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Abstract: Many computer-aided diagnosis methods, especially ones with deep learning strategies, of
liver cancers based on medical images have been proposed. However, most of such methods analyze
the images under only one scale, and the deep learning models are always unexplainable. In this
paper, we propose a deep learning-based multi-scale and multi-level fusing approach of CNNs for
liver lesion diagnosis on magnetic resonance images, termed as MMF-CNN. We introduce a multi-
scale representation strategy to encode both the local and semi-local complementary information
of the images. To take advantage of the complementary information of multi-scale representations,
we propose a multi-level fusion method to combine the information of both the feature level and
the decision level hierarchically and generate a robust diagnostic classifier based on deep learning.
We further explore the explanation of the diagnosis decision of the deep neural network through
visualizing the areas of interest of the network. A new scoring method is designed to evaluate
whether the attention maps can highlight the relevant radiological features. The explanation and
visualization make the decision-making process of the deep neural network transparent for the
clinicians. We apply our proposed approach to various state-of-the-art deep learning architectures.
The experimental results demonstrate the effectiveness of our approach.

Keywords: computer-aided diagnosis; liver cancer; deep learning; visual explanation; multi-scale
representation; multi-level fusion

1. Introduction

Liver cancer, which mainly includes hepatocellular carcinoma in the setting of cirrhosis
and cholangiocarcinoma, is a serious threat to human health [1]. The early detection and
diagnosis of liver cancer is important to increase the chance of survival [2]. The biopsy is
currently the golden standard for cancer diagnosis, but it is invasive and not always viable
because of the location of the tumor [3,4]. Therefore, noninvasive imaging techniques,
such as computed tomography (CT) and magnetic resonance imaging (MRI), are currently
viewed as effective techniques for evaluating liver lesions. Indeed, based on the current
worldwide recommendations, guidelines and guidance documents, it is even possible
to make a diagnosis of hepatocellular carcinoma based on imaging criteria without the
need for a biopsy [5–10]. However, imaging criteria are still limited in terms of sensitivity
because of the need to maintain a high specificity for the diagnosis [5,9,10]. As such,
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many recent studies have been published thus far to improve the diagnosis of liver cancer,
especially in the setting of cirrhosis, and even to predict the progression of a liver lesion
into cancer [11–14]. Despite these improvements, many liver lesions, especially in the
setting of cirrhosis, are still deemed indeterminate [9]. With the rapid development of
artificial intelligence, the computer-aided diagnosis (CADx) technique on medical images
gradually becomes one of the effective ways to automatically diagnose diseases early [15].

The CADx methods of liver lesions try to classify lesions into benign, malignant
or different grades, automatically utilizing intelligent methods. In the traditional CADx
frameworks, hand-crafted features are extracted as the representations of the lesions and
then classified into different classes using traditional machine learning models, such as the
support vector machine (SVM), adaboost and random forest (RF). With the development of
deep learning techniques, deep learning-based CADx methods have arisen in recent years,
especially the convolutional neural network (CNN) architecture. Deep learning methods
brought obvious improvements to classification performance and became popular as time
passed.

Although the deep learning-based liver lesion diagnosis methods work well, they still
suffer from the following two problems: (1) most of such methods analyze the lesions in
medical images under only one scale (such as 70*70 voxels in [16]), which makes it easy to
ignore the overall feature information about lesions, resulting in unsatisfactory diagnosis
performance, and (2) the CNN is an end-to-end model, and the details of the data flow
inside it are invisible. Thus, it is hard to explain why and how the classification decision
is made and whether the decision is trustworthy. There may exist cases where the CNN
can gain perfect diagnosis performance, but the features used by the CNN to support
the decisions are irrelevant or incorrect. Such cases are quite unacceptable in the medical
imaging area, where a high degree of reliability is required. Therefore, it is essential to
explain the diagnosis decisions of CNNs.

In this paper, we propose a deep learning method with multiscale and multi-level
fusion of CNNs for liver lesion diagnosis in MR images, termed as MMF-CNN. Further-
more, we explore the interpretation of the diagnosis decision of the deep learning method.
The framework of the proposed method is illustrated in Figure 1. To extract as much
feature description of the lesions as possible, we explore large-, middle- and small-scale
representations of liver lesions. Then, we construct CNNs to extract the discriminative
features and classify the lesions into benign or malignant at different scales. As the features
and classifiers at multiple scales may provide complementary information [17], we present
a multi-level fusion method to combine them at the feature level and decision level hierar-
chically and arrive at a final diagnosis result. Different from the methods that terminate at
the diagnosis results, we further work on the explanation of the decision-making process
of the neural networks. We visualize the attention maps that show the areas of interest in
the CNN and further design a new scoring method to evaluate whether the CNN can react
to the true relevant radiological findings. With the explanation, the practitioner can make
sure whether the diagnosis result of the CNN is trustworthy, and the deep learning-based
CADx systems would build better trust and make a step forward in the clinical community.

In summary, the contributions of this paper are as follows:

(1) We introduce multi-scale representations of liver lesions. As the scales and shapes
vary among different lesions in MR images, it is inadvisable to predefine the scale
of patches in advance. The consideration of multi-scale representations can provide
better feature description of the lesions.

(2) We propose the multi-level fusion method of CNNs to generate a more robust and
stable classifier. At the feature level, we fuse the complementary feature information
of multi-scale lesion patches using a deep neural network. Then, at the decision level,
we propose an adaptive fusion method based on the Dempster–Shafer (D-S) evidence
theory to fuse the classification decisions of multiple CNN classifiers. Through the
multi-level hierarchical fusion, we mine the complementary information of multi-scale
lesion patches and obtain the final diagnosis result.
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(3) We propose a multiscale and multi-level CNN fusion framework which is applica-
tive to any CNN structure, including the self-defined structure or the widely used
typical structures. To show the superiority and generality of our method, we adopt
it and compare it with different models in the experiments. Furthermore, we try
to explain the difference in diagnostic performance among the different methods
through projecting and visualizing the extracted features of images. The visualized
features explained the performance difference.

(4) We explore the explanation of the diagnosis decision by providing attention maps that
show the supporting areas of the decision. A new scoring method of attention maps
is designed to evaluate whether the CNN classifiers can discover the true relevant
radiological features. Through the explanation, we can provide the diagnosis decision
and the reasons for making this decision simultaneously, which helps to improve the
reliability of deep learning-based CADx methods.

(5) Our method provides a new possible pattern for CAD in the clinical field through
providing the supports for diagnostic decision. Our visualized attention maps can
promisingly act as an important reference. For a new scanned medical image, our
deep learning diagnostic model can output the diagnostic decision and the attention
map for supporting the decision simultaneously. The clinician can first observe the
diagnosis result and then refer to the visualized attention map to make sure whether
the diagnostic model focuses on the right regions and whether the diagnosis result of
the deep learning model for this image is trustworthy.

The remainder of this paper is organized as follows. Section 2 describes the related
works. Section 3 presents the details of our proposed MMF-CNN approach. The experi-
mental results are discussed in Section 4. We conclude this work in Section 5.
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Figure 1. Framework of the proposed method for liver lesion diagnosis.

2. Related Work
2.1. Traditional CADx Methods of Liver Lesions

The traditional diagnosis methods of liver lesions mainly consist of two stages:
handcrafted feature extraction and lesion classification. The commonly used traditional
handcrafted features for liver image analysis include gray level co-occurrence matrices
(GLCM) [18,19], gray histograms [20], local binary patterns (LBPs) [21] and discrete wavelet
transforms (DWTs) [18]. The widely used traditional classification models include the
SVM [22,23], Bayes classifier [24], RF [25], artificial neural networks (ANNs) [26] and func-
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tional trees (FTs) [27]. By combining different feature extraction and classification models
together, various diagnosis approaches can be generated. For example, Xian et al. [23]
utilized the GLCM feature and SVM classifier to identify malignant and benign liver tu-
mors from ultrasound images. Poonguzhali et al. [26] employed the GLCM feature and
ANN classifier to detect texture differences in focal lesions and normal tissues in liver
ultrasound images. Mougiakakou et al. [28] used different types of texture features and
an ANN classification scheme for the classification of four types of hepatic tissues in CT
images. For a detailed discussion of handcrafted features and classifiers, please refer to [27]
and [29], in which reviews of different features and classifiers for computer-aided liver
cancer diagnosis are presented.

The traditional CADx methods are easy to understand, explain and implement. Aside
from that, the training of the models is efficient and does not need large-scale training
data. However, the performance of the handcrafted features is highly correlated with
the characteristics of the dataset. The handcrafted feature that is effective for one dataset
may not work well for another dataset. What is more, the accuracy performance of the
traditional CADx methods needs to be improved further.

2.2. Deep Learning-Based CADx Methods of Liver Lesions

In recent years, more and more attention has been attracted by deep learning-based
CADx methods. Deep learning-based methods generally employ a deep neural network
as the tool for target tasks, among which the CNN model is widely used. Generally, the
CNN can be used in two manners. The first method utilizes a CNN as a feature extractor
to extract innovative features from images. It allows the image itself to be used as the
input of the neural network. Therefore, feature extraction methods based on a CNN
enable much more information included in the extracted feature than the handcrafted
methods. Shen et al. [30] used a CNN model to obtain a set of globally discriminative
features in CT images. Then, the SVM and RF classifiers were employed to classify the
extracted features as benign or malignant. Except for the feature extractor, the CNN is more
commonly used as an end-to-end classifier system, employing the images as the input and
outputting the classification results. Yasaka et al. [16] used a CNN for the classification of
liver masses in dynamic contrast agent-enhanced CT. In the CNN, six convolutional layers,
three maximum pooling layers and three fully connected layers were used. This method
allowed for high discrimination between malignant versus category C and benign masses.
However, the sensitivity for diagnosing category B masses was not good. Wu et al. [31]
proposed a diagnostic system of liver disease classification based on contrast-enhanced
ultrasound imaging, in which the deep belief network is employed to classify benign and
malignant focal liver lesions. As is shown in this work, this method is better than the
other compared methods such as linear discriminant analysis (LDA), K-nearest neighbors
(KNN), the SVM and back propagation net (BPN) in terms of accuracy, sensitivity and
specificity. Romero et al. [32] incorporated the feature extraction of inception V3 combined
with residual connections for the discrimination between liver diseases in abdominal CT
images. Compared with a texture-based approach trained with SVMs, Inception-ResNet-V2
and Inception-V3, the proposed model with pre-trained weights from ImageNet performed
better in four out of the seven metrics, such as accuracy, balanced accuracy, F1 score and
recall. Hassan et al. [33] used a CNN to calculate the latent features from unlabeled liver
images in an unsupervised manner and then used a softmax layer to diagnose the different
focal liver diseases. This proposed system achieved results of 97.2%, 98% and 95.7% in
the criteria of accuracy, sensitivity and specificity, respectively, which were superior to the
compared methods, such as the multi-support vector machine, KNN, and naive Bayes
classifier.

The deep learning-based CADx methods can extract more discriminative feature
representations from the input images and gain high accuracy. However, the training of the
deep learning model is time-consuming. Aside from that, the decisions of deep learning
models are always hard to interpret.
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2.3. Deep Neural Network Interpretation Methods

While the deep neural networks enable superior performance in multiple tasks, their
lack of decomposability into intuitive and understandable components makes them hard
to interpret [34]. Thus, deep neural networks are often referred to as black box models.
Recently, researchers have made some efforts toward the explanation of deep neural
networks. The corresponding interpretation methods can be generally divided into two
strategies: closing the black boxes or opening the black boxes. The first strategy keeps
the neural network as a black box and tries to design interpretable surrogate models to
approximate the behavior of the neural network as closely as possible. For example, to
explore which part of the original input image is important for the decision-making of the
neural network, the authors of [35–37] segmented the original input image into different
patches and then used traditional classifier models to classify the combination of different
patch sets. Through comparison of the classification performances, each patch of the whole
image is assigned with a value of importance. For the second strategy, it tries to open
the black box and analyze the hidden layers of the neural network. Thus, the gradients,
parameters and neurons in the neural network are analyzed, and heat maps [38–40] and
activation map [41–44] are generated as the visualization results.

3. The Proposed Methods

Given a liver MR image, our goal is to output the classification result of benign or
malignant. The framework of our MMF-CNN approach is illustrated in Figure 1, which
consists of three parts: multiscale representation, multi-level fusion and visualization and
evaluation. Details of these three parts are given in this section.

3.1. Multiscale Representation

We explore the patch-based method for diagnosis, where lesion patches cropped
from the liver MR images are used as the input of the diagnosis framework. To extract
both local and semi-local complementary feature information, we propose a multiscale
sampling strategy. Three scales (large, middle and small) of patches were considered, such
as 256 × 256, 128 × 128 and 64 × 64 in voxels, which were used in the experiments of our
paper (Figure 2). For each lesion in the MR image, we cropped three scales of patches
covering this lesion.
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Due to the good performance of deep learning models, we used a CNN to learn the
globally discriminative feature representations from the image patches. Three CNNs were
built corresponding to the three scales, with each CNN trained using the patches of each
respective scale. For the structure of the CNNs, our method is applicable for any structure,
including the self-defined CNN structure or the widely used typical structures, such as
Resnet, VGG or Alexnet in our experiments. For training these three CNNs, different
strategies can be adopted, namely with or without transfer learning. Generally, for the case
where the network contains large amount of parameters and have little training data, the
transfer learning strategy can be used to support the training process. For the lightweight
networks such as Enet [45], the network can be trained from the initial state, where the
transfer learning is not adopted, like in the studies of Albert Comelli et al. [46] and Renato
Cuocolo et al. [47]. In the experiments in our paper, we adopted the widely used large-scale
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networks and adopted the transfer learning strategy. Each CNN was first pre-trained
using a traditional large set of images, such as the ImageNet database [48] used in the
experiments of our paper, and then fine-tuned using the patches of the corresponding
scales.

For each patch, we extracted the output of the feature extractor in the CNN to gain a
feature vector as the representation of it. Thus, for a lesion in an MR image, three feature
vectors were extracted corresponding to the three scales.

Aside from that, the last layer of each CNN output a binary diagnosis result about the
patch of the corresponding scale. Therefore, each CNN was also used as a classifier.

3.2. Multi-Level Fusion

To integrate and take advantage of the multi-scale complementary feature information
and increase the robustness of the classification, we fused the information at both the
feature and decision levels.

3.2.1. Feature-Level Fusion

Patches in different scales may contain different feature information of a lesion. Thus,
we fused the three scales of patches at the feature level and designed a three-layer neural
network for the fusion. We first concatenated the feature vectors of three scales of patches
in the input layer. Then, after the computation in two fully connected layers, the diagnosis
result of the fused feature was output.

For training this three-layer neural network for feature-level fusion, we initialized
the parameters of the network randomly and used the liver MR images for parameter
optimization.

3.2.2. Decision-Level Fusion

Up until now, we have had four CNN classifiers built for classification of a liver lesion
at the large, middle, small and feature-level fused scales. To obtain a more robust and stable
classifier, we further fused the classification results of these four classifiers. An adaptive
decision-level fusion method based on the D-S evidence theory is proposed for our fusion,
which is described as follows.

D-S Evidence Theory. The D-S evidence theory [49] deals with the uncertain informa-
tion reasoning problem. It considers each instance as a source of evidence and combines
this evidence using Dempster’s rule. Let Θ = {θ1, θ2, . . . , θn} be a finite set called the
frame of discernment of a problem, where θi (i = 1, 2, . . . , n) are mutually exclusive and
exhaustive elements. For each subset A of Θ, a probability can be assigned, which is called
the basic probability assignment (BPA). The BPA represents the knowledge of the evidence
about the problem, as well as the uncertainty incorporated in the information source. The
definition of the BPA should satisfy the following constraints:{

m(φ) = 0
∑

A⊂Θ
m(A) = 1 (1)

where φ is an empty set (i.e., the condition that cannot be true in any state).
Given w evidence over the same frame of discernment, this evidence can be combined

into a common agreement using the following combination rule:
m(A) = K−1 ∑

∩Ai=A

w
∏
i=1

mi(Ai)

K = ∑
∩Ai 6=φ

w
∏
i=1

mi(Ai)
(2)

In our work, the output of each of the four CNN classifiers can be regarded as an
instance of evidence. The frame of discernment is Θ = {b, m}, where b and m mean
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benign and malignant, respectively. A can be φ, {b}, {m} or {b, m}. A = {b, m} reflects the
uncertainty of the classifier for answering whether the classification is benign or malignant.

Then, we combined the classifier’s global classification performance for the whole
dataset and the local performance on a certain lesion together to define the BPA. For each
classifier i (i = 1, 2, 3, 4), we designed the BPA for lesion j as

mij(φ) = 0
mij({b}) = pb_ij ∗ acci
mij({m}) = pm_ij ∗ acci
mij({b, m}) = 1− acci

(3)

where acci is the classification accuracy of classifier i on the whole dataset and mij({b, m}) =
1− acci is the uncertainty of the classifier. pb_ij and pm_ij are the probabilities of being
benign or malignant given by classifier i on lesion j. As the output values of the CNN
classifiers were not in the range [0,1], we used a softmax function to transfer the outputs
into probabilities to get pb_ij and pm_ij.

Our Adaptive Fusion Method. In the fusion of the standard D-S evidence theory,
there exists a problem: the answers given by different evidence may conflict. When this
conflict happens, the fusion result may be mistaken, since it artificially increases the masses
of the compromise hypotheses [50]. In order to deal with the situations with conflicts and
without conflicts, we designed an adaptive fusion method. For a lesion, if no or low conflict
exists in the four evidences, we adopt the standard D-S evidence theory method to fuse
these four classifiers. Otherwise, we compute the credibility [51] of each evidence. Then,
we select the evidence with the highest credibility and follow the decision of it as the fusion
result. The credibility of one piece of evidence measures the degree that it is supported by
other evidence, and high credibility means high importance among the evidence.

For the computation of credibility, we first compute the similarity matrix of these four
examples evidence. For any two pieces of evidence mi and mj (i, j = 1, 2, 3, 4), we compute
the similarity sij between them by using the method in [50].

Then, the similarity matrix for the four classifiers is

S =


1 s12 s13 s14
s21 1 s23 s24
s31 s32 1 s34
s41 s42 s43 1

 (4)

We add the values of line i and get the support degree Sup(mi) for the evidence i:

Sup(mi) =
4

∑
k=1

sik (5)

Then, the credibility is obtained by normalizing the support degrees using Equation (6):

Crd(mi) =
Sup(mi)

4
∑

k=1
Sup(mk)

(6)

Furthermore, the normalization coefficient K in Equation (2) is the conflict coefficient
as well. A larger value for K means higher conflict exists among the evidence. Therefore,
we used the value of K to determine whether the conflict existed.

Based on the conflict coefficient K and the computation of credibility, the adaptive
fusion method was designed, and it is given in Algorithm 1.
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Algorithm 1. The adaptive decision-level fusion method.

Inputs: (1) the outputs of four CNN classifiers for one lesion
(2) the classification accuracy acci of each classifier
(3) threshold T

Outputs: the fused final classification decision

Steps:
1. Transfer the outputs into probabilities using softmax function;
2. Compute the BPA of each classifier using Equation (3);
3. Compute the conflict coefficient K utilizing Equation (2);
4. If K is less than T:
5. fuse these four results using standard D-S evidence theory as shown in Equation (2) and get

the final classification result of this lesion;
6. Else if K is greater than T:
7. compute the credibility of each CNN classifier using Equations (4)–(6);
8. select the classifier with the highest credibility, and follow the classification decision of it as

the final classification result of this lesion.

3.3. Visualization and Evaluation

The deep neural network is an end-to-end black box system. Therefore, we can obtain
the classification result from a CNN, but it is hard to explain why and how the result is
reached by the CNN and whether the diagnosis result is trustworthy. There may exist
a case where the features utilized by the CNN for supporting the diagnosis decision are
irrelevant to the certain disease. Thus, it is important to explore the explanation of the
diagnosis process of the CNN. We designed the visualization step to show the supporting
area of the diagnostic decision. Furthermore, to evaluate the visualization results, we
designed a new scoring method to compare the performance of the CNNs.

Visualization. The last convolutional layer of a CNN contains rich semantic informa-
tion and plays an important role in the decision-making process. Therefore, we analyzed
the feature maps and gradients of the last convolutional layer of a CNN and generated
a class-discriminative attention map using the gradient-weighted class activation maps
(Grad-cam) method [39]. The attention map displays the areas of interest of the CNN in
the decision-making process. The color bar was applied to the attention map to make a
heat map and show the attention map more intuitively. We give examples of attention
maps as heat maps in Figure 3, where the attention maps are overlaid onto the original
lesion patch. Regions with different colors denote different degrees of importance for the
decision-making of the CNN, where the red-colored regions have higher importance and
the blue-colored regions have lower importance.
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In our approach, we fused the CNNs corresponding to multiple scales. Thus, for
a liver lesion, we could obtain different attention maps from different scales of CNNs.
To select the optimal attention map, we computed the BPA of each CNN classifier using
Equation 3 and selected the one with the highest BPA for visualization.

Evaluation. For the evaluation of the visualization results, most methods rely on sub-
jective user ratings or voting [39–41], which makes it hard to give an objective comparison
between the visualization results of deep neural networks. The attention maps reflect the
areas of interest in CNNs. To evaluate whether the CNNs could react to true relevant
radiological findings, we designed the scoring method to compare the visualized attention
map of our method with the gold standard and calculate the consistency degree between
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them. In simulating the clinical diagnosis process of clinicians, we considered four sets of
voxels about the lesion in a gold standard patch: (1) the voxels inside the lesion (S1), (2)
the edge voxels of the lesion (S2), (3) the voxels outside the lesion but five voxels away
from the edge (S3) and (4) the other voxels in the image (S4). As clinicians pay different
levels of attention to these four types of voxels in the clinical diagnosis, we set different
weights for these four sets of voxels. The weights corresponding to them are set as w1 = 1,
w2 = 0.5, w3 = 0.2 and w4 = 0, as suggested by experienced clinicians. For the attention
map from the CNN, we normalized the values in the attention map to the range [0,1]
and computed the consistency Score between the attention maps from the CNN and the
radiological finding: 

Score =
3
∑

j=1
∑

i∈Sj

f (i)

f (i) =
{

1, i f wj+1 ≤ mapi ≤ wj
0, otherwise

(7)

where mapi denotes the attention map value for voxel i. Equaiton (7) means that for each
voxel, if the value of the attention map fits in the scope of the corresponding region weights,
the voxel is counted. The sum of the counted voxels is considered the consistency score.
Accroding to Equation (7), a higher Score means that the areas of interest in the CNN fit
the relevant radiological findings better, and vice versa.

4. Experiments and Results
4.1. Experimental Setup

Dataset. We evaluated the proposed method with the liver MRI dataset collected by
the Cancer Institute and Hospital at the Chinese Academy of Medical Sciences. This dataset
was obtained using a 3.0T scanner (GE Signa Excite HD), and it contains the MR images
of 85 patients (35 benign with a cyst of the liver and 50 malignant with liver cancer). We
conducted an axial plane T1WI, T2WI scan and a liver acquisition with volume acceleration
(LAVA) dynamic multi-phase enhancement scan and obtained an average of 5 scans from
each patient. In this way, we obtained a dataset of 425 images, containing 250 malignant
and 175 benign scans. Among the 85 patients, the scans of 5 patients include more than one
lesion. For each of these five patients, we randomly selected one lesion for the experiment.
The lesions in the MR images were manually annotated by experienced radiologists to
produce a gold standard.

Compared Methods. To test the robustness and the generality of our proposed ap-
proach, we applied it on various widely used state-of-the-art CNN architectures, including
Resnet18 [52], VGG11 [53] and Alexnet [54]. For each CNN architecture, we compared the
results of using our multiscale, multi-level fusing strategy and not using this fusing strategy
(namely the commonly used single-scale framework in the image classification domain).
For sufficient comparison, in the method without the fusing strategy, we utilized each of
the scales (large, middle and small) for the experiments. These three CNN architectures
were all pre-trained on the ImageNet [48] dataset and then fine-tuned for our dataset. To
fit the input size of these CNN architectures, all patches were resized to the required size of
the CNN architectures using bilinear interpolation.

Aside from that, we compared our method with the traditional classification methods.
We considered the widely used handcrafted GLCM features of the lesions, with angles
of 45◦, 90◦ and 135◦ and distances of 1, 2 and 3. The contrast, dissimilarity, homogeneity,
energy and correlation of the GLCM texture feature were computed. Three traditional
classifiers, including AdaBoost, SVM and RF, were utilized to cooperate with the GLCM
features to complete the classification task.

Evaluation Criteria. Five widely used measurements of classification performance
were considered: the classification accuracy rate, sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV). If a positive lesion was classified correctly
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by the algorithm, we called it ‘true positive’; otherwise, we called it ‘false negative’. The
means of the ‘true negative’ and ‘false positive’ lesions were defined similarly. Let TP,
TN, FP and FN be the number of true positives, true negatives, false positives and false
negatives, respectively. Then, the accuracy, sensitivity, specificity, PPV and NPV are
measured as in Equations (8)–(12), respectively:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Sensitivity =
TP

TP + FN
(9)

Speci f icity =
TN

TN + FP
(10)

PPV =
TP

TP + FP
(11)

NPV =
TN

FN + TN
(12)

For the feature extraction ability, we projected the extracted features into 2D subspace
using principal component analysis (PCA) and displayed the data in a 2D plane. Aside
from that, we generated the attention maps to explain the decisions of the CNNs and scored
them using Equation (8).

Implementation Details. We trained and evaluated our proposed approach and the
compared methods using k-fold cross-validation. In our experiments, we set k as five
by experience, like in many other similar studies [55,56]. The evaluation criteria were
averaged to arrive at the final performance evaluation. We trained and optimized the CNN
parameters using stochastic gradient descent (SGD) with momentum, with the learning
rate, the batch size and the number of iterations set as 0.001, 10 and 500, respectively. The
conflict threshold of K was set as 0.85. All the experiments were conducted on a computer
with an Nvidia GeForce 1080 Ti GPU and 10 GB of memory.

4.2. Experimental Results
4.2.1. Performance Comparisons

We conducted the liver lesion diagnosis task using our proposed approach on different
CNN architectures and the compared classification methods and recorded the results of
the accuracy rate, sensitivity, specificity, PPV and NPV. We present the results in groups,
as shown in Table 1. In the group of each CNN architecture, we list the results of the
commonly used single-scale strategy, our feature-level fusion and the multi-level fusion.

From Table 1, we can conclude the following:

(1) The deep learning-based methods showed obviously superior performance to the
traditional methods.

(2) Compared with the commonly used single-scale strategy, the feature-level fusion
method could bring performance improvements in general. It achieved higher classi-
fication accuracy than the single-scale strategies for all of the three CNN architectures.
As for the other four criteria, even though the feature-level fusion suffered a little
decline in specificity and PPV on the Resnet18 architecture, it achieved obvious
improvements in all of the four criteria for the VGG11 and Alexnet architectures.

(3) Our proposed multi-level fusion method obtained the best classification performance,
which achieved the highest results in all of the five criteria on Resnet18, VGG11 and
Alexnet.

(4) Through the comparisons in (2) and (3), the feature-level fusion achieved performance
improvements compared with the single-scale strategy, and the multi-level fusion
method brought further improvements on the basis of feature-level fusion. The
comparisons demonstrated the effectiveness and necessity of both feature-level fusion
and decision-level fusion in our MMF-CNN approach.
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(5) Our multi-level fusion approach obtained preferable performance in all of the three
tested state-of-the-art CNN architectures, which illustrates the good generality of our
proposed approach.

Table 1. Performance comparison for liver lesion classification of different methods.

Method Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Traditional
GLCM + AdaBoost 85.31 87.97 81.23 87.31 75.45

GLCM + SVM 84.30 93.20 71.62 82.53 75.64
GLCM + RF 87.09 90.69 81.63 88.02 80.83

Resnet18

Large Scale 92.20 94.34 88.63 92.45 91.64
Middle Scale 90.58 92.77 87.38 91.52 89.17
Small Scale 92.15 92.94 91.00 93.83 89.79

Feature-Level Fusion 92.56 94.47 89.75 93.17 91.65
Multi-Level Fusion 95.70 97.02 93.75 95.80 95.54

VGG11

Large Scale 94.02 95.74 91.50 94.32 93.67
Middle Scale 95.65 96.94 93.75 95.80 95.43
Small Scale 94.28 94.89 93.38 95.48 92.59

Feature-Level Fusion 97.97 98.30 97.50 98.30 97.53
Multi-Level Fusion 98.99 98.72 99.38 99.57 98.15

Alexnet

Large Scale 96.60 97.45 95.38 96.91 96.15
Middle Scale 95.04 95.74 94.00 95.91 93.77
Small Scale 98.03 98.21 97.75 98.51 97.39

Feature-Level Fusion 98.86 98.93 98.75 99.14 98.46
Multi-Level Fusion 99.49 99.15 100 100 98.77

4.2.2. Explanation and Visualization

1. On Diagnostic Performance Difference

The image features used for classification are crucial for the diagnosis task. As the
feature is the representation of an image, the quality of the features has great influence on
the classification performance. To explain the difference in diagnostic performance among
the different classification models, we visualized the features extracted from the lesions by
different methods. For the deep features, we considered the concatenated feature vector
of the multi-scale patches. For the traditional method, we considered the GLCM feature
vector.

We projected the feature vectors into a 2D subspace using PCA and displayed the
lesions in our dataset in a 2D plane. The results corresponding to the GLCM and each
CNN architecture are shown in Figure 4, where the orange and blue markers denote benign
and malignant lesions, respectively. In Figure 4, we circled the indistinguishable regions
using red ellipses. We can see that the markers of the benign and malignant classes mixed
heavily in Figure 4a. This shows that it was hard for the GLCM feature to divide the lesions
into two classes clearly, while in Figure 4b–d, the markers are obviously discriminable in
general, which demonstrates the good discriminatory ability of our concatenated multiscale
features. From Figure 4b–d, the number of indistinguishable markers decreases gradually,
which corresponds to the gradual improvements of the classification performance of
Resnet18, VGG11 and Alexnet in Table 1. The visualized features explained the difference
in diagnostic performance among the different methods.

2. On Decision-Making

For visual explanation of the classification decisions of the CNNs, we visualized the
supporting areas in the decision-making process of the CNNs using the attention maps. We
give examples of the visualized attention maps in Figure 5, with the Score given below each
attention map. The four columns correspond to the results of Resnet18, VGG11, Alexnet
and the gold standard. From Figure 5, we can see the following:
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(1) In most cases, the attention maps could highlight the true relevant radiological
findings (the gold standard) automatically.

(2) The Scores reflected the performance of the CNN architectures consistently. If the
interests of the CNN focused on the lesion features or the attention map covered the
lesion consistently, the score would be high, such as in the first example for Resnet18
and VGG11. If the interest area of the CNN architecture missed the lesion region, the
score would be low, such as in the fourth example for Resnet18. Furthermore, we
computed the average Score for all the lesions in the dataset for each CNN architec-
ture. The results are shown in Table 2. For Resnet18, even though it identified the
lesion region features better for some examples (shown in Figure 5), it failed in some
other lesion examples. The instability of Resnet18 among the whole dataset led to
the relatively low classification performance in Table 1 and relatively low score in
Table 2. Alexnet showed a better average identification performance with the dataset;
therefore, it achieved the best classification performance and attention map score.
The consistency between the classification performance and the average Score of a
CNN architecture demonstrates the effectiveness of our designed scoring method of
attention maps.
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Figure 4. Visualization of feature vectors of different methods.

The explanation of the decision-making process of the CNN classifier allows the CADx
methods to make a step forward toward clinical applications. In the clinical applications
of our approach, for a lesion in the MR image, our MMF-CNN approach can provide
the diagnosis result and the attention map of the CNN classifier simultaneously to the
medical practitioner. Referring to the attention map, the practitioner can make sure that
the diagnosis result of the CNN for this lesion is trustworthy. Through the interaction, the
clinical liver lesion diagnosis can benefit from the high efficiency of CADx systems and
obtain high diagnosis accuracy and reliability at the same time.
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Table 2. The average scores of the attention maps for different CNN architectures.

Resnet18 VGG11 Alexnet

Average Score 0.45 0. 51 0.52

5. Conclusions

In this paper, an explainable deep learning method with a multiscale and multi-level
fusion of CNNs, termed as MMF-CNN, has been proposed for discriminating liver le-
sions into benign or malignant in MR images. We considered three scales of patches for
each lesion to extract complementary feature descriptions and designed the multi-level
fusion approach for the diagnosis of lesions. Both feature-level fusion and decision-level
fusion were considered for integrating the complementary information of three scales of
patches to gain a robust and stable classifier. We explained the method from two aspects,
namely the explanation of the diagnostic performance difference and the explanation of
the decision-making process. The visualized features explained the difference in diagnostic
performance. The visualized attention map provided support for the decision-making
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process. We applied our approach to different state-of-the-art CNN architectures. The
experimental results showed that the feature-level fusion achieved performance improve-
ments compared with the single-scale strategy, and the multi-level fusion method brought
further improvements on the basis of feature-level fusion. The comparisons demonstrated
the effectiveness and necessity of both feature-level fusion and decision-level fusion in our
MMF-CNN approach.

However, our work has the following limits: (1) the scale of the dataset used for
the experiments was small, so the methods need to be compared in a larger dataset; (2)
the interpretation of the deep learning model was quite simple and not enough, so more
explanation about the diagnosis model needed to be made.

In the future work, we will conduct the comparison of different learning strategies of
the training process, such as with or without transfer learning. Aside from that, we will
collect the MRI scans of more patients and conduct more external validation. We will also
introduce the attention mechanism into the diagnostic model to improve the diagnostic
accuracy further. Aside from that, with the aim of making the liver diagnostic model more
transparent to users, we will explore more explanation and visualization methods of deep
learning models, such as visualizing the hidden layers, the neurons and the gradients.
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