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Abstract
Hantaviruses (order Bunyavirales, family Hantaviridae), known as important zoonotic human pathogens, possess the capac-
ity to exchange genome segments via genetic reassortment due to their tri-segmented genome. Although not as frequent 
as in the arthropod-borne bunyaviruses, reports indicating reassortment events in the evolution of hantaviruses have been 
recently accumulating. The intra- and inter-lineage reassortment between closely related variants has been repeatedly reported 
for several hantaviruses including the rodent-borne human pathogens such as Sin Nombre virus, Puumala virus, Dobrava-
Belgrade virus, or Hantaan virus as well as for the more recently recognized shrew-borne hantaviruses, Imjin and Seewis. 
Reassortment between more distantly related viruses was rarely found but seems to play a beneficial role in the process of 
crossing the host species barriers. Besides the findings based on phylogenetic studies of naturally occurring strains, hanta-
virus reassortants were generated also in in vitro studies. Interestingly, only reassortants with exchanged M segments could 
be generated suggesting that a high degree of genetic compatibility is required for the S and L segments while the exchange 
of M segment is better tolerated or is particularly beneficial. Altogether, the numerous reports on hantavirus reassortment, 
summarized in this review, clearly demonstrate that reassortment events play a significant role in hantavirus evolution and 
contributed to the currently recognized hantavirus diversity.
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Introduction

First reports that genome segment exchange, in other words 
genetic reassortment events, could have been occurring in 
the evolution of hantaviruses are rather old and emerged 
soon after the discovery of hantavirus cardiopulmonary 
syndrome-causing Sin Nombre virus (SNV) in the United 
States [1, 2]. Until recently, reassortment (more precisely its 
absence) was even used as one of the taxonomical species 
demarcation rules. In general, it was considered as rather 
exceptional process in the hantavirus evolution. However, 
reports on conflicting findings in the segment-specific evo-
lutionary trees suggesting reassortment have been recently 

accumulating across both the “old” rodent-borne hantavi-
ruses as well as the more recently recognized new hantavi-
ruses found in non-rodent hosts. In light of these findings, 
it seems that reassortment is more common among hantavi-
ruses than previously reported. Moreover, it is highly likely 
that the recent progress in the utilization of next-generation-
sequencing (NGS) technologies leading to massive increase 
of full genome sequences will bring more findings in this 
area, too. It is, therefore, time to review and summarize the 
current knowledge on reassortment findings in the recently 
established family Hantaviridae.

Hantaviruses (order Bunyavirales, family Hantaviridae) 
are enveloped, single stranded RNA viruses with segmented 
genome of negative polarity. The genome is composed of 
three segments, small (S) segment encoding nucleocapsid 
protein (N protein) [3], medium (M) segment encoding gly-
coprotein precursor (GPC) co-translationally cleaved into 
the envelope glycoproteins Gn and Gc [4], and large (L) seg-
ment encoding the L protein primarily serving as the viral 
RNA-dependent RNA polymerase (RdRp) [5].

Virus entry into cells is mediated by binding to a cell 
surface receptor. Integrins are considered to be the main 
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receptors for hantaviruses at least in vitro [6–8] but other 
molecules, complement decay accelerating factor (DAF) [9], 
and globular heads of complement C1q receptor (gC1qR) 
[10], were reported to mediate hantavirus infection in cul-
tured cells, too. The entry then proceeds through clathrin-
dependent endocytosis shown for the prototypical Hantaan 
virus (HTNV) [11] and/or other pathways including micropi-
nocytosis, clathrin-independent receptor-mediated endocyto-
sis, or other routes [12, 13]. Viral particles are then trafficked 
to late endosomes. Low Ph-triggered, Gc-mediated virus 
cell membrane fusion releases viral genetic material into 
the cytoplasm. Transcription of the viral mRNAs includes 
the process of cap-snatching and involves localization of 
N and L proteins to cytoplasmic processing bodies (P bod-
ies) where they use the caps of host mRNAs destined for 
degradation [14]. The hantavirus RNA synthesis is initiated 
by the prime-and-realign mechanism [15]. The endoplasmic 
reticulum-Golgi intermediate compartment (ERGIC) is con-
sidered to be the site of viral replication [16]. The virions are 
assumed to bud into the cis-Golgi and then transported to 
the plasma membrane for release, presumably via recycling 
endosomes [17].

When transmitted to humans, hantaviruses can cause 
severe disease. Transmission occurs usually through inha-
lation of aerosolized rodent excreta and rarely via biting 
by infected animals [18], but the human intestinal tract is 
a possible entrance port, too [19]. Hantaviruses present 
on the American continent, such as SNV or Andes virus 
(ANDV) cause hantavirus (cardio)pulmonary syndrome. 
HTNV and Seoul virus (SEOV) in Asia and Puumala virus 
(PUUV) and Dobrava-Belgrade virus (DOBV) in Europe 
are most common hantaviruses causing hemorrhagic fever 
with renal syndrome. Both diseases share the main pathoge-
netic mechanisms involving changes in blood coagulation, 
vasodilatation, and disturbances in the barrier function of the 
capillaries, resulting in capillary leakage and inflammatory 
processes in the affected organs [18].

Hantaviruses produce chronic and asymptomatic infec-
tion in their reservoir hosts, small mammals. Besides with 
hantaviruses typically associated rodents, other small mam-
mals such as shrews, moles, and bats were identified as han-
tavirus reservoir hosts during the last decade [20–22]. Very 
recently, using a large-scale meta-transcriptomic approach, 
hantavirus-related sequences were identified even in rep-
tiles, ray-finned fish, and jawless fish [23]. Although there 
are accumulating exceptions, hantaviruses are in general 
considered to be host-specific. A particular hantavirus is 
usually transmitted only by one or few closely related host 
species. This association is at least partially reflected also in 
their phylogeny, particularly among the rodent-borne han-
taviruses. Therefore, hantaviruses have been considered to 
have co-evolved with their hosts over millions of years [24]. 
Recent phylogenetic analyses including the more recently 

discovered shrew-, mole-, and bat-borne hantaviruses 
revealed a complex evolutionary history where not only 
virus-host co-divergence but also cross-species transmission 
and ancient reassortment events played a role. Furthermore, 
these analyses also suggest that shrews, moles, or bats might 
have been the hosts of ancestral hantaviruses [25–28].

Reassortment is defined as exchange of gene segments 
between viruses that co-infect the same cell, which can result 
in the formation of progeny viruses that are genetically dis-
tinct from both parental viruses. Therefore, reassortment can 
create viral progeny conferring important fitness advantages. 
On the other hand, successful reassortment between two 
parental strains during co-infection requires a high degree 
of genetic compatibility including intricate packaging sig-
nals and RNA–RNA and/or RNA–protein interactions [29].

Reassortment is particularly well known for influenza A 
virus where it is associated with the antigenic shift and emer-
gence of new pandemic strains [30]. However, all viruses 
with segmented genomes possess the capacity to exchange 
genome segments. Reassortment has been well documented 
for several other pathogenic viruses such as reoviruses, are-
naviruses, or bunyaviruses [29, 31, 32]. Clearly, the abil-
ity of important human pathogens to reassort not only has 
implications for their ongoing evolution but can also lead to 
changes in their virulence and transmission efficiency and, 
therefore, has impact on public health.

Reassortment within the order Bunyavirales

Bunyaviruses (order Bunyavirales) with their tri-segmented 
genome are obvious candidates for reassortment playing role 
in their evolution. Indeed, reassortment seems to be rather 
frequently reported within the order, especially within the 
family Peribunyaviridae (former genus Orthobunyavirus). 
Particularly interesting is the fact that there are frequent 
reassortment events found between distinct viruses (i.e., 
heterotypic reassortment). Briese et al. [32] even suggested 
that most if not all currently recognized bunyaviruses in fact 
represent reassortants of existing or extinct viruses. The 
high frequency of reassortment might be explained by the 
fact that many of these viruses are arthropod-borne viruses 
(arboviruses) and are, therefore, capable of alternately rep-
licating in hematophagous arthropods and vertebrates. Dual 
infections of arthropod hosts provide considerable opportu-
nity for reassortment of the genome segments. Particularly 
mosquitoes and culicoids (unlike ticks) feed frequently, 
providing a greater opportunity for dual infections in them 
as well as in their vertebrate hosts. Another interesting phe-
nomenon is the super-infection resistance which may pre-
vent secondary infection by closely related bunyaviruses and 
thereby reduce the frequency of co-infections. However, it 
may actually promote opportunities for segment reassort-
ment between more distantly related bunyaviruses [32].
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Numerous examples of natural occurrences of reas-
sortment can be found across the order and were recently 
systematically reviewed by Briese et al. [32]. For instance, 
Jatobal virus and Iquitos virus of the Simbu serogroup of 
orthobunyaviruses are both reassortants containing S and L 
segments of Oropouche virus and a unique M segment of a 
yet unrecognized Simbu serogroup virus [33, 34]. Complex 
reassortment scenarios were reported also for Shamonda 
and Schmallenberg viruses [35]. Similarly, several viruses 
of the group C orthobunyaviruses such as Apeu, Murutucu, 
and Itaqui, represent reassortants with various combinations 
of segments from Marituba, Caraparu, and Oriboca viruses 
[36]. Another well-documented example within the Buny-
amwera serogroup viruses is the hemorrhagic fever causing 
Ngari virus (and its isolate Garissa virus) which is a reas-
sortant containing S and L segments of Bunyamwera virus 
and M segment of Batai virus. This is particularly interesting 
because Ngari virus can be associated with large outbreaks 
of severe illness in East Africa while its parents are reported 
to cause rather mild symptoms in humans but more severe 
symptoms including abortions and teratogenic effects in 
livestock [37–40].

Among phleboviruses, multiple inter-lineage reassort-
ment events were reported for Rift Valley virus [41] and 
for severe fever with thrombocytopenia syndrome virus [42, 
43]. Moreover, some phleboviruses such as Aguacate [44] or 
Granada [45] are considered to be heterotypic reassortants. 
Interestingly, reassortment events have been so far repeat-
edly reported only for Crimean-Congo hemorrhagic fever 
virus [46–49] but for no other members of the Nairoviridae 
family.

Hantaviruses: mostly intra‑species (homotypic) 
reassortment

It is interesting to note that hantaviruses are, in contrast to 
other bunyaviruses, not transmitted or hosted by arthropods 
but are tightly associated with small mammals as their res-
ervoir hosts. Based on the concept of Briese et al. [32], this 
fact should reduce the extent of co-infections and thereby 
also reduce the probability of reassortment events. Indeed, 
most of the reports on reassortment in hantaviruses are lim-
ited to inter-lineage events within the same virus species 
usually carried by a single reservoir host (Table 1). The 
phenomenon of heterotypic reassortment frequently seen in 
orthobunyaviruses or phleboviruses seems to be very rare or 
at least could not be well-documented yet.

First findings indicating reassortment events in hantavi-
ruses were reported for SNV soon after its discovery. Li 
et al. [1] analyzed complete S and M segment sequences 
of two virus isolates from eastern California and found 
that while their M segment sequences differed from one 
another by only 1%, the S segments differed by 13%. They 

concluded reassortment as the most likely explanation for 
their data. These findings were then confirmed and further 
extended by the analyses of SNV sequences obtained from 
deer mice (Peromyscus maniculatus), the principal host of 
SNV, trapped in Nevada and eastern California. Phylogenetic 
analyses of all three segments indicated that several segment 
exchanges were possible but those involving M segment 
were found most frequently. Conflicting signals in the S and 
M segment-based phylogenetic trees suggesting reassort-
ment were also found in a more recent study involving SNV 
sequences obtained from deer mice collected in Colorado, 
New Mexico, and Montana from 1995 to 2007 [50].

Occurrence of reassortment events is well documented 
also for the most common European hantavirus, Puumala 
virus (PUUV) associated with bank voles (Myodes glareo-
lus). In a series of systematic studies performed in central 
and northern Finland, notably high frequency of reassort-
ment, 19.1–32%, could be observed [51–53]. Moreover, one 
interesting phenomenon could be noticed. The studies in 
central Finland identified reassortants between two phylo-
genetic clusters within the same, Finish lineage [51, 53]. In 
this case, basically all six possible segment combinations 
were found and the most common were those schemati-
cally designated as SBMALA, SAMBLB, SBMALB where the 
S, M, and L capital letters stand for the genomic segments 
and the subscripted A and B letters indicate origin of the 
given segment to one of the two hypothetical, phylogeneti-
cally distinct parents (Fig. 1). In the study from northern 

Table 1   Summary of the reported naturally occurring intra-species 
reassortment events among hantaviruses

a Schematic representation of the reassortment pattern. S, M, and 
L capital letters stand for the S, M, and L genomic segments. Sub-
scripted A and B letters indicate origin of the given segment to one of 
the two hypothetical, phylogenetically distinct parents. ND indicates 
that the origin was not determined

Virus Reassortment scenariosa References

Sin Nombre virus SAMBLND [1]
Mostly SAMBLA, SBMALB, 

rarely SBMALA, SAMBLB, 
SAMALB

[2]

SAMBLND [50]
Puumala virus SBMALA, SAMBLB, SBMALB [51]

SAMBLA, SBMALB [52]
All six combinations but 

mostly SBMALB and 
SBMALA

[53]

SAMBLND [54]
Dobrava-Belgrade virus SAMBLND [55, 58]
Hantaan virus SAMALB [60]
Seoul virus SAMBLND [61]
Imjin virus SAMBLA [62]
Seewis virus SAMNDLB [63]
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Finland, reassortment was detected between more distantly 
related groups of viruses representing two distinct, previ-
ously defined lineages, the Finnish and the North Scandi-
navian lineage. This fact did not reduce the frequency of 
reassortment observations, it was actually 32%, the highest 
value among the three studies. However, of the six possible 
segment combinations, only two were found, those where 
both S and L segments originated from the same genetic 
lineage [52]. This pattern is typically found in the hetero-
typic reassortment events described for orthobunyaviruses 
[32] and also with in vitro generated hantavirus reassortants 
(see below).

In a phylogenetic study focused on PUUV sequences 
obtained from bank voles captured in Central Europe [54], 
authors noticed that the strains from eastern Slovakia clus-
tered as expected with the sequences from Bohemian Forrest 
(Czech Republic) and Bavarian Forrest (Germany) only in 
the M but not S segment analyses. In the S segment analyses, 

the Slovak strains surprisingly clustered with the strains 
found in bank voles from Belgium, France, the south of the 
Netherlands, and regions in north-western Germany. This 
topology incongruence indicates the occurrence of a reas-
sortment event. Since only partial sequences were analyzed, 
homologous recombination cannot be completely ruled 
out, too. Unfortunately, analysis of only partial sequences 
is a limitation of most of the studies analyzing sequences 
obtained directly from the hantavirus reservoir hosts. It 
seems to be a general consensus that the conflicting signals 
are interpreted as hints for reassortment but not for homolo-
gous recombination.

It is also interesting to note that besides the recent PUUV 
study [54], indications of reassortment, and/or recombina-
tion were reported from eastern Slovakia also for other han-
taviruses [55, 56]. This phenomenon might be directly asso-
ciated with the fact that eastern Slovakia has been involved 
in several end-glacial colonization routes of rodents. The 
region is a contact area for three phylogeographic clades 
of bank voles; the Carpathian, Western, and Eastern clade 
[57]. The region, therefore, seems to be a melting pot pro-
viding ample opportunity for the sympatric occurrence of 
several virus lineages consequently leading to co-infections 
followed by reassortment and/or recombination events.

Indications for reassortment events found within 
Dobrava-Belgrade orthohantavirus species, although still 
regarded as inter-lineage events, perhaps mostly resemble 
the heterotypic reassortments observed for orthobunyavi-
ruses. In contrast to SNV or PUUV associated with a single 
reservoir host, DOBV lineages, designated as genotypes 
[58], are associated with distinct species of the Apodemus 
sp. mice. Saaremaa virus found in striped field mice (A. 
agrarius) on Saaremaa island, Estonia seems to be a reas-
sortant containing M segment clustering within another A. 
agrarius-associated genotype, Kurkino, while its position in 
the S phylogenetic trees is more ancestral and more closely 
related with the A. flavicollis- and A. ponticus-associated 
Dobrava and Sochi genotypes, respectively. Similar con-
flicts in tree topologies suggesting genetic reassortment 
during DOBV evolution have been observed also for the 
Sochi genotype. In S segment trees, Sochi sequences form 
a well-supported sister group to Dobrava genotype but form 
an out-group to all other DOBV strains in M and L segment 
trees [59].

Analysis of 34 complete genome sequences of HTNV 
acquired from A. agrarius mice captured from 2003 to 2014 
in the Republic of Korea indicated occurrence of natural 
reassortment events in the evolution of HTNV. In addition 
to the observation of conflicting tree topologies, the authors 
provided additional evidence of reassortment by applica-
tion of a whole array of recombination detecting algo-
rithms on artificially concatenated complete sequences of 
all three segments. Interestingly, in this case, only a pattern 

Fig. 1   Schematic representation of all potential reassortants result-
ing from the co-infection of a cell by two hypothetical parental han-
taviruses a (blue) and b (red). Envelope color corresponds to the 
color of the encoding M segment. S, M, and L capital letters stand 
for the S, M, and L genomic segments. Subscripted A and B indicate 
origin of the given segment to one of the two parents. The reassor-
tants generated in the in vitro experiments and also most frequently 
found among the naturally occurring reassortants are marked by grey 
background. “Diploid” viruses containing both parental versions of 
at least one segment were transiently observed in the in vitro experi-
ments. Four examples out of the 13 possible “diploid” patterns are 
shown in the bottom part of the figure
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schematically designated as SAMALB could be found [60]. 
Differences in the clustering patterns of S and M segment-
based phylogenetic tress suggested inter-lineage reassort-
ment also among SEOV lineages in central south China [61].

Indications for reassortment events were recently reported 
also for the shrew-borne hantaviruses. Imjin virus (MJNV) 
is a shrew-borne hantavirus identified in the Ussuri white-
toothed shrews (Crocidura lasiura) in the Republic of Korea 
and China. The reassortment pattern SAMBLA was recently 
identified in a study from the Republic of Korea [62]. 
Intriguing differences between the L-segment and S-segment 
phylogenies implying multiple reassortment events were 
observed also in extensive phylogenetic analysis of Sorex 
araneus shrew-borne Seewis virus [63].

Heterotypic or “ancient” reassortment events

All the above described reassortment events can be consid-
ered as intra- or inter-lineage events between closely related 
strains of the same virus. In most cases, these events also 
occur within a single reservoir host. However, there are few 
reports which describe reassortment events between distinct 
viruses or phylogenetic incongruences at deep nodes. Two 
of those reports are originating from south America where 
numerous rodent species have been identified to harbor 
unique hantavirus strains. Ape Aime-Itapúa virus (AAIV) 
was identified in Akodon montensis from Paraguay [64]; in 
the S segment tree, AAIV clusters with Jabora virus (JABV) 
associated with A. montensis. In contrast, in the M segment 
analyses AAIV shows a strong relationship with Pergamino 
virus, originally identified in Argentina in A. azarae [64, 
65]. However, JABV by itself also shows conflicting posi-
tions in the S and M segment trees. The whole JABV clade 
clusters in the M segment tree with Maporal virus associ-
ated with the fulvous pygmy rice rat (Oligoryzomys fulves-
cens). However, in the S segment analyses, JABV clusters 
only with AAIV and occupies the most ancestral position 
within the South American hantaviruses [65]. These findings 
indicate that reassortment events involving distantly related 
hantaviruses are directly connected with or play a role in the 
processes of host-switching.

Very surprising findings were reported by Zou et al. [66]. 
Sequence analysis of cell culture isolates originating from A. 
agrarius mice and Rattus norvegicus rats revealed that spill 
over infections of HTNV from its reservoir host, A. agrarius, 
to R. norvegicus rats might be quite common. Most unex-
pectedly, two isolates, originally generated in 1988 from R. 
norvegicus rats, were shown to contain M and L segments 
of SEOV but the S segment of HTNV. This finding raises 
the question that, if such reassortants of HTNV and SEOV 
are possible, what could be their consequences for the pub-
lic health and why are they not detected more frequently. It 
remains to be seen whether such viruses remained unnoticed 

because sequence analyses of more than one segment were 
not routinely performed until recently or whether those two 
isolates represent highly exceptional findings.

Recently, Bruges virus as second hantavirus in addition 
to Nova virus was identified to be harbored by the Euro-
pean mole (Talpa europaea). Occurrence of two highly 
divergent viruses in the same reservoir host shows that at 
least one of the viruses was involved in host-switching pro-
cesses. Phylogenetic analyses of all three genomic segments 
showed tree topology inconsistencies at deep nodes, sug-
gesting that Bruges virus may have emerged from ancient 
reassortment events. The virus appeared to be most closely 
related to hantaviruses associated with hosts from the Muri-
dae family, to hantaviruses carried by shrews and moles, or 
showed ancestral position to both these groups in the S, M, 
and L segment-specific analyses based on complete coding 
sequences, respectively [67].

In vitro generated reassortants

Most of the reports claiming occurrence of reassortment in 
hantaviruses are based on phylogenetic analyses of naturally 
occurring strains, mainly obtained from the reservoir hosts. 
The basis for these claims are conflicting tree topologies, 
sometimes accompanied by more advanced phylogenetic 
analyses including hypothesis testing or recombination anal-
ysis on concatenated sequences. In other words, the claims 
are based on descriptive bioinformatic analyses showing 
the reassortment only indirectly. However, there are several 
reports bringing the ultimate proof that hantaviruses are 
capable to exchange genome segments during co-infections 
through in vitro experiments (Table 2).

Rodriguez et al. [68] showed already in 1998 that mixed 
infection of Vero E6 cells with two distinct strains of SNV 
can lead to generation of reassortant viruses in 8.5% of 294 
progeny plaques tested. Most of the reassortants had the pat-
terns SAMBLA and SAMBLB. On the other hand, only one 
virus reassortant was observed among 163 progeny virus 
plaques from mixed infections between SNV and Black 
Creek Canal virus (BCCV), an HPS-causing virus from 
Florida, which has the cotton rat (Sigmodon hispidus) as its 
natural host; the reassortant carried the M segment of SNV 
and S and L segments of BCCV. Interestingly, in both exper-
iments about 30% of the progeny virus plaques appeared 
to be transiently diploid, i.e. containing both versions of at 
least one segment.

Similar experiments were performed with SNV and 
ANDV by Rizvanov et al. [69]. Again, also diploid viruses 
were observed (20/337 progeny plaques) and all monoploid 
reassortant viruses (10/337 progeny plaques) contained the S 
and L segments of SNV but ANDV M segment. Despite hav-
ing from ANDV only the M segment, the reassorted virus 
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showed replication efficiency in Vero E6 cells resembling 
ANDV rather than SNV.

The very same reassortment pattern was achieved also 
in the study of McElroy et al. [70]. In line with the previ-
ously mentioned study [69], the virus containing the S and 
L segments of SNV and M segment of ANDV (designated 
SAS) had in vitro growth and plaque morphology character-
istics similar to those of ANDV. Most important results were 
obtained in the in vivo experiment. The SAS reassortant 
virus was highly infectious and elicited high-titer, ANDV-
specific neutralizing antibodies in Syrian hamsters. How-
ever, the virus did not cause lethal HPS indicating that the 
ANDV M genome segment alone is not sufficient to confer 
the lethal HPS phenotype described for ANDV [71].

Reassortant could be later generated also between a 
pathogenic PUUV and a non-pathogenic Prospect Hill virus 
(PHV). The reassortant contained the glycoprotein coding 
M-segment derived from PUUV and the S and L segments 
from PHV. The reassortant together with parental viruses 
were characterized also in terms of their ability to modu-
late in vitro innate immune responses including induction 
of type I and type III interferon and interferon-stimulated 
gene MxA. In all experiments, the reassortant revealed 
the same characteristic innate antiviral response pattern as 
PHV, which is considered to be a non-pathogenic hantavirus. 
These data are not only consistent with the previous studies 
on SNV and ANDV reassortants but also led the authors 
to the conclusion that such reassortant viruses carrying M 
segment of the pathogenic virus together with S and L seg-
ments of non-pathogenic virus (such as PHV) could be used 
as attenuated vaccines [72].

Inspired by the phylogenetic findings of putative reassort-
ment events in DOBV [55], Kirsanovs et al. [73] performed 
mixed infections and found efficient in vitro reassortment 
between members of two different DOBV genetic lineages, 
the weakly virulent DOBV-Aa (nowadays designated as 
Kurkino genotype) and highly virulent DOBV-Af (Dobrava 
genotype). High frequency of reassortment was observed. 

Reassortment patterns were found in 65 out of 207 analyzed 
progeny clones (31.4%). As in the previous in vitro studies, 
only reassortant having S and L segments from the same 
parental virus and exchanged M segment were generated. 
In this case, both versions (schematically designated as 
SAMBLA and SBMALB throughout this review) were found. 
Analogously to the study of Handke et al. [72], the reassor-
tants were (together with the parental viruses) analyzed for 
the differential induction of innate immune responses in the 
established cell lines A549 and HuH7. The contrasting phe-
notypes of the parental viruses were found to be maintained 
by the reassortants carrying the respective S and L segments 
of the parental virus and were not influenced by the origin 
of the M segment.

Also in this reassortment experiment, significantly high 
proportion of the analyzed clones (65/207; 31.4%) were 
designated as diploids containing both parental versions 
of at least one segment [73]. In fact, diploid viruses were 
observed in all studies on in vitro generated reassortants 
mentioned above. These findings indicate that the hantavirus 
assembly process is not tightly controlled and more than 
three genome segments can be packed into the viral parti-
cle. This imperfect segment packaging is perhaps directly 
involved in the ability of hantaviruses to reassort.

Conclusions

Although not as frequent as in other arthropod-borne bun-
yaviruses, reassortment seems to be more common among 
hantaviruses than initially recognized. The intra- and inter-
lineage reassortment between closely related variants seems 
to occur whenever co-infections of two virus variants are 
possible due to their sympatric occurrence.

On the other hand, heterotypic reassortment between 
more distantly related viruses occurs less frequently but 
seems to play a supporting role in the process of crossing 
the species barriers and host switching when, e.g., the newly 

Table 2   Summary of 
in vitro generated hantavirus 
reassortants

SNV Sin Nombre virus; BCCV Black Creek Canal virus; ANDV Andes virus; PHV Prospect Hill virus; 
PUUV Puumala virus; DOBV Dobrava-Belgrade virus
a Schematic representation of the reassortment pattern. S, M, and L capital letters stand for the S, M, and L 
genomic segments. Subscripted part indicates origin of the given segment to a particular parental virus and 
is given either as a virus abbreviation or strain name

Parental viruses Generated reassortantsa References

SNVNMR11, SNVCC107 SNMR11MCC107LNMR11, SCC107MNMR11LNMR11, 
SCC107MCC1071LNMR11

[68]

SNV, BCCV SBCCVMSNVLBCCV [68]
SNV, ANDV SSNVMANDVLSNV [69]
SNV, ANDV SSNVMANDVLSNV [70]
PHV, PUUV SPHVMPUUVLPHV [72]
DOBVSK/Aa, DOBVSlo/Af SSK/AaMSlo/AfLSK/Aa, SSlo/AfMSK/AaLSlo/Af [73]
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acquired M segment encoding the envelope glycoproteins 
might help the virus to establish persistent infection in the 
new host. Topologic incongruences in the deep nodes of the 
segment specific trees suggest that such events occurred in 
the past and contributed to the currently recognized hanta-
virus diversity.

All the reported in vitro reassortment experiments have 
in common that only reassortants with exchanged M seg-
ments could be generated. This finding suggests that a high 
degree of genetic compatibility including packaging signals 
and RNA–RNA and/or RNA–protein interactions is required 
particularly for the S and L segments while the exchange of 
M segment is better tolerated or is particularly beneficial.

Altogether, the numerous reports on hantavirus reassort-
ment varying from naturally occurring intra-lineage reas-
sortants to in vitro generated inter-species reassortants, as 
summarized in this review, clearly demonstrate that reas-
sortment events play a significant role in hantavirus evolu-
tion. Consequently, it will be highly beneficial to invest in 
obtaining complete sequences of all three genomic segments 
in the future studies. It can be assumed that advancement of 
the next-generation sequencing technologies will generate 
more high-quality data which are needed to further elabo-
rate the current accumulating evidence of reassortment as a 
significant driving force in hantavirus evolution.
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