Chyi-Yeu, L. Bin-Picking for Planar Objects Based on a Deep Learning Network: A Case Study of
USB Packs. Sensors 2019, 19, 3602.



Sensors 2020, 20, 4448 13 of 14

[CrossRef] [PubMed]
3. Jiang, P.; Ishihara, Y.; Sugiyama, N.; Oaki, J.; Tokura, S. Depth image-based deep learning of grasp planning

for textureless planar-faced objects in vision-guided robotic bin-picking. Sensors 2020, 20, 706. [CrossRef]
[PubMed]

4. Christensen, H. I.; Khan, A.; Pokutta, S.; Tetali, P. Multidimensional Bin Packing and Other Related Problems:
A Survey. 2016. Available online: http://people.math.gatech.edu/~tetali/PUBLIS/CKPT.pdf (accessed on 8
August 2020).

5. Techasarntikul, N.; Ratsamee P.; Orlosky, J.; Mashita, T.; Uranishi, Y.; Kiyokawa, K.; Takemura, H.
Guidance and Visualization of Optimized Packing Solutions. J. Inf. Process. 2020, 28, 193–202. [CrossRef]

6. Man, E.C., Jr.; Garey, M.R.; Johnson, D.S. Approximation algorithms for bin packing: A survey.
In Approximation Algorithms for NP-Hard Problems; PWS Publishing Company: Boston, MA, USA, 1996;
pp. 46–93.

7. Bortfeldt, A.; Gerhard W. Constraints in container loading-A state-of-the-art review. Eur. J. Oper. Res.
2013, 229, 1–20. [CrossRef]

8. Levin, M.S. Towards bin packing (preliminary problem survey, models with multiset estimates). arXiv 2016,
arXiv:1605.07574.

9. Elhedhli, S.; Gzara, F.; Yildiz, B. Three-Dimensional Bin Packing and Mixed-Case Palletization.
Informs J. Optim. 2019, 1, 323–352. [CrossRef]

10. Christensen, H. I.; Khan, A.; Pokutta, S.; Tetali, P. Approximation and online algorithms for multidimensional
bin packing: A survey. Comput. Sci. Rev. 2017, 24, 63–79. [CrossRef]

11. Kundu, O.; Dutta, S.; Kumar, S. Deep-Pack: A Vision-Based 2D Online Bin Packing Algorithm with Deep
Reinforcement Learning. In Proceedings of the 2019 28th IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–7.

12. Hu, H.; Zhang, X.; Yan, X.; Wang, L.; Xu, Y. Solving a new 3d bin packing problem with deep reinforcement
learning method. arXiv 2017, arXiv:1708.05930.

13. Li, H.; Wang, Y.; Ma, D.; Fang, Y.; Lei, Z. Quasi-Monte-Carlo Tree Search for 3D Bin Packing.
In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision, Guangzhou,
China, 23–26 November 2018; pp. 384–396.

14. Christensen, H. I.; Khan, A.; Pokutta, S.; Tetali, P. Smart Packing Simulator for 3D Packing Problem Using
Genetic Algorithm. J. Phys. 2020, 1447, 012041.

15. Araya, I.; Moyano, M.; Sanchez, C. A beam search algorithm for the biobjective container loading problem.
Eur. J. Oper. Res. 2020, 286, 417–431. [CrossRef]

16. Kanna, S.R.; Udaiyakumar, K.C. A complete framework for multi-constrained 3D bin packing optimization
using firefly algorithm. Int. J. Pure Appl. Math. 2017, 114, 267–282.

17. Ha, C.T.; Nguyen, T.T.; Bui, L.T.; Wang, R. An online packing heuristic for the three-dimensional
container loading problem in dynamic environments and the Physical Internet. In Proceedings of the
European Conference on the Applications of Evolutionary Computation, Amsterdam, The Netherlands,
19–21 April 2017; pp. 140–155.

18. Shome, R. Towards robust product packing with a minimalistic end-effector. In Proceedings of the
International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019.

19. Duan, L.; Hu, H.; Qian, Y.; Gong, Y.; Zhang, X.; Xu, Y.; Wei, J. A multi-task selected learning approach for
solving 3D flexible bin packing problem. arXiv 2018, arXiv:1804.06896.

20. Verma, R.; Singhal, A.: Khadilkar, H.; Basumatary, A.; Nayak, S.; Singh, H. V.; Sinha, R. A Generalized
Reinforcement Learning Algorithm for Online 3D Bin-Packing. arXiv 2020, arXiv:2007.00463.

21. Zhao, H.; She, Q.; Zhu, C.; Yang, Y.; Xu, K. Online 3D Bin Packing with Constrained Deep
Reinforcement Learning. arXiv 2020, arXiv:2006.14978.

22. Liu, Z.; Zhao, C.; Wu, X.; Chen, W. An effective 3D shape descriptor for object recognition with RGB-D sensors.
Sensors 2017, 17, 451. [CrossRef] [PubMed]

23. Cao, Y.P.; Kobbelt L.; Hu S.M. Real-time High-accuracy Three-Dimensional Reconstruction with Consumer
RGB-D Cameras. ACM Trans. Graph. 2018, 37. [CrossRef]

24. Li, S.; Li, D.; Zhang, C.; Wan, J.; Xie, M. RGB-D Image Processing Algorithm for Target Recognition and Pose
Estimation of Visual Servo System. Sensors 2020, 20, 430. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s19163602
http://www.ncbi.nlm.nih.gov/pubmed/31430924
http://dx.doi.org/10.3390/s20030706
http://www.ncbi.nlm.nih.gov/pubmed/32012874
http://people.math.gatech.edu/~tetali/PUBLIS/CKPT.pdf
http://dx.doi.org/10.2197/ipsjjip.28.193
http://dx.doi.org/10.1016/j.ejor.2012.12.006
http://dx.doi.org/10.1287/ijoo.2019.0013
http://dx.doi.org/10.1016/j.cosrev.2016.12.001
http://dx.doi.org/10.1016/j.ejor.2020.03.040
http://dx.doi.org/10.3390/s17030451
http://www.ncbi.nlm.nih.gov/pubmed/28245553
http://dx.doi.org/10.1145/3182157
http://dx.doi.org/10.3390/s20020430
http://www.ncbi.nlm.nih.gov/pubmed/31940895


Sensors 2020, 20, 4448 14 of 14

25. Storn, R.; Price, K. Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over
Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

26. Wormington, M.; Panaccione, C.; Matney, K.M.; Bowen, D.K. Characterization of structures from X-ray
scattering data using genetic algorithms. Philos. Trans. R. Soc. Lond. A 1999, 357, 2827–2848. [CrossRef]

27. Lampinen, J. A constraint handling approach for the differential evolution algorithm. In Proceedings of the
International Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1098/rsta.1999.0469
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Real-Time Object Measurement
	The Configuration of the Picker and the RGB-D Sensor
	The Object Measurement Procedure
	Acquire Sensor Data
	Extract Object Area
	Calculate d, w, h, and 
	Calculate px and py
	Return w, h, d, , px and py


	Online Object Placement Optimization
	The Optimization Criteria
	The Overall Process of the Optimization Algorithm
	Acquire Sensor Data
	Generate 2D Depth Map
	Run Differential Evolution (DE) Algorithm
	Return the Optimal hthres and p


	Experiments
	Real-Time Object Measurement
	Online Object Placement Optimization

	Conclusions
	References

