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Abstract

Background: The cellular effects of androgen are transduced through the androgen receptor, which controls the
expression of genes that regulate biosynthetic processes, cell growth, and metabolism. Androgen signaling also
impacts DNA damage signaling through mechanisms involving gene expression and transcription-associated DNA
damaging events. Defining the contributions of androgen signaling to DNA repair is important for understanding
androgen receptor function, and it also has translational implications.

Methods: We generated RNA-seq data from multiple prostate cancer lines and used bioinformatic analyses to
characterize androgen-regulated gene expression. We compared the results from cell lines with gene expression
data from prostate cancer xenografts, and patient samples, to query how androgen signaling and prostate cancer
progression influences the expression of DNA repair genes. We performed whole genome sequencing to help
characterize the status of the DNA repair machinery in widely used prostate cancer lines. Finally, we tested a DNA
repair enzyme inhibitor for effects on androgen-dependent transcription.

Results: Our data indicates that androgen signaling regulates a subset of DNA repair genes that are largely specific
to the respective model system and disease state. We identified deleterious mutations in the DNA repair genes
RAD50 and CHEK2. We found that inhibition of the DNA repair enzyme MRE11 with the small molecule mirin
inhibits androgen-dependent transcription and growth of prostate cancer cells.

Conclusions: Our data supports the view that crosstalk between androgen signaling and DNA repair occurs at
multiple levels, and that DNA repair enzymes in addition to PARPs, could be actionable targets in prostate cancer.
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Background
Prostate cancer remains the most commonly diagnosed
cancer in men, with a lifetime risk of approximately 1 in 7
[1, 2]. Both cancer-associated events and the normal physi-
ology of prostate involve signaling through the androgen
receptor (AR) [3]. Indeed, clinical intervention based on an-
drogen deprivation therapy (ADT), which reduces AR sig-
naling, is a cornerstone of prostate cancer treatment.
Resistance to ADT invariably develops and leads to the de-
velopment of castrate resistant prostate cancer (CRPC) with
associated morbidity and mortality. CRPC is characterized
by changes in growth factor-, cell surface receptor-, and

kinase-dependent signaling as well as gene expression that
impact fundamental processes such as cell growth, motility,
and DNA repair [4, 5]. Understanding how these changes
occur, and defining actionable targets within the affected
pathways, could expand the options for treating CRPC.
DNA repair enzymes have emerged as actionable targets

for cancer, including prostate cancer. The data from clinical
trials has shown that inhibiting the DNA repair enzyme
PARP-1 in ovarian, breast, and prostate cancers improves
outcome in patients that have genetic alterations in other
components of the DNA repair machinery [6–8]. The suc-
cess of PARP-1 inhibitors in this context suggests that new
therapeutic opportunities might be revealed by understand-
ing the interplay between genomic status and DNA repair
pathways. There are also strong indications that the re-
sponse to ionizing radiation (IR) can be influenced by
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androgen signaling. Thus, in pre-clinical models and in pa-
tients, ADT can confer radiosensitivity [9–11]. Finally, it has
been shown that treating prostate cancer xenografts with
inhibitors to AR (bicalutimide) and PARP-1 (Olaparib) in-
hibits tumor growth [12].
Pre-clinical models of prostate cancer, particularly a

relatively small number of cell lines, are widely
employed to study signal transduction and transcrip-
tion, and to evaluate drug and IR sensitivities. A crit-
ical knowledge gap that may limit the interpretation
and possibly the impact of data generated from these
models is the genomic and transcriptomic state of the
cells. To address this gap, we have performed whole
genome sequencing (WGS) and RNA-seq on three
prostate cancer lines. Combining the new data with
publicly available data from human prostate cancers,
we explored two important issues related to DNA
damage signaling and repair. The first question was,
do prostate cancer models harbor deleterious muta-
tions in the DNA repair machinery. The second ques-
tion was, does androgen signaling regulate expression
of DNA repair machinery.
Our analysis revealed the presence of missense muta-

tions in DNA repair genes in LNCaP, VCaP, PC3-AR,
and RWPE-1 cells. Across these models, a total of 34
DNA damage response (DDR) genes were up-regulated,
and 87 DDR genes were down-regulated in response to
androgen. By co-expression network analysis, we found
that expression of 25 DDR genes were altered in re-
sponse to androgen treatment of cell lines. We also ex-
plored the interplay between DNA repair and
AR-dependent transcription. Treating cells with the
small molecular inhibitor, mirin, which inhibits the
endonuclease MRE11, reduced AR-induced transcrip-
tion. Our genomic and RNA-seq data should be useful
for groups studying how the status of the DNA repair
machinery influences properties such as drug sensitiv-
ity. The mirin effect on AR activity and cell growth sug-
gests it might have utility as an inhibitor of prostate
cancer cells.

Methods
Antibodies, reagents, and standard techniques
For immunoblotting experiments, lab-prepared AR hinge
3 (against AR residues 656 to 669: TQKLTVSHIEGYEC),
Hsp70 (Stressgen), Hsp90β (GeneTex), lab-prepared
FKBP51 (against FL protein), and Tubulin (Sigma Aldrich)
were used. Secondary antibodies were IRDye-800 labeled
antibodies (Rockland #610–732- 124, #610–132-121, and
#611–732- 127), and Alexa Fluor-680 labeled secondary
antibodies (Life Technologies #A21058 and #A10043).
Standard immunoblotting procedures were conducted,
images were detected on a fluorescent Odyssey imager,
and analyzed using the provided LI-COR software.

For immunofluorescence, a lab prepared AR21 anti-
body (against AR residues 1 to 21: MEVQLGLGR-
VYPRPPSKTYRGC) was used while DAPI staining was
used for nuclear detection. The secondary antibody was
a Cy3-labeled anti-rabbit (Jackson Immunoresearch).
Cells were grown on glass coverslips. Coverslips were
prepared using standard immunofluorescence methods
with a 15-min fixation (3.75% formaldehyde), washed with
PBS, permeabilized for 5 min (0.2% triton X-100), and in-
cubated with a 1-h block at room temperature (2% FBS
and 2% BSA in PBS). Coverslips were then incubated in
primary antibody (diluted in blocking buffer) overnight at
4 °C. Secondary antibodies (diluted in blocking buffer)
were incubated for 1 h at room temperature. Images were
obtained using a confocal microscope (Zeiss 800 LSM,
Carl Zeiss) at 40×, 1.3 NA oil immersion objective and
captured/processed using ZEN software (Carl Zeiss).
For immunoprecipitation, cells were lysed with cell

lysis buffer (20 mM Tris-HCl pH 7.5, 50 mM NaCl,
0.5% Triton X-100, 5 mM EDTA, 2 mM DTT, and
protease inhibitors) and clarified by centrifugation
prior to incubation with Anti-FLAG M2 Affinity Gel
(Sigma-Aldrich) at 4 °C. After a 4-h incubation, beads
were washed with wash buffer (20 mM Tris-HCl
pH 7.5, 50 mM NaCl, 0.1% Triton X-100, 0.1 mM
EDTA, 2 mM DTT, and protease inhibitors). Standard
SDS-PAGE loading buffer and procedures were used
to separate proteins.

Cell culture
LNCaP, VCaP, and PC-3 cells were kindly provided by
Dr. Michael Weber (University of Virginia) and were
purchased originally from ATCC. VCaP cells were
grown in DMEM supplemented with 10% FBS and 1%
antibiotic/antimycotic. LNCaP and PC-3 cells were
grown in RPMI supplemented with 5% FBS and 1%
antibiotic/antimycotic. PC3-AR cells were made by
stable lenti-viral infection of full length AR using a
pWPI-GFP-FLAG-AR plasmid in which the GFP por-
tion was swapped with the antibiotic selectable hygro-
mycin resistance gene. RWPE-1 cells were obtained
from Dr. Daniel Gioeli and cultured in Keratinocyte
SFM supplemented with the provided EGF and BPE
factors. All cells were incubated at 5% CO2 and 37 °C.

Cell growth/survival assays and cell cycle analysis
Cells were seeded onto a 96-well format for 1 day.
Media was exchanged and supplemented with indi-
cated concentrations of inhibitors for 72 h. Alamar
blue dye (Promega, #G808A) was added (10% of total
volume) for ~ 6 h and measured with a fluorescent
plate reader according to manufacturer’s recommen-
dations. Technical replicates of at least 4 measure-
ments were averaged. The data was normalized by
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removing the background signal and rescaling the
values so that the vehicle condition was 100%. Values
were plotted using Prism software and IC50 values
were calculated with non-linear regression based on
the log transformed data.
Cell cycle measurements were determined using the

FITC-conjugated BrdU Flow Kit (BD, #559619) where we
stained and performed flow cytometry of asynchronous
cells according to the manufacturer’s instructions and in
reference to Benamar et al. (2016) [13]. In brief, cells were
pulsed with BrdU for 1 h. Cells were washed and harvested
using trypsin. After a PBS wash, cells were fixed. Prior to
staining with 7-AAD and anti-BrdU antibody, cells were
permeabilized. Cells were resuspended in a 1-mL solution
and more than 10,000 cells were measured using the Cytek
modified BD FACSCalibur provided by the Flow Cytometry
Core Facility at the University of Virginia. Data was ana-
lyzed using the FlowJo and ModFit software packages.

Gene expression analysis
Prostate cancer cells were plated in the corresponding
phenol-free based media supplemented with charcoal-
stripped serum (Gemini) for 48–72 h. Synthetic androgen,
R1881 (Sigma Aldrich), was typically added for 12 h at a
concentration of 2 nM.
For real time quantitative PCR (RT-qPCR) experiments,

RNA was extracted using standard TRIzol (Thermo Fisher
Scientific) methods. cDNA was prepared using BioRad
iScript reagents and expression was detected using Sensi-
Mix Sybrgreen reagents, all according to manufacturer’s
instructions. Technical replicates were averaged and nor-
malized to the GUS housekeeping gene. Experiments are
representatives of at least 3 experiments.
The following primers were used at a final concentra-

tion of 200 nM:

FKBP5 Forward: 5’-AGGAGGGAAGAGTCCCAGTG-3’
FKBP5 Reverse: 5’-TGGGAAGCTACTGGTTTTGC-3′

ABCC4 Forward: 5’-GGCAGTGACGCTGTATGG-3’
ABCC4 Reverse: 5’-CGCCAGGTCTGACAGTAAA
G-3′

GUS Forward: 5’-CCGACTTCTCTGACAACCG
ACG-3’
GUS Reverse: 5’-AGCCGACAAAATGCCGCAGACG-3′

PSA Forward: 5’-TGGTGCATTACCGGAAGTG
GATCA-3’
PSA Reverse: 5’-GCTTGAGTCTTGGCCTGGT
CATTTC-3′

TMPRSS2 Forward: 5’-GGACAGTGTGCACCTCAAA
GAC -3’
TMPRSS2 Reverse: 5’-TCCCACGAGGAAGGTCCC -3′

NCAPD3 Forward: 5’-TGACACAGTGTGGGAACTG
G -3’
NCAPD3 Reverse: 5’-TAAAGCCCAGCGGCATGAAG -3′

p21 Forward: 5’-ATGTGTCCTGGTTCCCGTTTC -3′
p21 Reverse: 5′- CATTGTGGGAGGAGCTGTGA -3′

SOCS2 Forward: 5′- CTTGAGCCCTCCGGGAAT -3’
SOCS2 Reverse: 5′- TCCCCAGTACCATCCTGTCTG -3′

HOMER2 Forward: 5′- CGTCACAGAAGTTT
GGGCAGTG -3’
HOMER2 Reverse: 5′- CTTGGCAGCTTCTTTCACC
TCC -3′

EAF2 Forward: 5′- CCTTCCACACTGTGCGCTA
TGA -3’
EAF2 Reverse: 5′- GGCAGAGTTATGGTCACCT
GTTC -3′

PIAS1 Forward: 5′- ACAGTGCGGAACTAAAGCAAA -3’
PIAS1 Reverse: 5′- AACCGCCGCCTATAGAGTTC -3′

For RNA-sequencing experiments, the Qiagen RNeasy
kit was used to extract RNA. Library preparation and se-
quencing was performed by Hudson Alpha. Briefly, RNA
integrity and concentration were assessed by a fluoro-
metric assay, indexed libraries were made using the
standard polyA method, quality control was used to de-
termine size and concentration, and samples were se-
quenced using Illumina HiSeq 2500 at a depth of 250
million × 50-bp paired-end reads. Reads were aligned to
the hg38 genome (ENSEMBL GRCh38.89) using STAR
(release v. 2.5) [14]. Counts were generated using HTSeq
(release v. 0.6) [15]. DESeq2 R package was used to de-
termine normalized counts [16]. Genes with low counts
were eliminated (≤ 10 in all conditions), and definitions
of differential genes are described in the figure legends.
For weighted gene co-expression network analyses

(WGCNA), we filtered the count matrix to remove
genes with low read counts (where sum of reads in all
samples < 1). We then applied variance stabilizing trans-
formation to the remaining data resulting in homoske-
dastic counts normalized with respect to library size.
Unsupervised clustering was performed with WGCNA
[17, 18]. Briefly, a network was constructed using
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biweight midcorrelation as the measure of similarity be-
tween genes with β equal to 5. Modules were identified
by applying hierarchical clustering (average method) to
distance calculated from signed topological overlap
matrix and the tree was cut with cutreeDynamic using
the following parameters: minimum module size equal
to 30 and hybrid method. Next, the modules were
merged if the distance between them was equal to less
than 0.25, resulting in 15 modules. We then calculated
the eigengene for those 15 modules and created a gene
list representing each module by filtering the genes
based on gene significance and intra-modular connectiv-
ity. Modules were subsequently described by overrepre-
sented pathways using Enrichr. Gene Set Enrichment
Analysis (GSEA) was performed on pre-ranked gene list
that was generated by assigning a value to each gene that
was equal to log of p-value multiplied by the negative sign
of the fold change (rank = − 1 * sign(FC) * log(p-value)).
Gene sets used for analysis with GSEA included the
MSigDB hallmark gene sets [19] as well as a curated DDR
gene set of 450 genes.

Data sources
Androgen-dependent and androgen-independent micro-
array data was downloaded using Gene Expression Omni-
bus (GEO) data repository (GSE847) [20]. We restricted
our analysis to a curated list of DNA repair genes [21]. To
confidently assess the expression of DNA repair genes, we
filtered the normalized data by re-scoring negative inten-
sities and values with “absent” detection calls [22]. Fold
changes between hormone insensitive and hormone sensi-
tive xenograft pairs were calculated, and fold changes ≥1.5
and ≤ 0.667 were defined as an alteration.
The publicly available Memorial Sloan-Kettering Cancer

Center (MSKCC) prostate adenocarcinoma (PRAD) dataset
was downloaded from cBioPortal [23, 24]. Clinical and ex-
pression data for a total of 181 primary prostate tumors and
37 metastatic tumors were provided by Taylor et al. (2010)
[25]. We limited our analysis to the 450 expert-curated
DNA damage/DNA repair gene set from Pearl et al. (2015)
[21] and tested the association of the normalized expression
for various clinical parameters using the Kruskal-Wallis test
(p-value ≤1E-5). To generate the heatmap, we used “mRNA
Expression Z-Scores vs Normals” data that was normalized
and analyzed by cBioPortal. We plotted those genes found
to be significantly associated with disease status using
ComplexHeatmap.
In order to test a significance based on DNA damage re-

sponse ontologies, we used Fisher’s exact test (fisher.test() in
R v. 3). We generated unions of genes from each of the 125
ontology pathways described by Pearl et al. (2015) [21]. We
then classified the genes from each of our analyses (cell line,
xenograft, patient metastases, or all groups) based on their
presence or absence in the ontology group. Returned

p-values for each ontology group were plotted as a function
of the -log10 value.
ChIP-sequencing analysis was derived from GSE28126.

LNCaP and VCaP data was aligned to the hg38 reference
genome using bowtie2 [26]. Peaks were called using macs2
[27]. To determine androgen-induced peaks, R1881 treated
samples were analyzed as the “treatment” while untreated
samples were analyzed as the “control”. Peaks were anno-
tated to the closest gene using bedtools [28].

Additional image processing information
Figures related to RT-qPCR and S-plots were generated
using Microsoft Excel and graphed using GraphPad Prism
(GraphPad Software, La Jolla, CA). GSEA (Broad Institute,
Inc., release v. 3.0) was used to calculate gene set enrich-
ments [29, 30]. The data was replotted using R. Complex-
Heatmap and Python (matplotlib.pyplot.imshow) were used
to graph heatmap data. Lollipops (release v. 1.3.2) was used
to plot protein mutations [31]. All figures were assembled
with Adobe Illustrator.

Detecting genomic variants
For LNCaP, VCaP, and PC3-AR cell lines, genomic DNA
was prepared using the Qiagen DNeasy kit. Libraries
were prepared and samples were sequenced by Hudson
Alpha. Sequenced DNA data from RWPE-1 was kindly
provided by Dr. Anindya Dutta (University of Virginia).
Generation of sequenced RNA datasets were described
above. To provide additional coverage for RNA tran-
scripts, the sequenced reads from both the control and
the androgen-treated samples were merged for each re-
spective cell line. The RWPE-1 RNA-seq sample was de-
rived by merging the following publicly available
datasets: SRR1282953, SRR2919800, and SRR2919800.
DNA was aligned using BWA [32, 33] to the hg19

reference sequence. Corresponding RNA-seq was
aligned using STAR [14] to the hg19 reference se-
quence. Aligned reads were subsequently filtered and
processed using GATK Haplotype Caller [34]. Vari-
ants were limited to the following 18 DNA repair
genes: PARP1, PARP2, ERCC3, ATR, ATM, RAD50,
RAD51, MRE11, NBN, CHEK1, CHEK2, MLH3,
PALB2, FANCA, BRCA1, BRCA2, HDAC2, and
PRKDC. Allelic frequency for each variant were
compared to the 1000 Genomes Project [35] and the
NHLBI GO Exome Sequence Project [36]. COSMIC
identification numbers [37, 38] and prior reports for
each variant was verified through a literature search
[39]. Deleterious mutations were predicted in silico by
Scale-invariant feature transform (SIFT) [40], fitness conse-
quence (fitCons) [41], Combined Annotation-Dependent
Depletion (CADD) [42], and Polymorphism Phenotyping
(PolyPhen) [43].
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Results
Prostate cancer cell line models contain potential
deleterious mutations in the DNA repair machinery
We set out to define the state of the DNA repair ma-
chinery in prostate cancer cell lines, including how it is
influenced by androgen signaling. A potential difficulty
of comparing androgen signaling across prostate cancer
cells is - depending on the line - the AR is mutated, al-
ternatively spliced, and expressed at different levels, all
of which could affect the transcriptional output mea-
sured in response to androgen [44, 45]. For example, the
most widely used prostate cancer cell line, LNCaP, car-
ries a mutation in the ligand binding domain that affects
activity. To help address this issue, we generated a line
using PC3 cells, in which WT AR was re-introduced. PC3
cells are a metastatic, AR-negative prostate cancer line
that is arguably the most aggressive prostate cancer line
used in the laboratory. AR protein expression in PC3-AR
cells is similar to the level in VCaP and LNCaP and shows
efficient translocation into the nucleus 15 min after the
addition of the synthetic androgen, R1881 (Fig. 1a-b). Like
other prostate cancer lines, AR re-expressed in PC3 cells
displays R1881- and DHT-induced release of Hsp90 and

Hsp70, which reflects conformational changes induced by
androgen binding to the AR ligand binding domain (Fig.
1c). Androgen-induced transcription and translation of
the FKBP5 gene, which is directly regulated by AR [46]
and widely used as a readout of AR activity, generates
comparable levels of FKBP51 protein detected by im-
munoblotting in PC3-AR and LNCaP cells (Fig. 1d). These
data indicate that AR stably reintroduced into PC3 cells
responds to androgen, activates endogenous gene expres-
sion, and can be used as a model to study WT AR func-
tion in prostate cancer cells. We also determined that
R1881 treatment of PC3-AR cells increases the fraction of
cells in G1 from 39 to 65% (Fig. 1e). This property is not
unique to PC3-AR cells, as LNCaP show a biphasic
growth response and undergo senescence in response to
1 nM R1881 [47, 48].
To define genomic alterations in DNA repair genes in

prostate cancer cells, we performed whole-genome se-
quencing of PC3-AR, LNCaP, and VCaP cells to obtain
an average coverage of ~ 30-fold. We also used a dataset
generated previously from RWPE-1 cells. We focused on
the mutational status of 18 DNA repair genes (PARP1,
PARP2, ERCC3, ATR, ATM, RAD50, RAD51, MRE11,
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NBN, CHEK1, CHEK2, MLH3, PALB2, FANCA, BRCA1,
BRCA2, HDAC2, PRKDC). Twelve of these DNA repair
genes display genome-level alterations in prostate cancer
that are associated with positive outcome in response to
Olaparib treatment [6]. Six additional genes encoding
other core components of the DNA repair machinery
were also included [49]. We aligned the sequences to the
b37 + decoy reference sequence, removed the putative PCR
duplicates, and used the GATK Haplotyper pipeline [34] to
identify single-nucleotide variants (SNV) in the DNA repair
gene set across the four cell lines. From our analyses of the
18 DNA repair genes, we detected 12 missense mutations
in the RWPE-1 cell line, 9 missense mutations in the
VCaP cell line, 2 missense mutations in the PC3-AR cell
line, and 22 missense mutations in the LNCaP cell line
(Additional file 1: Table S1).
To address whether these mutations could be com-

mon alterations within the human population, we anno-
tated the variants with observed allele-frequencies in
European populations from the 1000 Genomes Project
[35] and the NHLBI GO Exome Sequencing Project
[36]. We filtered the missense mutations to identify those
that have a reported allele frequency < 0.1. Four mutations,
BRCA1 (D693N), BRCA2 (R2034C), PARP-1 (P377S), and
PARP-1 (V762A) in the RWPE1 cell line passed the thresh-
old. Three mutations in the VCaP cell line, ATM (F858 L),
ATM (P1054R), and DNA-PK (R2899C) had lower fre-
quencies than 0.1 while only PARP-1 (S383Y) was found to
have a lower allelic frequency than 0.1 in the PC3-AR cell
line. In our analysis, the LNCaP cell line contained the most
missense and frameshift mutations including ATR
(K297 N), ATR (K1482R), CHEK2 (E239*), CHEK2
(T387 N), DNA-PK (N2669 V), DNA-PK (A3417T),
ERCC3 (A740T), ERCC3 (R391W), FANCA (L684P),
HDAC2 (A62V), MLH3 (K274I), MLH3 (I541V), NBS1
(D95N), PARP-1 (E547G), RAD50 (K608 N), and RAD50
(L719 fs*15). A literature and COSMIC search revealed that
several of these mutations have been detected in other
model systems and other cancer subtypes, e.g. PARP-1
(V377S), ATR (K297 N), FANCA (G809 N), and MLH3
(I541V) (Additional file 1: Table S1).
To determine whether the variants are expressed, we per-

formed RNA-seq on the respective prostate cancer lines.
We aligned the RNA-seq reads using STAR aligner, re-
moved the putative PCR duplicates, used the SplitNCigar-
Reads tool to partition the reads into smaller sequences
representing segments beside/between splicing events, and
then used the GATK Haplotyper to identify SNVs validat-
ing the DNA variant calls (Additional file 2: Table S2,
“RNA-seq SNV detected”). Of note, the RNA-seq reads are
limited by the expression of the gene and the location
within the exon. In particular, reads that fall on the 3′ and
5′ ends of the exon will not be detected by this approach.
We determined whether the SNV was detected by

RNA-seq and if the corresponding exon/intron was
expressed by RNA-seq (Additional file 2: Table S2, “SNV
expressed” and “Exon/Intron expressed”, respectively).
Using these criteria, we confirmed the following missense
mutations are encoded at the mRNA level: (1) BRCA1
(D693N), BRCA2 (R2034C), PARP-1 (P377S), and PARP-1
(V762A) in RWPE-1 cells; (2) ATM (F858 L), ATM
(P1054R), and DNA-PK (R2899C) in VCaP cells; (3)
PARP-1 (S383Y) in PC3-AR cells; (4) ATR (K297 N),
CHEK2 (T387 N), ERCC3 (A740T), ERCC3 (R391W),
HDAC2 (A62V), MLH3 (I541V), and NBS1 (D95N) in
LNCaP cells.
To determine if any of the genetic alterations are po-

tentially deleterious, we used the following in silico–
based methods: SIFT [40], fitCons [41], CADD [42], and
PolyPhen [43]. These methods use algorithms to deter-
mine the likely impact of the mutation on the protein
and are based on a number of criteria including se-
quence homology and relationships of a given alteration
to essential protein domains. Two potential deleterious
candidates - CHEK2 (E239*) and RAD50 (L719 fs*15) -
were both found in LNCaP cells (Additional file 2: Table
S2, Fig. 2). These mutations would result in a premature
termination and in C-terminal truncations. In silico ana-
lyses also detected missense mutations in PARP1,
CHEK2, RAD50, and ERCC3 that would likely influence
protein function based on where these alterations fall
within the respective protein domain (Additional file 2:
Table S2, Fig. 2). These results reveal that similar to the
genetic alterations reported in CRPC patient samples, the
cell line models contain deleterious mutations in DNA re-
pair genes associated with the response to PARP inhib-
ition. Thus, our data from these models, and particularly
LNCaP cells, provides a baseline for exploring the inter-
play between DNA repair genes and therapeutics.

Activation of AR generates shared and cell line-specific
transcription programs
Androgen signaling has been shown to alter the expres-
sion of DNA repair genes [9, 50]. To address whether
this might be a general feature of prostate cancer cells,
RNA-seq data that we generated from the PC3-AR,
LNCaP, and VCaP lines was used to characterize the ef-
fects of androgen. Our initial focus was on the PC3-AR
line. Using RT-qPCR, we found that androgen treatment
(R1881, 2 nM) of PC3-AR cells for 12 h resulted in acti-
vation of AR target genes, including FKBP5, ABCC4,
EAF2, and PIAS1 (Fig. 3a). Transcripts for PSA and
TMPRSS2, which are commonly used as readouts for an-
drogen activation of transcription, were not detected in
the presence or absence of androgen. To further
characterize the androgen response in PC3-AR cells, we
treated the cells with R1881 and harvested cells at 6 and
12 h time points for RNA-seq. Using the RNA-seq data,
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we employed co-expression networks to understand the
broad patterns of expression changes in this cell line in
response to androgen treatment. We used the WGCNA
package [17, 18] which uses correlation-based inference
methods to define gene-gene relationships, followed by
construction of a network where each node represents a
gene and each edge represents the presence and the
strength of the co-expression relationship between the
genes it connects. “Modules” in this case refers to genes
that show a similar pattern of change with time and are
identified using hierarchical clustering. Each gene is
assigned a kME value that is a measure of the strength
of connection of the gene with the module, and each
module can be summarized using one representative
gene called the “eigengene”.
We applied WGCNA to the PC3-AR RNA-seq dataset

requiring a minimum module size of 30 genes. We initially
identified 79 modules, but after filtering to limit the mod-
ules to (a) those with a membership greater than 100 genes
and (b) those where the three replicates from the same
time-point exhibit similar expression profiles, we were left
with 6 modules (Fig. 3b). For each of the modules, we
ranked the genes using their kME values. We then
used Gene Set Enrichment Analysis (GSEA) to deter-
mine the hallmark gene-sets from MSigDB that were
over-represented at the top of the list using an FDR
threshold of 0.25 (Additional file 3: Table S3). The
genes from modules I, IV and VI all demonstrated
positive associations with the 12 h androgen time
point relative to the untreated sample and were all
significantly enriched for the “HALLMARK_AN-
DROGEN_RESPONSE”, a collection of genes from
the MSigDB collection that define the androgen re-
sponse [19].
We next compared the RNA-seq data from PC3-AR

cells (12 h R1881) to RNA-seq data from VCaP and
LNCaP cells (24 h R1881). We used DESeq2 [16] to
identify differentially expressed genes (adjusted p-value
< 0.05) in response to androgen treatment within and
across the three cell lines. In response to R1881 treat-
ment, PC3-AR cells had 2,190 transcripts that were up-
regulated and 2,423 transcripts that were downregulated,
LNCaP cells had 2,633 transcripts that were upregulated
and 3,185 transcripts that were downregulated, and
VCaP cells had 3,183 transcripts that were upregulated
and 4,096 transcripts that were downregulated (Fig. 3c).
Notably, the androgen-controlled gene expression pat-
terns from all three cell lines, including the PC3-AR cell
line, was found to be strongly enriched for the “HALL-
MARK_ANDROGEN_RESPONSE” and the “HALL-
MARK_E2F_TARGETS”, in a positive and negative
manner, respectively (Fig. 3d, Additional file 4: Figure
S1). From principal components analysis, we found that
the replicates within each group were highly similar and

that most of the variability in the data is explained by
the differences in the cell lines, which dominate over the
effects of androgen (Fig. 3e). Overall, these results are in
agreement with other reports showing that ligand activa-
tion of nuclear hormone receptors generates shared and
cell line-specific transcription programs [51]. Multiple
factors and pathways likely contribute to the differences
observed in the cell lines, and these may include specific
forms and expression levels of AR.

Expression signatures of the DNA repair and DNA
damage response genes in prostate cancer cell lines
The Sawyers group explored how ADT increases the radio-
sensitivity of CRPC, and reported that AR transcriptional
output is associated with the expression of DNA repair
genes [50]. GSEA was used to define an AR-associated
DNA repair gene set in human tumors (144 genes) of which
a subset (32 genes) are AR target genes. In light of these ob-
servations, we set out to understand if androgen regulation
of DNA repair genes is a common feature of prostate can-
cer cells.
We used the 32 DNA repair gene set published by Polk-

inghorn et al. (2013) [50] to query our RNA-seq data and
found that most of these genes were not significantly altered
by androgen treatment in the three cell models (adjusted
p-value < 0.05) (Fig. 4a). HUS1 and RAD51C were two
genes that were increased in LNCaP and PC3-AR, respect-
ively. We found a total of seven genes underwent a signifi-
cant reduction in response to androgen treatment (MRE11,
FANCI, RAD18, MAD2L1, MCM7, TDP1, MSH6), though
this effect did not extend to all three cell lines. From a heat-
map of the regularized-log (rlog) transformed mRNA
counts and androgen-mediated fold changes of 28 charac-
terized well-characterized androgen-regulated genes [52]
(Fig. 4a-b), it is clear that androgen induces gene expression
changes in all three cell lines under our growth conditions.
The hierarchical clustering of the 32 DNA repair genes

(Fig. 4a) based on a correlation distance and complete link-
age identified 16 genes that showed a weak decrease in ex-
pression in response to androgen across all three cell lines.
We repeated the DESeq2 analysis, treating the cell lines as
biological replicates adjusting for the cell-line specific ef-
fects. In this analysis, we detected differential expression in
response to androgen in 21 of the 32 genes (adjusted
p-value < 0.05) - however, 17 of the 21 genes showed a de-
crease in expression (data not shown). This finding was sup-
ported by a GSEA, where we found a significant
enrichment for genes that undergo an androgen-dependent
decrease in expression (Fig. 4c). We found that 18 of the 32
genes formed the leading edge and account for the majority
of the gene set enrichment signal (Fig. 4c).
Our analysis using the 32-gene set confirms that andro-

gen signaling has a role in regulating DNA repair gene ex-
pression, with both positive and negative changes,
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depending on the gene. This prompted us to expand our
analysis, which we did using two approaches. In the first ap-
proach, we used the list of differentially expressed genes
from all three cell lines and filtered the list to include only
those which are part of a set of 450 expert-curated DNA
damage response (DDR) [21]. Using this strategy, we found
34 DDR genes that were significantly upregulated (adjusted
p-value < 0.05) and 87 DDR genes that were significantly
downregulated (adjusted p-value < 0.05) in response to an-
drogen treatment (Fig. 5a, Additional file 5: Table S4). Only
seven DDR genes showed androgen-mediated differential
expression in all three prostate cancer cell lines. We ob-
served that three DNA repair genes (CDKN1A, NCAPD3,
and PER1) were significantly upregulated by androgen
treatment in each of the three cell line models, whereas
four DDR genes (EXO1, XRCC2, PER3, and TERT) were
significantly decreased (Fig. 5a). Considering the cell lines
as biological replicates and accounting for the differences
in the cell lines in the design of the differential expression
analysis, we found that 291 of the 450 DDR genes display
differential expression in response to androgen (adjusted
p-value < 0.05), with 192 showing a decrease in expression
in response to the treatment (data not shown).
In the second approach, we set out to identify sets of

genes (gene modules) that are co-regulated in response to
androgen by constructing differential co-expression net-
works and performing topological analysis. To this end,
we employed WGCNA [17, 18] to our RNA-seq dataset
requiring a minimum module size of 30 genes and identi-
fied 15 modules (Fig. 5b-c, Additional file 6: Figure S2). Of
note, we found four modules that were significantly re-
lated to the androgen treatment status (Point-biserial cor-
relation, adjusted p-value < 0.05); two modules were
associated with an increase in expression and two mod-
ules were associated with a decrease in expression (Add-
itional file 7: Table S5, Fig. 5b-c, red & blue, respectively).
Using the four modules, we selected the genes with kME

value > 0.8 and ranked them based on the direction of the
fold-change and p-value. We then used Enrichr [53] to
identify enriched annotations for each of the four modules.
The modules that showed an increase in expression after
androgen treatment were found to be enriched for several
important pathways related to prostate cancer (Add-
itional file 8: Table S6). Module XV was found to be

enriched for cholesterol biosynthesis, steroid biosynthesis,
various transport pathways, with genes found to be targeted
by several ETS factors GABP, ERG, and ETS1 (p-adjusted
< 0.05). Module XIV was also enriched for similar pathways
to Module XV. Moreover, this gene set was signifi-
cantly enriched for genes reported to be highly
expressed in the prostate (BioGPS, p-adjusted
0.002591). Module I and Module II were each asso-
ciated with a decrease in expression after androgen
treatment. Module I was not significantly enriched
for a particular pathway, while Module II was signifi-
cantly enriched for ribosomal genes. But because the
enrichment analyses did reveal well-established path-
ways associated androgen signaling in prostate cells,
we believed the approach could be used to determine
the presence of DNA repair genes in the modules.
We compared the genes from the modules that

were significantly related to androgen treatment
(Modules I, II, XIV, XV) to the expert-curated list of
450 human DDR genes [21]. We found 25 genes in
modules that were affected by androgen. There were
17 genes in modules that showed an increase in ex-
pression after androgen treatment, and eight genes
were in modules that showed a decrease after andro-
gen treatment (Additional file 9: Table S7). By exam-
ining publicly-available AR ChIP-sequencing data
from LNCaP and VCaP cells (GSE28126), we found
that 18/25 of these genes have proximal AR binding
sites (Additional file 9: Table S7, indicated in red).
Interestingly, the only gene shared between the
25-gene set described here and the 32-gene set re-
ported in Polkinghorn et al. (2013) [50] was HUS1
while five genes in our 25-gene set were identified
within a 144-gene set as significantly associated with
AR output in human prostate cancer samples.
Within our 25 gene set are EYA3 and MTOR, which
have been identified as putative AR targets in an in-
tegrative study of TCGA-PRAD samples [54]. Our
module analysis expands the number of DNA repair
genes impacted by androgen signaling, but it also
underscores the difficulties of predicting how DNA
repair activity is affecting the biological outcome
since there are both positive and negative effects on
gene expression.

(See figure on previous page.)
Fig. 3 Androgen-dependent transcriptional responses of prostate cancer cell lines. a RT-qPCR shows androgen treatment (2 nM R1881, 12 h)
induces FKBP5, ABCC4, EAF2, and PIAS1 expression in PC3-AR cells. b Eigengene expression plots from WGCNA of PC3-AR RNA-sequencing. c Venn
diagram of all differentially expressed transcripts in PC3-AR, LNCaP, and VCaP cell lines after 2 nM R1881 androgen treatment. Differential fold
change was set to the following parameters: > 1.5-fold or < 0.67-fold; adj. p≤ 0.01. LNCaP and VCaP treatments were conducted for 24 h while
PC3-AR data was taken from a 12 h treatment. d Heatmap displaying normalized enrichment scores (NES) generated from a pre-ranked Gene Set
Enrichment Analysis (GSEA) of androgen-treated prostate cancer cell lines. Standard GSEA methods were limited to the MSigDB hallmarks. e
Principal component analysis (PCA) plot of mRNA expression data generated from RNA-sequencing. Data derived from LNCaP, VCaP, and PC3-AR
cells before and after androgen treatment
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Advanced prostate cancer exhibits aberrant expression of
the DNA repair machinery
Our analyses identified a set of 25 DNA repair genes af-
fected by androgen treatment across three cell lines and
other studies have recently identified the importance of this
signaling pathway in large cohorts of advanced prostate
cancer [55–57]. We examined if our DDR gene set, or any
of the 450 expert-curated DDR genes, were associated with
prostate cancer disease progression. We analyzed micro-
array data from cases of primary and metastatic prostate
cancer as well xenograft models of castration resistance. We
downloaded a Z-score normalized (with respect to the nor-
mal prostate samples) expression dataset from the MSKCC
study [25] provided by cBioPortal [23, 24]. We restricted
the analysis to the 450 DDR genes, and performed a
Kruskal-Wallis rank sum test to identify genes that showed
significant association (p-value <1e-5) with the provided
clinical tumor status (primary tumor or metastatic tumor).
In total, 42 DDR genes passed the threshold (Add-
itional file 10: Table S8), and the expression levels of these
genes help distinguish metastatic versus primary prostate
cancer. It has been shown in other studies that DNA repair
pathway gene alterations are more frequent in the meta-
static samples compared to primary tumors [58], but further
analyses are needed to confirm if those alterations lead to
expression differences of specific genes and gene sets.
Because we observed that DNA repair gene expression is

increased in prostate cancer metastases (Fig. 6a), we tested
whether DNA repair genes are altered in models of hor-
mone-resistant (HR) prostate cancer. We used
publicly-available gene expression microarray data from
seven prostate cancer xenografts (CWR22, LAPC4, LAPC9,
LNCaP, LuCaP23, LuCaP35, and LuCaP41) for which there
are hormone sensitive (HS) and hormone resistant (HR)
isogenic lines [20]. To determine changes in expression
levels, we calculated expression fold changes between xeno-
graft tumor samples developed in androgen-deprived condi-
tions and the corresponding control tumor sample. When
we considered all 450 DDR genes, we found 19 genes were
differentially expressed in at least four of the seven prostate
cancer xenograft models (Fig. 6b). More specifically, we
found the expression of 11 genes were increased and eight
genes were decreased in the HR lines grown in castrated
mice (Additional file 10: Table S8).
Integrating the findings from prostate cancer cell lines,

patient tumor samples, and xenografts, we found a total of
81 DDR genes display expression changes associated with

androgen signaling and disease progression (Fig. 6c). There
was very limited overlap between these gene sets. The
PER1, NFRKB, and CCNC genes were altered in prostate
cell lines and in the HR xenograft models. POLE was differ-
entially expressed in the HR xenograft models and in pa-
tient metastases. NCAPD3 was differentially regulated in
patient metastases and was regulated by androgen treat-
ment in the cell line models. These 81 genes play important
roles in multiple DNA repair pathways through checkpoint
signaling, chromatin remodeling, chromatin segregation,
and base excision repair.
With the goal of understanding how the 81 DDR genes

(Fig. 6c) contribute to specific repair pathways, we used a
Fisher’s exact test to compare the 81 DDR gene set to the
125 DNA repair ontologies organized and described by
Pearl et al. (2015) [21]. Using a p-value cut-off of 0.01, we
found there are no ontologies that are common to the cell
line models, one ontology that is common to the xeno-
graft models, and four ontologies that are common to the
patient model (Fig. 6d). Thus, it appears that the expres-
sion alterations to the DNA repair pathway are highly spe-
cific to the model and possibly the disease stage. This
further underscores the importance of understanding the
genomics and epigenomics of the model systems that are
frequently used to study prostate cancer.

Treating prostate cancer cells with the MRE11 inhibitor
Studies from several groups have shown that androgen sig-
naling through AR induces a low level of transcription-asso-
ciated DNA damage [59, 60]. This might be a characteristic
of steroid hormone receptor signaling given that similar ob-
servations have been made in cells treated with estrogen
and glucocorticoid [61–63]. Thus, it is plausible that
androgen-induced expression of DNA repair genes is part
of a mechanism to restore the integrity of chromatin that is
damaged during transcription. Importantly, the androgen
effects on DNA repair also includes androgen and
AR-dependent recruitment of DNA repair factors to sites of
damage, which have been shown to occur at AR-regulated
enhancers and promoters [59, 60, 63]. ATM, DNA-PK,
DNA Ligase IV, MRE11, and other repair factors undergo
transient recruitment to AR binding sites in an
androgen-dependent manner [60, 64, 65]. The application
of drugs targeting DNA repair enzymes has helped reveal
the importance of DNA factors to AR-dependent transcrip-
tion [60, 64, 66]. We used a drug approach to test whether
the small molecule inhibitor mirin, which targets MRE11

(See figure on previous page.)
Fig. 4 Reduced expression of multiple DNA repair genes occurs in response to androgen treatment. a Heatmap of DNA damage repair genes in
prostate cancer cell line models. RNA-sequencing from untreated and androgen-treated cells were Z-score normalized for the 32 DNA damage
repair genes reported by Polkinghorn et al. (2013) [50] and 28 control AR-target genes reported by Hieronymus et al. (2006) [52]. Genes in bold
indicate differential regulation across all three cell lines. b Heatmap of DESeq2 log2 fold changes of DNA damage repair genes in prostate cancer
cell line models. c GSEA of the RNA-seq data from prostate cancer lines, limited to the 32- DNA repair gene set signature
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[67], can be used to inhibit AR-dependent transcription.
MRE11, an enzyme that has both 3′-5′ exonuclease and
endonuclease activity, is a component of the DNA damage
sensing MRN complex. Mirin has been characterized ex-
tensively in a variety of cellular and biochemical contexts
where it inhibits events associated with homologous re-
combination [67, 68], but to our knowledge, mirin has not
been characterized in prostate cancer cells. Thus, we set
out to answer two simple questions. (1) Does mirin inhibit
AR-dependent transcription in prostate cancer cells? (2)
Does mirin inhibit prostate cancer cell growth?
We tested a broad range of mirin concentrations for ef-

fects on androgen-induction of FKBP5 in PC3-AR, LNCaP,
and VCaP cells. We found that 50 μM mirin reduced the
androgen-induction of FKBP5 by 50% (Fig. 7a). LNCaP cells
appeared less sensitive to mirin, where 100 μM mirin was
required to reduce FKBP5 by 50% (Fig. 7a). Mirin treatment
reduced androgen induction of the SOCS2, HOMER2, and
ABCC4 genes in PC3-AR cells (Fig. 7b). Partial knockdown
of MRE11 by siRNA generated a modest but statistically
significant reduction in the TMPRSS2 and PSA genes in
LNCaP cells (Additional file 11: Figure S3A-B). These data,
which indicate that mirin can be used to reduce
androgen-induced transcription in prostate cancer cells ex-
pressing WT and mutant forms of AR, support the model
proposed by other groups that DNA repair is important for
AR-dependent transcription [64–66]. As we alluded to earl-
ier, ATM is also recruited to sites of androgen-induced
damage [60, 65], and is, in part, regulated in part by
MRE11 [69]. Application of the ATM inhibitor KU55933
[70] caused a striking reduction in androgen induction of
the PSA, FKBP5, and TMPRSS2 genes in LNCaP cells (Fig.
7c). These show that inhibition of the DNA repair machin-
ery can be used as a strategy to reduce androgen signaling
in prostate cancer cells, and support the view that DNA re-
pair makes an important contribution to AR-dependent
transcription.
To examine the effect of mirin on prostate cancer cell

growth and survival, we treated cells with drug for 72 h and
performed an Alamar blue assay. We determined that
PC3-AR, VCaP, RWPE-1, and LNCaP cells all display IC50

values in the range of ~ 40–70 μM (Fig. 7d-e). LNCaP cells
appeared to be somewhat less sensitive to mirin than the
other cell types, a result noted in the transcription assays
(Fig. 7a). Importantly, mirin antagonism of androgen signal-
ing does not result in the accumulation of damaged DNA,
at least assessed by immunoblotting for global changes in
activated ATM and γH2AX (Additional file 11: Figure S3C).

Discussion
The discovery that PARP inhibitors have efficacy in prostate
cancer patients that harbor mutations in DNA repair genes
provides proof-of-concept that targeting the DNA repair
machinery can be beneficial. Defining the genomic status

and RNA expression of the DNA repair machinery in pros-
tate cancer cell lines provides a knowledge base that is crit-
ical for the selection of an appropriate model, and
interpretation of data generated from the model. This could
include evaluating the effects of clinically-used drugs,
screening for new compounds, and searching for potential
synthetic interactions. In this study, we set out to under-
stand the genetic changes in the DNA repair machinery in
LNCaP, VCaP, PC3-AR, and RWPE-1 cell lines. We found
a total of 24 small nucleotide variants with low allelic fre-
quency across these prostate cancer cell lines. Mutations
were detected in the following genes: ATM, ATR, BRCA1,
BRCA2, CHEK2, PRKDC, ERCC3, FANCA, HDAC2,
MLH3, NBN, PARP1, and RAD50. Of these 24 mutations,
two mutations in LNCaP cells are predicted to be deleteri-
ous CHEK2(E239*) and RAD50(L719 fs*15). The RAD50
mutation (chr5:131931452; L719 fs*15) causes a frameshift
and a large C-terminal truncation that results in loss of >
500 amino acids. The CHEK2 mutation (chr22:29107974;
E239*) introduces a stop codon that deletes the kinase do-
main. CHEK2 activation in response to DNA damage in-
duces a cell cycle checkpoint [71]. CHEK2 variants
predispose individuals to breast and colon cancer [72] and
it has been shown to be a negative regulator of prostate
cancer growth [73]. RAD50 is a member of the MRN
(MRE11-RAD50-NBS1) complex which functions as a scaf-
fold for sensing DNA damage [74]. Mouse knockouts of
RAD50 are embryonic lethal [75], and, like CHEK2, RAD50
mutations are associated with cancer risk [76, 77]. Muta-
tions in CHEK2 or RAD50 could help sensitize LNCaP cells
to DNA damage induced by chemotherapy drugs and IR.
From sequence data, the genomic alterations in CHEK2
and RAD50 appear to affect single alleles in LNCaP cells,
but CHEK2 and RAD50 are both haploinsufficient genes,
the level of activity provided from a single WT allele may
not provide enough activity for the cell.
Additionally, we detected missense mutations in

two additional DNA repair genes that are predicted
to impact protein function. The ERCC3 mutation
(chr2:128044450; R391W) introduces a tryptophan into the
Helicase C-terminal domain, and the PARP1 mutations
(chr1:226566948; E547G and chr1:226555302; V762A)
introduce amino acid changes into functional domains of
the protein. One of the amino acid changes, V762A, has
been studied biochemically and shown to reduce PARP-1
enzyme activity [78, 79].
Our characterization of DNA repair genes in pros-

tate cancer cells included generating RNA-seq data,
determining the extent to which DNA repair genes
are regulated by androgen in different cell lines,
and using existing data sets to make comparisons
with xenograft models and human prostate cancer.
Androgen signaling through AR has been shown to
induce a DNA repair signature (32 genes) that
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could explain the radioresistance of some prostate
cancers [50].
Using RNA-seq data and WGCNA, we found that 17

DNA repair genes were positively correlated with androgen
treatment across three cell lines, and eight DNA repair
genes were negatively correlated with androgen treatment.
Surprisingly, only one member of the 32 DNA repair gene
set reported by Polkinghorn et al. (2013) [50], HUS1, was
detected in our 25 DNA repair gene set. The differences
could be due to any number of biological variables

associated with the cell lines or growth conditions in la-
boratories as our experiments were conducted using
shorter R1881 treatment times.
It is possible that cell cycle changes pertaining to the ob-

served androgen-induced G1 cell cycle arrest could contrib-
ute to the gene expression profiles detected in response to
androgen - particularly because our analysis shows that all
three cell lines displayed a strong androgen-regulated de-
crease in the E2F gene target hallmark (Fig. 3d). The E2F
transcription factor family plays important roles as both
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activators and repressors of the cell cycle [80]. Mechanistic-
ally, both transcription factors – AR and E2F1 – could con-
tribute either cooperatively or independently to the changes
in DNA damage response genes as has been shown previ-
ously for other androgen-regulated genes [81].
Ultimately, our findings clearly support a role for andro-

gen signaling in DNA repair gene expression in multiple
cell lines, xenograft models, and in human tumor samples.
As part of the analysis, we found that 60% of the DNA re-
pair genes affected by androgen treatment in cell lines have
AR binding sites based on AR ChIP-seq data from LNCaP
and VCaP cells [44]. The implication from our data is that
androgen regulation of DNA repair gene expression could
influence the response of prostate cancers to radiotherapy.
But because there are both positive and negative effects on
DNA repair gene expression, and there exists a complex
interplay between DNA repair pathways, it is difficult to
make simple predictions as to the biological outcome.
We also observed that DNA repair gene expression is

changed during the transition from androgen-dependent to
castrate-resistant cell growth. We examined publicly avail-
able microarray data from “HS-HR” xenograft pairs [20]
and found a total of 19 DNA repair genes were up- or
down-regulated in at least four (of seven) models for CRPC.
Using patient data, we found a set of 42 DNA repair genes
were associated with metastasis. Some of these DNA repair
genes have AR binding sites within 25 kb of the transcrip-
tional start site or within the gene body itself, suggesting
the regulation of a subset of these gene could be directly
regulated through androgen signaling. The very small over-
lap between these sets of DNA repair genes might be ex-
plained by the fact each was generated from cells grown in
vastly different milieu and selection pressures (cell culture,
xenograft, human tumors). Genes enriched for specific
pathways, namely cell growth and cell cycle, have been
shown to be uniquely regulated in cell lines versus patient
tumor samples [82].
While the DNA repair machinery is widely appreciated

for its role in correcting mutations generated during
replication, and in response to various environmental in-
sults, there is growing acceptance of its importance in
transcription. The introduction of DNA breaks, for the
purpose of resolving topological constraints [59, 60, 63]
and for expression of enhancer RNAs [65], has been
shown to be important for AR-dependent gene expres-
sion. Not surprisingly, androgen-dependent induction of
these DNA breaks is accompanied by recruitment of
DNA repair components, which occurs on a time scale
of minutes. This mechanism might explain why certain
DNA repair inhibitors reduce androgen-stimulated gene
expression. Topoisomerase-mediated DNA breaks
have been shown to be necessary and sufficient for
transcription of genes that direct early events in
neuronal differentiation [83].

One of the DNA repair enzymes that was shown by the
Rosenfeld group to be important for androgen-induced
gene expression is MRE11, which is a component of the
MRN complex [65]. Mutation of MRE11 was reported
within the cohort of prostate cancer patients that showed
a positive response to Olaparib [6]. These findings led us
to test whether the MRE11 inhibitor, mirin, can be used to
inhibit AR-dependent transcription and prostate cancer
growth. Mirin inhibition of growth in non-prostate cell
types also required relatively high concentration of drug,
with IC50 values ranging from 12.5–100 μM [67, 84–87].
This is comparable to the values we obtained in prostate
cancer cells (Fig. 7e-f). We found that mirin inhibits tran-
scription of multiple AR target genes in PC3-AR, LNCaP,
and VCAP cells. The finding that androgen-induced ex-
pression of FKBP5 was inhibited by mirin in all three cell
lines argues that MRE11 complex function is critical for
transcription in prostate cancer cells, which is consistent
with the siRNA results published by another group [65].
Androgen and mirin, used alone and in combination, did
not have a noticeable effect on ATM levels, ATM activa-
tion, or H2AX phosphorylation. Thus, the mirin inhibition
of AR-dependent transcription and cell growth is not ac-
companied by a global change in DNA damage signaling.

Conclusions
In summary, we have identified several deleterious muta-
tions in the DNA repair machinery, presented evidence that
expression of DNA repair enzymes is impacted by androgen
signaling, and shown that small molecule inhibition of a
DNA repair enzyme is useful for inhibiting AR-dependent
gene expression. Our analysis suggests there might not be a
simple DNA repair enzyme signature associated with an-
drogen signaling and prostate cancer progression that is
shared between models and patients. The data does, how-
ever, underscore the important interplay between androgen
signaling and the DNA damage response and reinforces the
notion that targeting DNA repair enzymes can be a useful
approach to inhibit prostate cancer cells.
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