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Abstract Experience and learning in adult primary somato-
sensory cortex are known to affect neuronal circuits by mod-
ifying both excitatory and inhibitory transmission. Synaptic
plasticity phenomena provide a key substrate for cognitive
processes, but precise description of the cellular and molecular
correlates of learning is hampered by multiplicity of these
mechanisms in various projections and in different types of
neurons. Herein, we investigated the impact of associative
learning on neuronal plasticity in distinct types of postsynaptic
neurons by checking the impact of classical conditioning
(pairing whisker stroking with tail shock) on the spike
timing-dependent plasticity (t-LTP and t-LTD) in the layer
IV to II/III vertical pathway of the mouse barrel cortex.
Learning in this paradigm practically prevented t-LTP mea-
sured in pyramidal neurons but had no effect on t-LTD. Since
classical conditioning is known to affect inhibition in the bar-
rel cortex, we examined its effect on tonic GABAergic cur-
rents and found a strong downregulation of these currents in
the layer II/IIT interneurons but not in pyramidal cells. Matrix
metalloproteinases emerged as crucial players in synaptic
plasticity and learning. We report that the blockade of
MMP-9 (but not MMP-3) abolished t-LTP having no effect
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on t-LTD. Moreover, associative learning resulted in an up-
regulation of gelatinolytic activity within the “trained” barrel.
We conclude that LTP induced by spike timing-dependent
plasticity (STDP) paradigm is strongly correlated with asso-
ciative learning and critically depends on the activity of
MMP-9.
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Introduction

It is well established that in adult primary somatosensory cor-
tex neuronal circuits can be modified by experience and learn-
ing [1-4]. In particular, learning in classical conditioning par-
adigm, in which stimulation of vibrissae is paired with tail
shock, is known to induce profound plastic changes in the
mouse barrel cortex [5—9]. Interestingly, most prominent plas-
tic changes were found in barrels representing whiskers stim-
ulated during the conditioning and long-term changes con-
cerned primarily the GABAergic system [10, 11]. In particu-
lar, modulation of this system is reflected by increased fre-
quency of inhibitory postsynaptic currents in layer IV excit-
atory neurons [12] and by changes in tonic current intensity in
a neuron-specific manner [13]. Moreover, in a recent study,
Posluszny et al. [14] have shown that a downregulation of the
inhibitory drive prevented both learning-induced enlargement
of the conditioned vibrissae representation in murine barrel
cortex and impaired the conditioned response in the behavior-
al experiments. On the other hand, behavioral learning does
not result in a mere rescaling of inhibition. Indeed, Gdalyahu
et al. [15] have found that associative learning decreased total
network activity in primary somatosensory cortex but signal-
ing from responsive neurons was increased, suggesting
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enhanced efficiency of sensory processing. Moreover,
Rosselet et al. [16] have demonstrated that associative learn-
ing markedly affected the ascending layer IV excitatory pro-
jection to the pyramidal cells in the layer III.

In general, it is believed that phenomena of synaptic
plasticity provide a key substrate for cognitive process-
es. However, understanding of cellular correlates of
learning is hampered by a multiplicity of plasticity
mechanisms occurring at various projections and at dif-
ferent types of neurons. To tackle this problem, spike
timing-dependent plasticity (STDP) seems an appropri-
ate tool. Indeed, in this paradigm, due to a precise time
window between activity of pre- and postsynaptic neu-
rons, well-defined long-lasting changes in synaptic
weights can be induced and characterized for specific
pathways and identified neurons [e.g., 17-21].
Interestingly, it was found that sensory deprivation af-
fects STDP (both t-LTP and t-LTD) in the barrel cortex
in vivo and in vitro [22-25]. However, whether or not
classical conditioning affects the two basic forms of
STDP—LTP and LTD—has not been systematically in-
vestigated. It seemed thus interesting to check the im-
pact of associative learning on these two forms of
plasticity.

In the past decade, an extensive body of evidence
accumulated that matrix metalloproteinases play a cru-
cial role in mechanisms of synaptic plasticity as well as
in learning and memory in hippocampus, amygdala, and
cortex [26—29]. Several lines of evidence indicate that
especially MMP-9 and MMP-3 play a pivotal role in
these processes [30-36]. More recently, it has been
shown that in the cortex both MMPs are involved in
learning and in the plasticity processes [36-39]. In par-
ticular, Kaliszewska et al. [38] have shown that MMP-9
knockout resulted in a decreased plasticity in layer IV
and II/III in barrel cortex of adult mice. However, the
effect of MMPs on STDP in the context of associative
learning has not been studied thus far.

Herein, we have characterized the impact of associative
learning on the spike timing-dependent plasticity in the
vertical pathway between layer IV and layer II/III of
mouse barrel cortex and used MMP inhibitors to test
whether t-LTP and t-LTD at layer IV-II/IIl synapses are
dependent on activity of these enzymes. We found that
learning in classical conditioning paradigm practically pre-
vents t-LTP but has no effect on t-LTD. In addition, ap-
plied here, classical conditioning resulted in a strong
downregulation of GABAergic tonic currents in the layer
II/IIT interneurons but not in pyramidal neurons. Moreover,
blockade of MMP-9 (but not MMP-3) abolishes t-LTP
having no effect on t-LTD. We conclude that STDP is
strongly correlated with associative learning and critically
depends on the activity of MMP-9.
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Materials and Methods
Animals

Experiments were performed on young adult (3—6 weeks old)
male Swiss mice. All animals received food and water ad
libitum and were kept in a room with controlled temperature
with a natural light/dark (12 h:12 h) cycle. All procedures
were approved by the Local Bioethical Committee for
Experiments on Laboratory Animals (Decision number 29/
2015), and an effort was made to minimize the number of
animals used for experiments.

Experimental Procedures
Classical Conditioning Sensory Training

Conditioning procedure was carried out as described previ-
ously by Siucinska and Kossut [5]. For 1-2 weeks before
training, mice were habituated to immobility in a neck re-
straint apparatus (10 min/day). Afterwards, animals were di-
vided into three groups. In the first group (conditioned stimu-
lus (CS) + unconditioned stimulus (UCS) group), animals
were exposed to CS, which consisted of stroking the row B
vibrissae on left side of the snout using a handheld brush. The
CS comprised three strokes, each lasting 3 s. During the last
second of the third stroke, an electrical shock (UCS, 0.5 mA,
0.5 s) was applied to the tail. After a 6-s gap, the trial was
repeated. CS + UCS pairing was repeated four times per min-
ute, 10 min per day for 3 days. The second group of mice was
the control group (PSEUDO CS + UCS) in which animals
obtained the same pattern of CS as in the CS + UCS group,
but UCS was applied at random. In CS + UCS and PSEUDO
CS + UCS groups, the number of sessions was the same
(10 min/day, for 3 days). The naive group was considered as
the second control, and it consisted of mice habituated to a
neck restraint apparatus.

Preparation of Slices

One day after the end of training procedure, mice were decap-
itated and their brains were immersed in a cold artificial cere-
brospinal fluid (ACSF) bubbled with carbogen (95 % O, +
5 % CO,), which contained (in mM) NaCl 119, KCI 2.5,
NaH,PO, 1, NaHCO; 26.3, Mg SO, 1.3, CaCl, 2.5, and D-
glucose 11, pH 7.4 [17]. Brain slices (350-um-thick) were
prepared by cutting orthogonally to the rows of barrels in an
oblique coronal plane (55° from the sagittal plane) through the
barrel field using a vibrating microtome (Leica VT1200S,
Germany) [40]. Then, slices were transferred to a recovery
chamber containing the same solution and incubated at room
temperature for at least 2 h before electrophysiological exper-
iment or fixation procedures.
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Electrophysiological Recordings

Individual slices were transferred to a recording chamber
where they were minimally submerged and continuously
superfused with carbogen-saturated ACSF. A low-power ob-
jective (x4) was used to identify barrels within the slice, and a
high-power water immersion objective (x40) with infrared
differential interference contrast was used to visualize individ-
ual neurons located in the layer II/IIl in the barrel B column
(corresponding to the whiskers stroked during training).
Whole-cell patch-clamp recordings in current clamp mode
were performed from layer II/III pyramidal neurons located
above the barrel B using borosilicate patch pipettes filled with
the intracellular solution containing (in mM) 116 potassium
gluconate, 6 KCI, 2 NaCl, 0.5 EGTA, 20 HEPES, 4 MgATP,
0.3 NaGTP, and 10 Na, phosphocreatine, pH 7.25, 290-
300 MOsm [17]. Voltage-clamp recordings were made from
layer II/III pyramidal neurons, fast spiking (FS) interneurons,
and non-fast spiking (NFS) interneurons at a holding potential
=75 mV. Patch pipettes had 3—4 M2 when filled with the
internal solution containing (in mM) 140 KCI, 1 MgCl,, 0.5
EGTA, 10 HEPES, and 4 MgATP, pH 7.3, 290-300 MOsm
[13]. All recorded signals were low-pass-filtered at 10 kHz
using the eight-pole Bessel filter built within Multiclamp
700B patch-clamp amplifier (Molecular Instruments,
Sunnyvale, CA, USA), digitized at 20 kHz (Digidata 1440,
Molecular Devices), and acquired with pClamp 9.2 software
(Axon Instruments, USA). Series resistance was monitored,
and when it changed by more than 20 % during recordings,
cells were rejected.

Classification of neuron type was based mainly on firing
pattern described previously by Avermann et al. [41].
Pyramidal neurons in layer II/III were first visually distin-
guished by a prominent apical dendrite and a pyramidal shape
of'somata. These neurons were further identified as excitatory,
based on their broad action potentials (APs half-width >1 ms),
relatively high input resistance (R;,q ~ 140 M2, R;,q—input
resistance of neuron obtained from responses to small
depolarizing current steps, +25 pA), and adapting firing pat-
terns. Interneurons in layer II/III were divided into two popu-
lations: fast spiking and non-fast spiking inhibitory neurons.
Several electrophysiological features differentiated these two
classes of layer II/Ill GABAergic neurons. First of all, FS
neurons generated firing patterns with narrow AP waveforms
and little adaptation while NFS interneurons had broad APs.
Secondly, in agreement with previous observations by
Avermann et al. [41], the membrane time constant in response
to hyperpolarizing current injection was faster for FS
(T ~ 8 ms) than for NFS interneurons (7 ~ 18 ms). An impor-
tant clue to distinguish excitatory cells, FS interneurons, and
NFS neurons from each other came from the analysis of the
somatic input resistance. NFS interneurons showed high
(Ring ~ 260 MQ) whereas FS lower R;, values

(Ring ~ 130 MQ). Intrinsic electrophysiological properties of
neurons were evaluated from the response to 300 ms current
injection incrementing by 25 pA, starting at —200 pA. The
input resistance of neuron was calculated from responses to
small hyperpolarizing current steps (—25 pA, R;,,) and
depolarizing ones (+25 pA, Rj,q)- The resting membrane po-
tential (V,,) of neuron was measured within 15 ms time win-
dow at which no current stimuli were applied. The membrane
time constant (7) was calculated from a single exponential fit
to the rising phase of responses to small hyperpolarizing
(=25 pA) current stimulus. Action potential threshold (AP
threshold), action potential amplitude (AP amplitude), action
potential half-width (AP half-width), and fast
afterhyperpolarization (fAHP) were measured at the smallest
current stimulus that evoked spikes. AP threshold was defined
as a membrane potential value at which dV/dt = 20 mV/ms.
AP amplitude was determined as a difference between AP
threshold and the peak of the AP. The AP half-width was
calculated as the width of the AP at half-maximal amplitude.
fAHP was defined as a difference between the threshold and
the most negative membrane potential immediately
succeeding the spike. Several steps were taken to determine
the gain and firing threshold. First of all, the mean firing rate
was estimated as the number of action potentials evoked by
current injection per 300 ms (pulse length). This parameter
was calculated for a series of current steps of increasing am-
plitude, starting from —200 pA with 25 pA increments. Next,
we plotted the firing rate—current relationship for recorded
traces. Ultimately, the mean gain was determined as the slope
of the linear fit to the firing rate—current curve and firing
threshold was defined as a current extrapolated at zero firing
rate when first spike was induced.

To induce spike timing-dependent plasticity, a bipolar con-
centric stimulation electrode (125 wm, FHC, USA) was placed
within the base of barrel B in layer IV and excitatory postsyn-
aptic potentials (EPSPs) were evoked at constant rate of
0.1 Hz. Such baseline signals (located in layer II/III within
the same barrel column) were recorded from the postsynaptic
neurons in the current clamp mode for at least 7 min with the
stimulus intensity adjusted to evoke small, single-component
EPSPs. After stable baseline recordings, the EPSP was paired
100 times (0.1 Hz) with a single postsynaptic action potential,
which was evoked by somatic current injection. To induce t-
LTP, the postsynaptic action potential was evoked 10 ms after
the onset of the EPSP (forward pairing protocol), whereas to
induce t-LTD, the postsynaptic action potential was evoked
10—15 ms before the onset of the EPSP (reverse pairing pro-
tocol) [17]. Presynaptic stimulation frequency remained con-
stant throughout the experiment. The slope of the EPSP was
calculated as a linear fit between time points on the rising
phase of the EPSP corresponding to 20 and 80 % of the pos-
itive peak response. Both EPSP peak amplitudes and slopes
were monitored for at least 35 min after each pairing episode.
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The average EPSP slope or amplitude during the baseline was
estimated from 30 consecutive sweeps immediately before the
plasticity induction, and the same calculation was performed
from 30 sweeps postpairing (starting 30 min after pairing).
The extent of t-LTP or t-LTD was defined as the ratio of the
average EPSP slope or amplitude during the baseline and after
plasticity induction, and these values were compared among
groups (CS + UCS group, PSEUDO CS + UCS group, and
naive group). Investigation of STDP at the vertical layer IV
input onto layer II/IIl was restricted to pyramidal neurons.
This protocol has not been applied for interneurons in this
pathway for two main reasons. First, Lu et al. [42] showed
that when measuring from FS interneurons in the layer II/I1I of
the somatosensory cortex, only t-LTD (at PC-FS synapses)
could be induced. Second, besides FS class, we have consid-
ered the NFS interneurons which represent a non-
homogeneous group and therefore conclusions based on
STDP analysis would be problematic. In the case of experi-
ments performed with MMP inhibitors, the extent of t-LTP or
t-LTD was compared between test (brain slices from naive
animals treated with suitable MMP inhibitor) and control
group (in the absence of drug). The following MMP inhibitors
were used: FN-439 (180 uM, Merck), SB-3CT (10 uM), and
NNGH (10 uM). The stock solutions of SB-3CT and NNGH
were dissolved in dimethyl sulfoxide (DMSO), and therefore,
the same amount (0.1 % v/v) of this solvent was added into the
ACSF used for control recordings. All the MMP inhibitors
were purchased from Sigma-Aldrich (Poland) except FN-
439 (Merck). Since EPSPs showed some variability and ob-
served changes in amplitudes following t-LTP or t-LTD induc-
tion were moderate, averaged values of 30 consecutive signals
(after pairing) were compared. Thus, comparison was made
for signals collected within approximately 5 min interval. The
electrophysiology data were analyzed using pClamp 10.2
(Molecular Devices) and Sigma-Plot (Systat Software). The
statistical analysis was performed using unpaired ¢ test to test
the differences between the extent of t-LTP and t-LTD in con-
trol and MMP inhibitor-treated group. For analysis of differ-
ences in the extent of t-LTP and t-LTD between CS + UCS,
PSEUDO CS + UCS, and naive groups, we applied one-way
ANOVA test or one-way ANOVA on ranks test. The latter test
was used in the case of non-normality. Statistical significance
was considered for # below 0.05.

Since Bragina et al. [43] have shown that tonic currents in
layer II/IIT pyramidal cells were barely detectable, we used
THIP (a superagonist for extrasynaptic d-subunit-containing
GABAARSs) to enhance them see also [44, 45, 13]. In our
experiments, the values of GABAergic tonic currents were
estimated by the baseline current shift observed after PTX
(100 uM) application into the ACSF containing the following
drugs: GABAg receptor blocker CGP 55845 {(2S)-3-[[(1S)-
1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl]
(phenylmethyl)-phosphinic acid), 1 uM}, blockers of
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glutamate receptors DNQX (6,7-dinitroquinoxaline-2,3-
dione, 20 uM) and APV [(£)-2-amino-5-phosphonopentanoic
acid, 100 uM], TTX (block the firing of action potentials,
1 uM), and THIP (20 pm). All the drugs were purchased from
Sigma-Aldrich (Poland) except TTX and THIP, which were
from Latoxan (Poland) and Tocris Bioscience (UK), respec-
tively. The average tonic currents were normalized to the
membrane cell capacitance (C,,) and expressed as absolute
current density (pA/pF). The membrane capacitance was cal-
culated as the ratio of the membrane time constant and the
input resistance, while membrane time constant was obtained
from the exponential fit to the time course of the membrane
voltage (in the current clamp mode) in response to injection of
a small hyperpolarizing current. For each considered type of
neurons (pyramidal neurons, FS interneurons, NFS interneu-
rons), tonic GABAergic currents were recorded in slices from
naive, CS + UCS, and PSEUDO CS + UCS groups. Statistical
comparisons of electrophysiological data were performed
with one-way ANOVA test or one-way ANOVA on ranks test
in the case of non-normality. The critical level of significance
was set at 0.05.

In Situ Zymography and Immunofluorescence

Three hundred fifty-micrometer-thick brain slices were im-
mersed in alcoholic fixative and then embedded in pure
wax (Science Services, Munchen, Germany) according to
procedure described in detail by Wiera et al. [46]. Four-
micrometer-thick sections of fixed, wax-embedded brain
tissue were cut on rotary microtome (Leica, RM 2255,
Germany) and mounted on Superfrost Plus slides
(Menzel Gléser, Germany). For localization of gelatinolytic
activity, in situ zymography was performed as described
previously by Wiera et al. [46]. First, coronal sections
were dewaxed in 99.8 % ecthanol (37 °C, 3 x 10 min),
rehydrated with distilled water (room temperature,
3 x 10 min), and incubated in tap water (37 °C,
90 min). Next, fluorogenic substrate—DQ-gelatin (1:100
dilution in manufacturer’s buffer, Invitrogen, USA)—was
put on the top of each tissue section and incubated in the
dark at 37 °C. After 80 min, the sections were rinsed with
buffer saline with 0.025 % Triton X-100 (TBS-Tx, three
times, 15 min) and then blocked for 1 h with 20 % nor-
mal horse serum (NHS, Vector Laboratories, USA),
washed with TBS-Tx (3 times, 15 min), and finally incu-
bated overnight (at 4 °C) with 2 % NHS together with
diluted primary antibodies against vesicular glutamate
transporter 2 (VGLUT2, 1:500, polyclonal, Synaptic
System). On the next day, sections were washed with
TBS-Tx (three times, 15 min), incubated with diluted sec-
ondary antibodies (AlexaFluor 568 donkey anti-rabbit,
1:1000) for 2.5 h at RT, then rinsed using TBS-Tx, and
finally mounted with Fluoroshield.
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Image Acquisition and Analysis

DQ-fluorescence (DQ-FL) was visualized using an
Olympus Fluoview 1000S laser scanning confocal mi-
croscope (Olympus, Japan) in 4-um thin sections. The
sections were additionally stained for VGLUT2 which is
a marker of thalamocortical axon terminals [47]. This
staining enabled us to visualize the barrels and to esti-
mate the DQ-fluorescence signals at puncta in the close
vicinity of the glutamatergic thalamocortical axon termi-
nals [Fig. 5a, b and 6¢]. Then, the analysis was focused
on “trained” barrel B (objective x 40), and we acquired
the images of the layer II/IIl at the same cortical col-
umn. In the same section, we also imaged the “non-
trained” barrels (D and E) and layers II/III located
above them using identical acquisition parameters. The
mean DQ-FL signal inside the barrels B, D, and E and
in the layer II/IIl of the corresponding cortical columns
was analyzed using ImagelJ (http://rsb.info.nih.gov/ij/)
software. Since fluorescence from cytoplasmic and
extracellular compartments were not distinguishable,
the mean fluorescence intensity was calculated as an
averaged signal following exclusion of nuclei which
could be easily distinguished both morphologically and
by a high fluorescence intensity (Fig. 5b). The mean
DQ-FL signal was also analyzed with respect to the
background value, which was determined for each indi-
vidual section from at least three measurements of fluo-
rescence intensity in areas which contained no clearly
compartmentalized structures. To quantify the DQ-FL
signals at glutamatergic terminals, sections stained with
VGLUT2 were considered. First, images were
thresholded using Otsu’s automatic method. Next, the
selection of VGLUT?2 positive puncta inside the barrels
B, D, and E was created and transferred to the DQ-
gelatin image (the same image, different wavelength ac-
quisition channel). Finally, mean DQ-FL intensity for
the all VGLUT2 positive puncta (i.e., the respective
selection) was measured. Statistical analysis was per-
formed using paired ¢ test with significance levels of
*p < 0.05.

Results

Associative Learning Affects Spike Timing-Dependent
LTP in the Vertical Pathway Between Layer IV and Layer
II/III in the Same Barrel Column

First, we have checked whether learning affected the intrinsic
electrophysiological properties of pyramidal neurons in layer
II/III. We compared the following properties determined for
pyramidal cells in slices from CS + UCS versus PSEUDO CS

+ UCS group as well as cells in slices prepared from naive
animals: resting membrane potential V,,,, input resistance cal-
culated from responses to small hyperpolarizing current steps
R;, or depolarizing ones R;,q, AP amplitude, fAHP, AP half-
width, mean gain, AP threshold, membrane time constant 7,
and mean threshold. As shown in Table 1 (Online Resource
1), sensory learning had no significant effect on the prop-
erties of excitatory cells in layer I/IIT (»p > 0.05, ANOVA
on ranks). Thus, we next tested whether the basic proper-
ties of the EPSPs evoked by basal stimulation in the verti-
cal pathway between layer IV and layer II/IIl in the same
barrel column showed differences among considered groups
(CS + UCS, PSEUDO CS + UCS, naive). The average
amplitude and slope of EPSPs during the baseline record-
ings were 2.34 + 0.41 mV and 0.8 £ 0.12 mV/ms (n = 12),
respectively, in PSEUDO CS + UCS group and
2.09 £ 0.21 mV and 0.78 £ 0.05 mV/ms (n = 21) in the
naive group. Behavioral training did not affect EPSP am-
plitude or slope (2.26 £ 0.22 mV, 0.82 + 0.075 mV/ms,
n =19, p > 0.05, ANOVA on ranks). Thus, associative
learning had no effect on considered electrophysiological
properties of layer II/IIl pyramidal neurons or baseline
EPSPs recorded in this layer. Since synaptic plasticity is
commonly believed to be a substrate for cognitive process-
es, it can be expected that sensory learning might interfere
with long-term plastic changes in the considered model. To
verify this possibility, we checked whether behavioral train-
ing affected the susceptibility of layers IV to II/III vertical
pathway to develop long-term plasticity following applica-
tion of pairing protocols in the “trained” barrel. To this
end, we first checked whether spike timing-dependent
LTP was affected by previous classical conditioning. As
expected, application of forward pairing protocol induced
a stable long-term potentiation in pyramidal neurons in
control slices prepared from naive or PSEUDO CS +
UCS mice (mean increase in EPSPs was 1.33 + 0.13,
n=29 and 1.29 £ 0.09, n = 5, in naive and PSEUDO
CS + UCS, respectively, p < 0.05, unpaired ¢ test,
Fig. la, c). Intriguingly, in slices from animals which
underwent classical conditioning procedure (CS + UCS
group), t-LTP was completely abolished showing even a
tendency to decreased EPSP values postpairing
(0.85 = 0.12 with respect to baseline level, n = 11,
Fig. la, c¢). Notably, EPSPs measured in control and CS
+ UCS groups showed significant difference as early as
15 min after t-LTP induction and remained stable through-
out the entire recording period (p < 0.05, ANOVA,
Fig. la). These results clearly indicate that the sensory
learning (CS + UCS) has a profound impact on the synap-
tic plasticity in the considered model by preventing the t-
LTP. It is interesting to test whether learning in classical
conditioning paradigm affects also t-LTD in the same pro-
jection, and to address this issue, t-LTD was induced using
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Fig. 1 Associative learning prevents t-LTP induced by spike timing-
dependent protocol but does not affect t-LTD in vertical pathway from
layer IV to layer II/I1I. a Averaged time course of relative EPSP amplitude
before and after application of forward pairing protocol inducing t-LTP.
Note that there was no difference in the extent of EPSP potentiation
between naive (filled circles) and pseudoconditioning (open circles)
groups, but in CS + UCS group of mice (open triangles), t-LTP is
prevented by classical conditioning with EPSPs showing a tendency to
decrease with respect to the baseline values. b Averaged time course of
relative EPSP amplitude before and after reverse forward pairing protocol
inducing t-LTD. Note that behavioral training had no significant effect on
the extent of depression in the considered groups (CS + UCS, open
triangles; naive mice, filled circles; PSEUDO CS + UCS group, open
circles). ¢, d Statistics of averaged EPSP amplitude measured at 30—
35 min postpairing. Bars in ¢ represent the mean (+ SE) EPSP amplitude
ratio in the forward pairing protocol inducing t-LTP (a) whereas d shows
respective statistics for data related to t-LTD induction (b) recorded from
naive, pseudoconditioned, and trained animals (Asterisk indicates signif-
icant difference between CS + UCS and both control groups, p < 0.05,
ANOVA)

the reverse pairing protocol (Fig. 1b, “Materials and
Methods”). In all considered groups, t-LTD was successful-
ly induced but there were no significant differences in the
average reductions of EPSP amplitude between CS + UCS
(0.78 £ 0.12 of baseline levels, n = 6), PSEUDO CS +
UCS (0.52 + 0.16 of baseline levels, n = 6), and naive
(0.62 £ 0.06 of baseline levels, n = 8) groups of mice
(p > 0.05, ANOVA, Fig. 1b, d).
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Sensory Learning Affects Tonic Currents
in a Neuron-Specific Manner

Since synaptic plasticity at glutamatergic synapses can be af-
fected by the inhibitory drive, it seems interesting to check
whether the sensory learning affects inhibition. Interestingly,
tonic inhibition was found to be particularly prone to plastic
changes upon learning [13], and therefore, we decided to
check for the impact of sensory learning on the GABAergic
tonic currents in the layer II/III neurons in our model. To this
end, tonic currents were elicited by exogenous application of
solution containing 20 um THIP together with agents
blocking GABAg receptors, glutamate receptors, and firing
of action potentials (see “Materials and Methods™). The am-
plitude of tonic current elicited by THIP was assessed by
blocking it by 100 uM PTX (Fig. 2a). The mean values of
tonic currents normalized to membrane capacitance were
0.27 £ 0.06 pA/pF (n = 18, pyramidal neurons),
241 +0.7 pA/pF (n = 7, FS), and 0.89 + 0.19 pA/pF (n = 6,
NFS) measured from slices prepared from the naive animals.
As shown in Fig. 2b, there were no significant differences in
the absolute tonic current density measured from pyramidal
neurons in any considered experimental group (naive,
PSEUDO CS + UCS, and CS + UCS; p > 0.05, ANOVA on
ranks). In the case of both types of interneurons, there was no
difference between tonic current density in the naive and
PSEUDO CS + UCS groups (FS neurons = 2.41 £ 0.7 pA/
pF, n =7, naive; 2.16 = 0.53 pA/pF, n = 7, PSEUDO CS +
UCS; NFS neurons = 0.89 + 0.19 pA/pF, n = 6, naive,
1.21 £ 0.45 pA/pF, n = 5, PSEUDO CS + UCS; p > 0.05,
ANOVA on ranks), but this current in the CS + UCS group
showed significantly smaller values than in the two controls
(FS neurons = 1.03 = 0.33 pA/pF, n = 4; NFS
neurons = 0.185 + 0.03 pA/pF, n = 6; p < 0.05, ANOVA on
ranks, Fig. 2c¢, d). Additionally, we have checked
whether intrinsic electrophysiological properties of FS
interneurons in layer II/III are affected by classical con-
ditioning training. NFS interneurons have not been ana-
lyzed because of their heterogeneity. We have not ob-
served any significant changes in properties of FS in
our model (data not shown).

Altogether, these results provide evidence that behavioral
training strongly downregulates tonic currents in considered
here two types of interneurons but has no effect on this current
in the pyramidal neurons.

Spike Timing-Dependent LTP in Layer II/III Barrel
Cortex Is Dependent on Metalloproteinase Activity

Previous data reported a crucial role of matrix metalloprotein-
ases in mechanisms of synaptic plasticity, mainly in the hip-
pocampal LTP. It raises a question about the role of these
enzymes in regulating the synaptic plasticity in barrel cortex
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Fig. 2 Classical conditioning paradigm affects THIP-elicited tonic cur-
rents in layer II/IIl in a neuron-specific manner. a Examples of tonic
current recordings from excitatory (PC pyramidal cells) and from inhib-
itory (FS fast spiking; NFS non-fast spiking) neurons located in layer II/
III of slices from naive mouse, evoked by the d-subunit preferring
GABA, agonist THIP. Bars above traces indicate applications of drugs
specified above. b—d The mean (+ SE) absolute current densities recorded
from slices prepared from naive, pseudoconditioned, and trained animals
in layer II/III excitatory cells (b) and interneurons (¢ FS neurons, d NFS
neurons). (Asterisk indicates significant difference between CS + UCS
and both control groups for the specified type of neuron, p < 0.05,
ANOVA on ranks)

which has not been studied thus far. Thus, the next step was to
assess the involvement of the metalloproteinase activity in the
induction and consolidation of the spike timing-dependent
synaptic plasticity in the considered pathway. To this end,
we first checked the impact of FN-439 (Calbiochem, USA),
a broad-spectrum inhibitor of matrix metalloproteases, on
EPSPs and intrinsic electrophysiological properties of pyra-
midal neurons in layer II/IIl and on the basic properties of V-
/11T pathway EPSPs. Under control conditions, the mean
baseline EPSP slope and amplitude were 0.82 £ 0.25 mV/
ms, n = 10, and 1.89 = 0.23 mV, respectively. FN-439
(180 uM) was applied 15 min before recordings and was
maintained throughout the experiment. As shown in Table 2
(Online Resource 1), no changes in properties of pyramidal
neurons were observed in the presence of this inhibitor.
Moreover, bath application of FN-439 did not influence basal
EPSP slope or amplitude (0.82 = 0.16 mV/ms, n = 10, and
2.03 +0.28 mV; p > 0.05, unpaired ¢ test).

The next step was to check the impact of MMP activity on
synaptic plasticity in layer IV-II/III vertical pathway. In

control conditions, application of the forward pairing protocol
yielded t-LTP with the mean EPSP amplification of
1.58 £ 0.31 (n = 7, Fig. 3a, 30-35 min postpairing).
Interestingly, superfusion of slices with solution containing
FN-439 (starting from 15 min before t-LTP induction)
prevented induction of this form of plasticity (Fig. 3a).
Moreover, in the presence of FN-439, EPSP amplitude (rela-
tive to baseline) showed a progressive reduction and, after
approximately 20 min, EPSPs reached 0.62 + 0.12 of baseline
level (n = 5, p < 0.05, unpaired ¢ test, Fig. 3a). As shown in
Fig. 3c, the average level of t-LTP at 30-35 min postpairing
was reduced to 0.56 = 0.12 of baseline level (n = 5, p < 0.05,
unpaired ¢ test). This observation may suggest that
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Fig.3 Induction of t-LTP but not of t-LTD in vertical pathway from layer
IV to layer II/I1I of barrel cortex requires MMP activity. a Forward pairing
protocol induced t-LTP in layer II/IIT of barrel cortex which is impaired in
FN-439 treated slices (open circles) in comparison to that in control slices
(filled circles, a). MMP blocker was applied 15 min before the recordings
and was present throughout the experiment (black bar). b Time course of
EPSP depression (¢-LTD) after pairing the EPSP with the somatic current
injection in control (filled circles) and FN-439-treated slices (open
circles). Application of FN-439 did not significantly affect the extent of
t-LTD. ¢, d Statistics for the t-LTP (b) and t-LTD (¢) magnitude (mea-
sured at 30-35 min postpairing) recorded from layer II/IIl pyramidal
neurons in control and in FN-439-treated slices. Data are expressed as
the mean EPSP amplitude (+ SE, asterisks indicate significant difference,
p < 0.05, unpaired ¢ test)

@ Springer



6730

Mol Neurobiol (2017) 54:6723—-6736

pharmacological blockade of MMPs not only suppress the t-
LTP but may shift this system towards LTD. Taking this into
account, we checked whether t-LTD was sensitive to block-
ade of these enzymes and reverse timing-dependent plastic-
ity protocol was used to induce t-LTD in the layer IV/III in
control conditions and in the presence of FN-439. No sig-
nificant effect of this blocker on the t-LTD characteristics
was found (magnitude of t-LTD was 0.66 + 0.26, n = 6,
and 0.75 £ 0.13, n = 5, in controls and in FN-439 treated
slices, respectively, p > 0.05, unpaired ¢ test, Fig. 3b, d).
Thus, in the considered pathway, MMP inhibitor FN-439
impaired t-LTP but had no effect on t-LTD evoked by
pairing protocols. An important problem in interpreting
our results is that FN-439 is a broad-spectrum MMP inhib-
itor that at the concentration used in the present study
(180 uM) inhibits MMP-1, MMP-3, MMP-8, MMP-9,
and MMP-2 [48] raising thus a question which MMPs
are actually involved in regulation of synaptic plasticity in
this model. To address this issue, we tested the impact of
the following more specific MMP inhibitors: SB-3CT that
at concentration used in the present study (10 uM) was
found to selectively inhibit MMP-2/9 [49—51] and NNHG
that at 10 uM concentration inhibits MMP-3 [52] but also
inhibits other MMPs: MMP-1, MMP-8, MMP-12, MMP-
13, and MMP-2 [53, 54], according to product data sheet.
For the sake of consistency with the previous experiments,
we first examined how MMP inhibition affects baseline
synaptic transmission and intrinsic electrophysiological
properties of LII/III pyramidal neurons. In the case of base-
line synaptic transmission, we found no significant effects
of the solvent (DMSO at 0.1 % v/v), SB-3CT, or NNGH
(in control conditions, EPSP slope and amplitude were
0.73 £ 0.15 mV/ms and 2.22 £ 038 mV, n = 7, and the
EPSP slopes and amplitudes in the presence of chemical
compounds were 1 = 0.21 mV/ms, 3 + 0.83 mV (n = 6);
0.84 = 0.23 mV/ms, 1.79 £ 0.23 mV, (n = 6);
0.67 £ 0.23 mV/ms, 2.65 £ 0.66 mV, (n = 5) for DMSO,
NNGH, and SB-3CT, respectively. In addition, intrinsic
electrophysiological properties of LIIVIII pyramidal neurons
were not affected by DMSO, NNGH, or SB-3CT treatment
(Table 3 and Online Resource 1). Next, we evoked t-LTP
by applying forward pairing protocol in slices prepared
from control animals in the presence of DMSO (0.1 %
v/v) and found that the extent of t-LTP was stable
(1.18 £ 0.09, n = 6, Fig. 4a) but apparently smaller than
in the case of control determined for ASCF without vehicle
(1.39 £ 0.10, n = 6). This implies that although DMSO
weakens the ability to develop this type of plasticity, stable
t-LTP could be still routinely induced. Interestingly, in the
presence of selective inhibitor of MMP-2 and MMP-9, SB-
3CT (10 uM), t-LTP was completely abolished (relative
EPSP amplitude 0.78 + 0.14, n = 6, p < 0.05, unpaired ¢
test, Fig. 4a, c). However, application of NNGH did not
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Fig. 4 t-LTP is sensitive to SB3-CT (10 uM) but not to NNGH (10 uM)
indicating involvement of gelatinases and the lack of effect of MMP-3 in
the barrel cortex synaptic plasticity. a Time course of relative EPSP am-
plitude after forward pairing protocol, recorded from control slices (filled
circles) and from slices treated with MMP-2/9 inhibitor SB3-CT (open
circles, a). Note that t-LTP is suppressed by SB3-CT. MMP-2/9 blocker
was added into ACSF 15 min before recordings and was present through-
out the recordings (black bar). b Time course of EPSP potentiation after
forward pairing protocol in control slices (filled circles) and in the pres-
ence of MMP-3 inhibitor NNGH (open circles). Application of NNGH
caused no significant changes of t-LTP. The black horizontal bar repre-
sents the application of drug. ¢, d Average values of t-LTP measured at
30-35 min after forward pairing protocol. ¢ Mean EPSP amplitude ratio
recorded from layer II/IIl pyramidal neurons in control and SB3-CT-
treated slices while the average EPSP amplitude ratio in NNGH-treated
slices (in comparison to control slices) are presented in d (Asterisk points
out significant difference, p < 0.05, unpaired ¢ test)

significantly change the time course or extent of EPSP
potentiation and the relative EPSP amplitude potentiation
was 1.20 £ 0.018 (n = 6, 30-35 min postpairing,
p > 0.05, in comparison to control, unpaired ¢ test,
Figs. 4b, d). These results indicate that a critical depen-
dence of t-LTP on MMPs can be attributed to the activity
of gelatinases. Notably, MMP-3, known to interfere with
synaptic plasticity phenomena in other pathways, appears
not to contribute to t-LTP in the present model as NNGH
had no effect on the observed plasticity.
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Classical Conditioning Training Is Associated
with Increased Activity of Gelatinases in Layer IV
of Barrel Cortex

Since MMPs are known to be strongly involved in formation
of memories upon cognitive learning and because, in our
model, they are necessary for induction of synaptic plasticity,
we assessed gelatinase activity by using in situ zymography
on cortical slices collected from animals which underwent the
classical conditioning training and from respective controls.
For this purpose, the DQ-fluorescence intensity of layers IV
and I/III was assessed in 4-um-thin sections as described in
“Materials and Methods and Fig. 5.” We found that behavioral
training resulted in a moderate but significant increase in the
mean DQ-FL in “trained” barrel B relative to “non-trained”
barrel D in layer IV of barrel cortex (1.13 £ 0.04) or relative to
“non-trained” barrel E (1.16 £+ 0.06; average values in arbi-
trary units [AU] were 630.4 + 63.7, 538.9 + 58.4, and
530.8 £+ 71.2 for barrels B, D, and E, respectively; n = 6;
p < 0.05; paired ¢ test). Moreover, there were no significant
differences in the intensity of fluorescence between “non-

Fig. 5 Gelatinolytic activity is a
assessed by in situ zymography in
barrels visualized by
immunostaining for VGLUT2. a
Representative confocal image of
a barrel cortex section of mouse
(%10 magnification) in brain
slices fixed after sensory learning,
immunostained for VGLUT2 to
visualize the barrels (/eff) and its
magnification (column D)
showing in situ zymography
(green) and staining against
VGLUT?2 (orange) together
(middle) and in situ zymography
only (right). Letters mark barrels
and the “trained” one is denoted
as B. b Exemplary confocal
immunofluorescence image of
layer IV barrel cortex (x40
magnification) containing barrel
B (indicated with the blue line). In
situ zymography (green) and
staining against VGLUT2
(orange) are visualized. Upper
inset: the area (vellow) in which
DQ-FL intensity was quantified
(see “Materials and Methods” for
details). Bottom inset: a higher
magnification image in which
VGLUT2-positive puncta
(orange) and in situ gelatinolysis
(green) are visible

VGLUT2
250 pum

trained” barrel E and “non-trained” barrel D (1.03 + 0.04;
n = 6; p > 0.05; paired ¢ test). Considering only the values
above the tissue background, the increase in the mean DQ-FL
in “trained” barrel B relative to “non-trained” barrel D or E
was even larger (B/D = 1.89 + 0.23, B/E = 1.65 £ 0.29,
D/E = 0.93 + 0.1; average values in AU were 97.8 = 17.8,
54.6+9.1,and 57.2 + 8.6 for barrels B, D, and E, respectively;
n = 6; p < 0.05; paired ¢ test; Fig. 6a, b). Surprisingly, no
changes were observed in the total DQ-FL in layer II/III lo-
cated above barrels B, E, and D (Online Resource 2).

To see whether there were any changes of the mean DQ-FL
in the closest vicinity of glutamatergic terminals, we measured
the fluorescence intensity within VGLUT2-positive puncta
(Fig. 6¢). We observed that, after behavioral training, there
was a significant enhancement of the mean DQ-FL in the
VGLUT2-positive puncta in “trained” barrel B but not in
barrels D and E: B/D = 1.09 + 0.04, B/E = 1.14 £ 0.06, and
D/E = 1.03 £ 0.02 (B/D = 1.36 + 0.07, B/E = 1.21 £ 0.12,
D/E = 0.95 + 0.09; n = 6; p < 0.05; paired ¢ test). Average
values in AU were 649.1 + 63.5, 555.9 + 61.7, and
548.1 + 69.1, for barrels B, D, and E (116.4 + 15.8,

VGLUT2 + DQ- DQ-gelatin
gelatin column D] column D 79®m

BatrelB

VGLUT2 + DQ-gelatin
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Barrel B DQ-gelatin

BarrelD DQ-gelatin

Fig. 6 Experience-dependent plasticity in barrel cortex is associated with
enhancement of gelatinase activity within the “trained” barrel in layer IV
and in the VGLUT2-positive puncta within this barrel. a High-
magnification images of in situ zymography inside the “trained” barrel
B (left) and “non-trained” barrel D (right). Note a difference in DQ-
fluorescence intensities between “trained” and control barrels. Scale
bar, 10 um. b Statistics of mean DQ-FL intensity of mouse barrel
cortex inside the “trained” barrel B (black circles) and “non-trained”
barrels: D (white circles) and E (gray circles). Each single circle

86 £12.4, 87.1 £6.5; n = 6; p <0.05; paired ¢ test; Fig. 6d,
values above the background levels). These results indicate
that behavioral learning in the considered paradigm is associ-
ated with enhancement of gelatinase activity in a manner that
is specific for “trained” barrels within VGLUT2-positive
puncta in layer IV of barrel cortex.

Importantly, in situ zymography reveals activity of both
gelatinases but activity of MMP-2 is localized mainly in nuclei
[55], which was excluded from our analysis and therefore the
observed fluorescence signal can be ascribed to MMP-9 activity.

Discussion

The present data demonstrate that LTP induction by STDP pro-
tocol shows a strong dependency on prior sensory learning in the
classical conditioning paradigm in which vibrissae stimulation is
paired with electrical shock to the tail. Strikingly, this behavioral
training results in the inability of the system to develop STDP-
induced LTP, showing even a trend to reverse the “polarity” of
this plasticity to LTD (Fig. 1). It is tempting to explain this
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represents the average value obtained for a single slice (Asterisk
indicates significant difference, p < 0.05, paired ¢ test). ¢ Higher
magnification of the images presented in a showing in situ zymography
(green) and staining against VGLUT?2 (orange) together. Scale bar, 5 um.
d Statistics of mean DQ-FL intensity in the VGLUT2-positive puncta
within the “trained” barrel B (black circles) and “non-trained” barrels:
D (white circles) and E (gray circles). Each single circle represents the
average value obtained for a single slice (Asferisk indicates significant
difference, p < 0.05, paired ¢ test)

observation by proposing that training could occlude the plastic-
ity in the considered pathway. Such an effect was observed, for
instance, by Rioult-Pedotti et al. [56] for rat motor cortex where
the LTP was reduced and the LTD was enhanced in layer II/III
horizontal connections as a result of behavioral training.
Moreover, Whitlock and Bear [57] have found that aversive
learning was associated with reduced LTP in the CA3-CA1 hip-
pocampal projection, indicating that occlusion of plasticity by
behavioral learning could be a widespread feature of neuronal
networks occurring also beyond the neocortex. However, ob-
served here changes in plasticity are unlikely to result from a
simple LTP occlusion as basal EPSPs in naive (or PSEUDO CS
+ UCS) and trained (CS + UCS) animals did not show any
significant difference. Although the mechanism of this strong
interference of behavioral training with STDP-induced LTP is
not clear, it is likely to reflect modifications of both excitatory
and inhibitory synapses affecting thus complex interplay be-
tween excitation and inhibition at the network level and some
aspects of these hypothetical scenarios are discussed below.
First of all, STDP protocol applied in this study concermns a
complex circuitry of excitatory and inhibitory connections
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comprising a variety of neurons whose projections show a
diversity of plastic properties. It needs to be also stressed that
STDP protocol is believed to better mimic naturally occurring
activity patterns than a “classic” tetanization and therefore is
likely to be more “compatible” to interfere with behaviorally
induced plasticity than the latter protocol. Indeed, STDP has
been proposed as a possible mechanism for experience-
dependent plasticity in the neocortex [22, 58, 59]. Among a
variety of possible scenarios whereby behavioral training
could affect the susceptibility of the considered system to
induce t-LTP, there is a particularly abundant body of evidence
for functional and structural changes occurring at synapses in
the layer IV. For instance, it has been shown that whisker
conditioning led to the appearance of more inhibitory synap-
ses on spines in layer IV of somatosensory cortex and increase
in GABA concentration in the presynaptic terminals of these
synapses [7, 8]. In general, several lines of evidence indicate
that behavioral training strongly upregulates GABAergic sys-
tem in the barrel cortex, especially in the layer IV, which may
affect synaptic plasticity [10, 12, 13, 60]. Investigations of
various types of neurons in barrel cortex circuits revealed that
associative learning causes multiple plastic changes in a
neuron-specific manner. Inside the barrel receiving input from
the stimulated whiskers, density of somatostatin-containing
interneurons is changing and GABAergic tonic current is up-
regulated in excitatory cells but it decreases in FS interneurons
[11, 13]. Moreover, classical conditioning training affects also
phasic GABAergic currents leading to an increase in the mean
frequency of sSIPSPs in excitatory but not in inhibitory neurons
located in “trained” barrel [12]. Thus, available evidence
clearly indicates that behavioral training has a major impact
on GABAergic inhibition, mainly within the layer IV of the
barrel cortex. Due to strong vertical connections within layers,
these alterations may provide a potentially potent mechanism
controlling induction of plasticity also in the layer II/III.
Notably, our morphological observations related to
plasticity-induced upregulation of gelatinase activity concern
the layer IV while in LII/III it was not found, further
supporting a key role of the layer IV in shaping the signaling
and thereby the plasticity in the barrel cortex. In the present
study, we extend our knowledge on behaviorally induced plas-
ticity by providing the first evidence that classical condition-
ing results in a strong decrease in GABAergic tonic currents in
the layer II/III interneurons but not in pyramidal cells (Fig. 2).
It can be suggested that upregulation of inhibitory drive both
in layer IV and II/IIl may represent an efficient control mech-
anism resulting in tuning the synaptic plasticity in response to
whisker conditioning. Decrease in GABAergic tonic currents
in the interneurons may have also a strong impact on their
excitability and thereby on the activity of principal neurons
innervated by these interneurons in this layer. Due to strong
and dense connections between FS and excitatory cells, fre-
quency of GABAergic phasic currents in principal neurons

will be probably increased as it was observed in layer IV
[12]. On the other hand, in the scenario in which a NFS inter-
neuron innervates another GABAergic neuron which, in turn,
directly inhibits the pyramidal cell, a decrease in GABAergic
tonic current in the NFS neuron (i.e., increase in its excitabil-
ity) would have a disinhibitory effect on the principal cell.
Indeed, for example, bipolar cells located in layer II/III inner-
vate other local interneurons [61]; thus, a decrease in bipolar
cell tonic currents would lead to disinhibition of principal
neurons. It needs to be recognized that our identification based
on the firing pattern is not sufficient to precisely determine the
type of interneurons from which recordings were made.
However, interneurons classified here as FS GABAergic neu-
rons are likely to be mainly represented by basket cells as they
are the largest group among LII/III cortical interneurons [61].
On the other hand, NFS are strongly diversified and we cannot
precisely indicate specific types of interneurons involved.

In the light of well-established, abovementioned morpho-
logical and functional plasticity in the barrel cortex, involve-
ment of extracellular proteolysis in these processes appears
particularly interesting. In the present study, we show for the
first time that electrophysiologically induced LTP by STDP
protocol in the LII/III excitatory cells critically depends on
MMP activity. Thus, in the barrel cortex, dependence of LTP
on MMPs shows similarity to previous findings mainly in
hippocampus [26, 28, 35, 55, 62, 63] but also in amygdala
[29] and in prefrontal cortex areas [27]. It is noteworthy that
the impact of MMPs has been demonstrated here for plasticity
elicited by STDP which, as already mentioned, is believed to
more closely mimic physiological activity patterns than a
“classic” tetanization. Intriguingly, LTP dependence on
MMPs has been demonstrated here in the model in which
the effect of behavioral learning on this plasticity is particu-
larly strong. In the light of this finding, it is not surprising that
alteration of MMP activity may potently interfere with some
cognitive functions [64] and neuroplasticity phenomena in the
barrel cortex. Kaliszewska et al. [38] investigated the model of
sensory input deprivation and have shown a marked expan-
sion of the spared row representation in response to explora-
tion of new environment and that this plasticity was associated
with an increase in MMP-9 activity, while in MMP-9 KO
model, plasticity was found to be reduced. Importantly,
Kaliszewska et al. [38] observed that in the MMP-9 knockout
mice, a modest but significant decrease in plasticity took place
in layer IV and also in LII/III, indicating that in the case of
complete suppression of MMP-9 activity, plasticity in LII/III
might be also affected. This is consistent with our observation
that STDP plasticity in pyramidal cells in the layer II/III was
sensitive to MMP-9 blockade. However, activity of MMP-9,
estimated by in situ zymography, was not affected by associa-
tive learning in this layer (Online Resource 2). Thus, in line
with this evidence, observed here sensitivity of t-LTP to spe-
cific MMP-9 blocker (SB-3CT) and plasticity-related increase
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in extra-nuclear gelatinolysis point to the crucial role of MMP-
9 in these processes. Impact of MMPs on plasticity in the
barrel cortex has been studied also in a pathology model of a
photothrombotic stroke which has been demonstrated to dis-
rupt use-dependent plasticity in the cortex neighboring to the
infarct site [65] but inhibition of MMPs counteracted this im-
pairment [37]. MMPs have been also shown to be involved in
the neuroplasticity in other cortical regions. Spolidoro et al.
[66] have revealed that inhibition of MMPs prevents the po-
tentiation of non-deprived eye responses to monocular depri-
vation. More recently, Aerts et al. [36] provided evidence that
genetic inactivation of MMP-3 affected the structural integrity
and plasticity of the mice visual cortex. Thus, our findings
appear consistent with growing evidence that MMPs play a
pivotal role in shaping both structural and functional plasticity
and related cognitive functions of the cortex. However, in the
present study, pharmacological evidence indicates that ob-
served effects are primarily due to involvement of MMP-9,
whereas MMP-3 blockade is ineffective, suggesting that in-
volvement of particular MMPs is pathway specific. In the
hippocampus, both electrophysiologically induced plasticity
as well as memory and learning have been shown to depend
on MMP-9 and MMP-3 [26, 30, 35, 62, 67, 68] but precise
contributions of these enzymes to specific hippocampal path-
ways remain to be determined. An important finding of the
present study is that behavioral training, besides affecting the
ability of considered pathway to develop plasticity, upregulat-
ed the activity and expression of MMP-9, although this effect
was restricted to the layer IV. As already mentioned above,
this observation could suggest that observed here impact of
behavioral training on LTP originates from complex network
alterations with a strong (if not predominant) contribution
from the layer IV. Moreover, following training, we observed
a significant enhancement of gelatinolytic activity in
VGLUT2-positive puncta which further indicates that plastic-
ity of these synapses is strongly related to the perisynaptic
activity of gelatinases.

However, whether or not MMPs are involved in
GABAergic structural and functional plasticity, which was
found to be particularly prominent in the cortical plasticity,
still awaits a systematic study. In general, in-depth investiga-
tion of GABAergic and glutamatergic plasticity is needed to
precisely describe plasticity-induced reorganization of cortical
circuits [69-71]. The mechanisms underlying structural and
functional rearrangements of neuronal circuits are far from
being understood, but in the past decade, extensive body of
evidence accumulated that processing of extracellular matrix
by MMPs is involved in these processes [63, 72—74].

In conclusion, our data show that t-LTP in barrel cortex is
abolished in trained mice and that inhibition of MMP-9 activ-
ity disrupts STDP in this area. Additionally, considered here
behavioral learning is associated with plasticity of the
GABAergic tonic inhibition. We propose that these
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observations reflect MMP-dependent reorganization of corti-
cal circuits.
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