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SUMMARY

A fluorescent resonance energy transfer–based, high-
throughput screen was established to identify inhibitors of
organic solute transporter (OST)a-OSTb–mediated bile acid
efflux. We identified clofazimine as an inhibitor of
OSTa-OSTb and showed that such inhibition enhanced
intestinal farnesoid X receptor activation.

BACKGROUND & AIMS: The organic solute transporter a-b
(OSTa-OSTb) mainly facilitates transport of bile acids across
the basolateral membrane of ileal enterocytes. Therefore,
inhibition of OSTa-OSTb might have similar beneficial
metabolic effects as intestine-specific agonists of the major
nuclear receptor for bile acids, the farnesoid X receptor (FXR).
However, no OSTa-OSTb inhibitors have yet been identified.

METHODS: Here, we developed a screen to identify specific
inhibitors of OSTa-OSTb using a genetically encoded Förster
Resonance Energy Transfer (FRET)–bile acid sensor that
enables rapid visualization of bile acid efflux in living cells.

RESULTS: As proof of concept, we screened 1280 Food and Drug
Administration–approved drugs of the Prestwick chemical library.
Clofazimine was the most specific hit for OSTa-OSTb and reduced
transcellular transport of taurocholate acrossMadin–Darby canine
kidney epithelial cell monolayers expressing apical sodium bile
acid transporter and OSTa-OSTb in a dose-dependent manner.
Moreover, pharmacologic inhibition of OSTa-OSTb also
moderately increased intracellular taurocholate levels and
increased activation of intestinal FXR target genes. Oral adminis-
trationof clofazimine inmice (transiently) increased intestinal FXR
target gene expression, confirming OSTa-OSTb inhibition in vivo.

CONCLUSIONS: This study identifies clofazimine as an inhibitor
of OSTa-OSTb in vitro and in vivo, validates OSTa-OSTb as a
drug target to enhance intestinal bile acid signaling, and
confirmed the applicability of the Förster Resonance
Energy Transfer–bile acid sensor to screen for inhibitors of bile
acid efflux pathways. (Cell Mol Gastroenterol Hepatol
2018;5:223–237; https://doi.org/10.1016/j.jcmgh.2017.11.011)
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ile acids are released in the duodenum during a
Bmeal, where they act as digestive detergents crucial
for intestinal absorption of lipids, fat-soluble vitamins, and
other lipophilic nutrients.1 After the meal, most bile acids
are reabsorbed from the ileum and return to the liver via the
hepatic portal vein. In the hepatocyte, the bile acid pool is
replenished via de novo bile acid synthesis from choles-
terol.2 Subsequently, bile acids are conjugated and stored in
the gallbladder until the next meal. The meal-regulated
dynamics renders bile acids as potent signaling molecules
that modulate triglyceride, lipid, glucose, and energy ho-
meostasis, making bile acid signaling an interesting target
for metabolic diseases.3 Activation of the farnesoid X
receptor (FXR), a major nuclear receptor involved in bile
acid signaling, has been suggested to be beneficial in many
metabolic disorders. In particular, selective intestinal acti-
vation of FXR led to metabolic improvements such as
enhanced glucose tolerance, reduced diet-induced weight
gain, and reduced inflammation,4 but also enhanced tran-
sintestinal cholesterol excretion (TICE).5

The organic solute transporter a-b (OSTa-OSTb) mainly
facilitates transport of bile acids across the basolateral
membrane of ileal enterocytes.6,7 It consists of 2 proteins
forming a heterodimer, OSTa (encoded by SLC51A) and its
subunit OSTb (encoded by SLC51B), which are both
required for normal trafficking and function of OSTa-OSTb.

OSTa knockout mice show a reduction in the bile acid
pool and serum levels combined with increased FXR acti-
vation in ileal enterocytes.8 In addition, deficiency of OSTa is
protective for liver injury during obstructive cholestasis,
and leads to decreased body fat and lipid accumulation and
improved insulin sensitivity.9–11 Furthermore, OSTa
knockout mice show increased elimination of cholesterol in
the feces and decreased levels of cholesterol and triglycer-
ide in serum.8,12 These data point to OSTa-OSTb as a novel
target to treat diabetes and obesity, but also lipid and
cholesterol disorders, for instance, by inducing the TICE
pathway via intestinal FXR activation.13 However, no
inhibitors for OSTa-OSTb have yet been identified and
techniques available for measuring bile acid efflux are
limited. Therefore, we developed a novel assay for cell-
based high-throughput screening to identify specific
inhibitors for OSTa-OSTb, making use of a fluorescent
resonance energy transfer (FRET)-based bile acid sensor
that enables rapid visualization of bile acid efflux in living
cells.14 This screen specifically measures bile acid efflux,
which simultaneously provides a readout based on
increased FXR activation as a consequence of OSTa-OSTb
inhibition. We screened 1280 Food and Drug Administration
(FDA)-approved drugs of the Prestwick chemical library and
confirmed several positive hits. Here, we show that inhibi-
tion of OSTa-OSTb leads to intestinal FXR activation.
Materials and Methods
Reagents

The Prestwick chemical library (1280 FDA approved
compounds in 96-well plates) was purchased from
Prestwick Chemical (Illkirch, France). Bifonazole, bromhex-
ine HCl, clofazimine, lovastatin, meclozine 2HCL, and sim-
vastatin were purchased from Sigma-Aldrich (Zwijndrecht,
The Netherlands). The fibroblast growth factor (FGF)19
human enzyme-linked immunosorbent assay kit was pur-
chased from BioVendor R&D (Brno, Czech Republic). [3H]-
taurocholate and [14C]-inulin were purchased from Perkin
Elmer (Groningen, The Netherlands).

Cell Culture
Human bone osteosarcoma epithelial cells (U2OS)

wild-type cells (HTB-96; American Type Culture Collec-
tion, Wesel, Germany) were cultured in Dulbecco’s modi-
fied Eagle medium (high glucose) supplemented with 10%
fetal bovine serum, 1% penicillin/streptomycin, and 1%
L-glutamine. NucleoBAS (Nuclear-localized Bile Acid
Sensor),14 NAþ-taurocholate co-transporting polypeptide,
and OSTa-OSTb–expressing U2OS cells were engineered
by transfecting cells using polyethylenimine. Stable cell
lines were generated by colony picking using cloning rings
over well-separated colonies. Apical sodium-dependent
bile acid transporter (ASBT) and mouse OSTa-OSTb
co-expressing Madin–Darby canine kidney epithelial cells
(MDCKII) cells were a gift from Paul Dawson (Emory
University School of Medicine, Atlanta, GA).15 All cells
were cultured at 5% CO2 at 37�C.

Fluorescence-Activated Cell Sorting
Two days before the experiments, wild-type and trans-

fected U2OS cells were cultured in 5% charcoal-treated fetal
bovine serum to prevent bile acid overload of the sensor.
The adherent cell layer was trypsinized by 5 mmol/L EDTA
to create a suspension of single cells for fluorescence-
activated cell sorting (FACS) analysis. Cells were harvested
by centrifugation and the resulting pellet was suspended in
FACS uptake buffer (0.3 mmol/L EDTA, 0.5% bovine serum
albumin, 0.01% NaN3, and 10 mmol/L D-glucose), plated in
96-wells and subsequently incubated with 10 mmol/L of 1 of
1280 compounds of the Prestwick Chemical library. After 5
minutes, 3 mmol/L TCDCA was added and incubated for 30
minutes at room temperature while shaking. Citrine and
cerulean intensity was measured by a violet 405-nm laser.
Spectral range for emission detections were as follows:
cerulean, 450/40 nm; and citrine, 525/20 nm.

Taurocholate Uptake Assay in
MDCKII–ASBT Cells

Cells were cultured in a 24-well plate format at
50%–60% confluency. The next day, cells were washed with
uptake buffer and incubated with compounds at 37�C for
30 minutes. Uptake buffer was aspirated and a mix of
trace amounts of [3H]-taurocholate and 20 mmol/L
nonradiolabeled Taurocholic Acid was administered. After
2 minutes of incubation at 37�C, the cells were washed
using ice-cold phosphate-buffered saline and lysed in 0.05%
sodium dodecyl sulfate in distilled water. Tritium signal of
each sample was measured in 3 mL of scintillation liquid.
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Transcellular Transport Assay Across
MDCKII Monolayers

MDCKII cells stably expressing ASBT/OSTa-OSTb were
cultured on 6.5-mm Transwell filter inserts (Costar, London,
United Kingdom) in a density of 15,000 cells per well. The
medium was refreshed every 2–3 days. The formation of a
tight monolayer (normally between days 6 and 10) was
measured with the EVOM2 (World Precision Instruments
[WPI], Berlin, Germany) epithelial voltohmmeter for Trans
Epithelial Electrical Resistance. A minimal resistance of
500 U was required before the experiment was continued.
On the day of the experiment, cells were washed and
incubated with the compounds for 1 hour at 37�C. A mix of
[3H]-taurocholate, [14C]-inulin, and 20 mmol/L unlabeled
trichloroacetic acid was added. At t ¼ 10, 30, 60, and
120 minutes, 10 mL of the basolateral compartment was
measured for radioactivity. The diffusion of [14C]-inulin was
used as a measurement for leakage of the monolayer
and confirmed monolayer integrity. After the last time point
(2 hours), cells were lysed in 0.5% sodium dodecyl sulfate
in distilled water to measure intracellular accumulation of
taurocholate.

Differentiation and Treatment of Caco-2 Cells
Caco-2 cells were plated at 100% confluency on 6.5-mm

Transwell filter inserts (Costar). Every 2–3 days, medium
was refreshed and the tightness of the monolayers were
measured using the EVOM2 epithelial voltohmmeter for
Trans Epithelial Electrical Resistance. After 21 days, Caco-2
cells were treated with 10 mmol/L compounds in supple-
mented Dulbecco’s modified Eagle medium for 48 hours.

Analysis of Gene Expression Using Quantitative
Real-Time Polymerase Chain Reaction

Total RNA was extracted from Caco-2 cells or whole
ileal tissue (most distal segment) using TRIzol reagent
(Invitrogen, Bleiswijk, The Netherlands) according to
the manufacturer’s instructions. Complementary DNA
synthesis was initiated from 1 mg of DNase-treated RNA
using oligo deoxythymine primers and Superscript II
reverse transcriptase (Invitrogen). Quantitative reverse-
transcription polymerase chain reaction was performed
using the SensiFAST SYBR No-ROX kit (Bioloine, London,
UK) in a Roche (Woerden, Netherlands) lightcycler 480 II.
Expression levels of all samples were normalized to the
geometric mean of housekeeping genes. Oligonucleotide
sequences are available on request.

Clofazimine Treatment In Vivo
All mice were housed and treated in accordance with

National Institutes of Health guidelines and enforced by
the Institutional Animal Care and Use Committee at the
Animal Research Institute Academic Medical Center. Clo-
fazimine solved in corn oil was administered orally by
gavage, either as a single dose or as 5 daily doses in
8-week-old male wild-type C57BL/6 mice. Afterward, mice
were injected intravenously once with cholecystokinin
octapeptide (50 ng/kg) to induce gallbladder contraction
and thereby ensure the presence of bile acids in the
intestine. Six hours later, mice were anesthetized using a mix
of ketamine (100 mg/mL) and xylazine (20 mg/mL) in a
dosage of 100 mL/10 g body weight. Serum, bile, urine, liver
tissue, intestinal tissue, and feces were collected. Analysis of
fecal and plasma bile acid composition was performed as
previously described.16 All mice were kept on a 12-hour
light-dark cycle and received standard chow and water ad
libitum. The study design and all protocols for animal care
and handling were approved by the Institutional Animal Care
and Use Committee of the University of Amsterdam.

Statistical Analysis
Data are presented as the means ± SEM . Differences

between 2 groups were statistically evaluated using the
Student t test. Results were considered statistically signifi-
cant at a P value <.05.

All authors had access to the study data and have
reviewed and approved the final manuscript.

Results
Design of the Pharmacologic FRET-Based
Compound Screen for Inhibitors of
OSTa-OSTb–Mediated Bile Acid Efflux

Most existing techniques to monitor bile acid efflux
require modification of bile acids, possibly affecting their
transport kinetics. Here, we designed a pharmacologic
screen that allows for rapid live cell imaging of bile acid
efflux using a genetically encoded FRET bile acid sensor
(BAS).14 The sensor is a fusion protein consisting of 2
fluorescent domains, cerulean and citrine, fused via the
ligand-binding domain of FXR and linked to a peptide
derived from an FXR co-activator protein. Binding of bile
acids to the FXR ligand-binding domain results in rapid and
reversible peptide binding and association between the
fluorophores, detectable as increased FRET. Advantages of
this approach are its noninvasiveness, rapid live cell imag-
ing, and the easy readout of increased FRET intensity. For
this study, a cell line was created by transfecting the
nucleus-localized BAS (nucleoBAS), a bile acid uptake
transporter and OSTa-OSTb in U2OS cells (Figure 1A, left).
As a positive control for 100% inhibition of OSTa-OSTb,
NucleoBAS-positive cells were created that only contained the
bile acid uptake transport protein and lacked OSTa-OSTb
protein expression (Figure 1A, right). The feasibility of this
sensor and the accuracy of quantitative results during
measurements with flow cytometry was tested in these cell
lines. As expected, treatment with both 30 mmol/L taur-
ochenodeoxycholic acid (TCDCA) and 5 mmol/L GW4064
resulted in an increased FRET ratio in the cell population
comparedwithuntreated cells (Figure1D andE), although this
effect of TCDCA was not observed in cells only expressing the
sensor but no bile acid transporters (Figure 1B and C).

Ideally, in cells expressing both OSTa-OSTb and a
bile acid uptake transporter (Figure 1A), inhibition of
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OSTa-OSTb will result in increased intracellular levels of
bile acids. Indeed, the bile acid sensor in U2OS cells that
expressed a bile acid uptake transporter but not
OSTa-OSTb, was activated at much lower TCDCA concen-
trations compared with cells that expressed both an
uptake transporter and OSTa-OSTb (Figure 2A). This im-
plies that there is an intracellular accumulation of bile
acids in cells with an uptake transporter but without
OSTa-OSTb. The most potent effect between the 2 cells
lines was observed at a 3- to 5-mmol/L TCDCA concen-
tration, and was therefore the selected dose for further
research. The experimental strategy of the FRET-based
screen is shown in Figure 2B. By using this assay, we
were able to identify novel FDA-approved compounds
(Prestwick Chemical library) that specifically inhibit
OSTa-OSTb–mediated bile acid efflux.
High-Throughput Pharmacologic Screening
Detects Inhibitors of OSTa-OSTb Transport in
a Large Compound Library

The initial 55 hits that tested positive for OSTa-OSTb
inhibition in the primary screen were confirmed by a sub-
sequent secondary screen using the same assay to verify the
accuracy of the hits. In addition, false positives were elimi-
nated by testing all compounds for direct activation of the
sensor in cells that expressed nucleoBAS but no bile acid
transporters. At a 10 mmol/L compound concentration, 25
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drugs showed more than 20% activation of the sensor
compared with dimethyl sulfoxide, implying inhibition of
OSTa-OSTb in the primary screen. Figure 2C shows the
distribution of drug classes among the 25 primary hits. The
steroid drug class is highly represented (30%). This is
probably owing to competition for the binding site of OSTa-
OSTb because this transporter is known to transport
steroids as well.17,18 Therefore, compounds of this drug
class were eliminated from further research. Other signifi-
cant groups in the top 25 compounds were azoles,
benzenoids, and statins. From each major group, 1 or 2
compounds were selected for follow-up experiments, in
which the administration route and drug safety in human
beings was decisive. In the end, we selected 6 hits for
further research: bifonazole, simvastatin, bromhexine
hydrochloride, lovastatin, clofazimine, and meclozine dihy-
drochloride. FACS plots of the 6 selected compounds and
controls (dimethyl sulfoxide and GW4064) are shown in
Figure 2D. Table 1 provides an overview of the current
applications and structure of these compounds.
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Clofazimine Is a Specific Inhibitor for
OSTa-OSTb–Mediated Bile Acid Transport

The specificity for inhibition of OSTa-OSTb–mediated
bile acid transport of the 6 selected compounds was tested
using ASBT as another bile acid transporter that also is
Table 1.Hits Obtained From the Screening

Chemical name Therapeutic effect Struc

Bifonazole Antifungal

Bromhexine hydrochloride Expectorant

Clofazimine Antibacterial

Lovastatin Hypocholesterolemic
expressed in the enterocytes of the ileum. MDCKII cells
transfected with ASBT were used to analyze the influx of
[3H]-taurocholate. Uptake values were determined by
measuring the intracellular radioactivity after a short
2-minute incubation with [3H]-taurocholate. Lovastatin and
ture Structure formula Inhibition (10 mmol/L), %

C22H18N2 98

C14H21Br2ClN2 57

C27H22Cl2N4 47

C24H36O5 51



Table 1.Continued

Chemical name Therapeutic effect Structure Structure formula Inhibition (10 mmol/L), %

Meclozine dihydrochloride Antiemetic C25H29Cl3N2 53

Simvastatin Antilipemic C25H38O5 77
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simvastatin inhibited ASBT significantly in a dose-
dependent manner from a concentration of �10 mmol/L,
and were therefore excluded for further analysis (Figure 3D
and F). Bifonazole, bromhexine hydrochloride, and meclo-
zine dihydrochloride also were able to inhibit ASBT signif-
icantly, but only when administered in a high concentration
of 100 mmol/L (Figure 3A, B, and E). At lower concentra-
tions, uptake values were not decreased significantly, indi-
cating that ASBT was not inhibited. Therefore, clofazimine is
the most selective inhibitor of OSTa-OSTb because this
compound did not seem to inhibit ASBT in all tested
concentrations (Figure 3C).
Clofazimine Inhibits OSTa-OSTb In Vitro in a
Concentration-Dependent Manner

The 4 compounds that did not inhibit ASBT at a con-
centration of 10 mmol/L were validated for OSTa-OSTb
inhibition using another method than the primary screen.
Transcellular transport of [3H]-taurocholate across MDCKII
monolayers expressing ASBT and OSTa-OSTb was
measured. As shown in Figure 4A, apical-to-basal flux was
decreased in all compounds tested compared with control
cells. To determine whether this effect was really caused by
OSTa-OSTb inhibition, intracellular concentrations of the
cells in monolayer culture were measured as well. Indeed,
increased accumulation of taurocholate was observed
after 2 hours treatment with 10 mmol/L bromhexine
hydrochloride, clofazimine, and meclozine dihydrochloride,
indicating that the decreased efflux observed is owing to
OSTa-OSTb inhibition (Figure 4B). Bifonazole decreased the
intracellular amount of taurocholate and was excluded from
follow-up analysis. The low counts of [14C]-inulin transport
during the assay that was similar to control cells excludes
transport by nonspecific diffusion (leakage <2.5%) and
confirms the integrity of the monolayer (Figure 4C). In
conclusion, all 4 compounds that underwent further evalu-
ation were confirmed to be OSTa-OSTb inhibitors. Among
the tested compounds, clofazimine showed the highest
accumulation of bile acids while not able to inhibit ASBT,
and is therefore probably the most specific inhibitor for
OSTa-OSTb and the most potent for increasing bile acid
levels in enterocytes. Therefore, subsequent experiments
were performed with clofazimine only.

Clofazimine is an iminophenazine drug that originally
was developed to treat tuberculosis, but was later used as a
key drug in the medication for leprosy.19,20 We performed a
dose-response with clofazimine and found that the inhibit-
ing effect of clofazimine is already present at a concentra-
tion of 1 mmol/L. An increase in the administered
clofazimine concentration resulted in a modestly increased
inhibition of OSTa-OSTb (Figure 4D). Concentrations of 100
mmol/L and greater led to increased inulin diffusion,
suggestive of impaired monolayer integrity, and therefore
could not be analyzed (data not shown). In addition,
intracellular amounts of taurocholate were increased
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significantly after 2 hours of treatment of 10 and 30 mmol/L
clofazimine (Figure 4E), showing that clofazimine is able to
specifically inhibit OSTa-OSTb in vitro. No paracellular flux
of [14C]-inulin was measured in the various concentrations
of clofazimine (Figure 4F), and passive diffusion of bile acids
through diffusion was not possible (Figure 4G and H).
OSTa-OSTb Inhibition in Caco-2 Cells Leads to
Intracellular Accumulation of Bile Acids

Next, monolayers of a well-differentiated human intes-
tinal epithelial cell line (Caco-2) were used as a model to
determine whether inhibition of OSTa-OSTb results in
increased FXR activation. After 21 days of differentiation on
Transwell filters, Caco-2 cells endogenously express OSTa
and OSTb, which is strongly up-regulated after 24 hours of
treatment with GW4064, indicating functional FXR signaling
as well (Figure 5A and B). Quantitative real-time polymerase
chain reaction analysis was used on differentiated Caco-2
cells to asses messenger RNA (mRNA) expression of intes-
tinal FXR target genes after 6 hours of treatment of 10
mmol/L clofazimine combined with 3 mmol/L TCDCA. Small
heterodimer partner, ileal bile acid binding protein, and
OSTa mRNA expression was increased significantly after 6
hours of clofazimine treatment (Figure 5C-F). FGF19 mRNA
expression showed the same trend but did not reach
significance (data not shown). ASBT mRNA expression was
not increased or decreased significantly in Caco-2 cells.
Together, these results suggest that clofazimine treatment in
differentiated Caco-2 cells leads to increased FXR activation
as a result of increased intracellular bile acid concentrations
resulting from OSTa-OSTb inhibition.
Clofazimine Is an OSTa-OSTb Inhibitor In Vivo
C57BL/6 wild-type mice were used to determine

whether oral clofazimine is capable of inhibiting OSTa-OSTb
in ileal enterocytes in vivo. To this end, mice were orally
administered clofazimine (high dose, 250 mg/kg; low dose,
25 mg/kg) or placebo, followed by an intravenous chole-
cystokinin octapeptide injection to induce gallbladder
contraction to ensure the presence of bile acids in the
intestine. All mice were killed 6 hours after treatment. We
hypothesized that OSTa-OSTb inhibition will lead to
increased, but nontoxic, intracellular bile acid levels and
thereby activate FXR. Therefore, we measured gene
expression levels of the FXR target genes Fgf15, Ibabp, Osta,
and Ostb in the distal part of the ileum in mice. In the low-
dose group, all FXR target genes (Ibabp, Fgf15, Osta, and
Ostb) were increased significantly compared with the
placebo-treated mice (Figure 6A–D). This effect was
confirmed in the high-dose group, which showed an even
more significant increase in mRNA expression of FXR target
genes. These results imply that clofazimine is able to inhibit
OSTa-OSTb both in vitro and in vivo.

Clofazimine-Mediated Inhibition of OSTa-OSTb
Only Transiently Increases Intestinal
FXR Activation

Because clofazimine moderately inhibits OSTa-OSTb,
and intestinal FXR activation leads to up-regulation of both
OSTa and OSTb, a longer experiment was conducted to
identify whether clofazimine-mediated OSTa-OSTb inhibi-
tion is durable. Currently, clofazimine is used as a slow-
responding antibiotic in the treatment of leprosy (and to a
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lesser extent tuberculosis). Possible bacteriocidal effects
could interfere with bile acid signaling, so we limited
exposure to 5 days. Mice were orally gavaged for 5 days
with placebo (corn oil), a low dose of clofazimine (25 mg/kg),
or a high dose of clofazimine (75 mg/kg). There were no
changes in bile acid composition/conjugation in bile,
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Figure 5. Clofazimine-mediated inhibition of OSTa-
OSTb results in increased FXR target gene expres-
sion. (A) Gene expression levels of Osta before and after
24 hours of treatment with FXR agonist GW4064. (B)
mRNA expression levels of the OSTb gene before and
after 24 hours treatment of GW4064. (C–F) mRNA
levels of 21-day differentiated Caco-2 cells after treat-
ment with dimethyl sulfoxide (DMSO) (light box plots) or
clofazimine (dark box plots). Gene expression of (C) small
heterodimer partner (SHP), (D) ileal bile acid binding
protein (IBABP), (E) Osta, or (F) Ostb. Values were
normalized to Cyclophilin B and 36B4 and expressed as
arbitrary units. (A and B) Data are represented as means
± SD. ***P < .001 (Student t test, 2-tailed). (C–F) Data
are represented as box plots (box, 25%–75%; whisker,
10%–90%; line, median) from 3 independent experiments
combined (n ¼ 4 per experiment). *P < .05 (Student
t test, 2-tailed).
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Figure 6. Oral clofazimine administration results in
increased intracellular bile acid concentrations in ileal
enterocytes. (A–D) Eight-week old mice were orally adminis-
tered placebo, 25 mg/kg clofazimine, or 250 mg/kg clofazi-
mine solved in corn oil followed by a cholecystokinin
octapeptide injection (50 ng/kg). After 6 hours, mice were killed
and mRNA levels were measured in the distal part of the ileum.
Gene expression of (A) Ibabp, (B) Fgf15, (C) Osta, and (D) Ostb
were measured. Values were normalized to Hypoxanthine-
guanine phosphoribosyltransferase and 36B4 and expressed
as arbitrary units. Data are represented as means ± SD
(n¼ 13). *P < .05, **P < .01, and ***P < .001 (1-way analysis of
variance; post hoc: Dunnett multiple comparison).
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plasma, feces, and urine (Figure 7A–D), suggesting that
major effects on microbiota are unlikely at this treatment
duration. Bile acid concentrations in plasma (Figure 7E) or
urine (Figure 7F) also were unchanged. The only difference
found was the reduced total fecal output in mice orally
gavaged with clofazimine (Figure 7G). The absence of an
increase in fecal bile acid output suggests that OSTa-OSTb
inhibition was transient and largely lost on a 5-day clofa-
zimine exposure. In line with this is the mRNA expression
levels of FXR target genes Ostb and Fgf15 showing a
significant decrease instead of increase (Figure 8A), and
Osta and Ibabp levels remained unchanged. To test whether
a reduced bile acid pool was the cause of the observed
reduced FXR activation in intestine, bile acid synthesis gene
expression levels were measured in liver tissue. However,
there was no apparent change in either Cyp7a1 or Cyp8b1
levels in clofazimine-treated mice compared with placebo-
treated mice (Figure 8B). Shp and Ostb levels were
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Figure 7. Bile acid levels and
composition are unchanged
after 5 days of oral clofazi-
mine treatment. (A–D) Bile
acid composition in bile, feces,
urine, and plasma of mice
orally gavaged with placebo,
25 mg/kg clofazimine (low
dose), or 75 mg/kg clofazimine
(high dose). (E–G) Bile acid
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total fecal bile acid output of
mice treated with placebo, a
high dose, or a low dose of
clofazimine for 5 days. Bile acid
composition is expressed as
a percentage of total bile
acid concentration (mmol/L).
Data are represented as
means ± SD. *P < .05, n ¼ 15
mice per group (1-way
analysis of variance; post hoc:
Dunnett multiple comparison).
aMC, alpha muricholate; BA,
bile acids; bMC, beta-
muricholate; CA, cholic acid;
DC, deoxycholate; GCDC,
glycochenodeoxycholic acid;
omega-muricholate (UMC)
TaMC, tauro-alpha mur-
icholate; TbMC, tauro-beta
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Figure 8. Relative quantitative reverse-transcription polymerase chain reaction analysis of FXR target gene
expression in intestine and liver. (A) Intestinal mRNA levels of Ibabp, Fgf15, Osta, and Ostb after 5 days of oral gavage
of placebo corn oil (white bars), 25 mg/kg clofazimine (grey bars), or 75 mg/kg clofazimine (black bars). (B) Hepatic
mRNA levels of Cyp8b1, Cyp7a1, Shp, and Ostb of mice orally gavaged with placebo or a high dose or a low dose
of clofazimine for 5 days. Values were normalized to TATA-box binding protein and 36B4 and expressed as arbitrary
units. (C) Relative body weight of 8-week-old male mice over a 5-day period. Relative body weight was calculated as a
function of the body weight at the beginning of the experiment (day -1). (D) Body weight at the end of the experiment
(day 5). (E) Weight of epididymal white adipose tissue (eWAT) per kilogram of body weight in mice treated with clofazimine
for 5 days. (F) Blood glucose levels (mmol/L) on the day of killing (day 5). Data are represented as means ± SD.
N ¼ 13 mice per group. *P < .05, **P < .01, and ***P < .001 (1-way analysis of variance; post hoc: Dunnett’s multiple
comparison).
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increased in livers of clofazimine-treated mice. There was
no significant change in total body weight or epididymal
white adipose tissue weight (Figure 8C–E). Furthermore,
blood glucose levels were slightly increased in the low-dose
compared with placebo-treated mice, but in the high-dose
group there was no apparent change (Figure 8F).
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Discussion
In this study we proposed OSTa-OSTb inhibition as a

novel strategy to intestine-specifically activate the nuclear
bile acid receptor FXR, developed a high-throughput live cell
FRET-based method that can be used to screen large
libraries of natural and synthetic compounds, and showed
(transient) in vivo proof of concept using clofazimine as the
first identified OSTa-OSTb inhibitor.

Before this study, no inhibitors for OSTa-OSTb were
discovered. The ability of the FRET bile acid sensor to mea-
sure bile acid transport in living cells enables its use in robust
high-throughput and real-time screening with the advantage
of ratiometric detection.21 This screen is capable of imaging
export of bile acids instead of import without the require-
ment of modified bile acids or the necessity for destruction of
the sample. The selected hits from the primary screen were
confirmed by a secondary screen, and were tested positive
for inhibition of OSTa-OSTb–mediated bile acid transport,
supporting the reliability of this screen. Counter-screening
for ASBT inhibition seems advisable because most hits also
inhibited this bile acid transporter at high dosages. Although
the identification from such a small library of FDA-approved
compounds shows proof of concept for this screening strat-
egy, this drug is not an ideal OSTa-OSTb inhibitor yet. The
ability of clofazimine to inhibit OSTa-OSTb–mediated bile
acid transport was effective in a short-term experiment
because all expression levels of FXR target genes seemed
induced, but is not sustained owing to compensatory OSTa-
OSTb up-regulation. Furthermore, clofazimine can moder-
ately inhibit the hepatic bile acid efflux machinery bile salt
export pump as well at high concentrations.22 This possibly
may explain the small but significant increase in expression
of the hepatic FXR target gene Shp seen on 5 days of clofa-
zimine exposure. The discovery of a more potent and specific
OSTa-OSTb inhibitor will abolish this effect.

FXR activation in the intestine is of clear importance in
several (patho)physiological processes, including bile acid
synthesis. Intestinal FXR activation leads to FGF15/FGF19
secretion, repression of Cyp7a1, and, consequently, a
reduced and more hydrophilic bile salt pool.23,24 This leads
to protection against hepatocellular damage in cholestatic
liver disorders25 and stimulated cholesterol removal via
direct TICE.5 TICE is a major contributor to cholesterol
removal from the body in mice and human beings and likely
contributes to the prevention of cardiovascular disease.26

Similarly, OSTa-/- mice show a decreased bile acid pool,
increased cholesterol excretion, decreased Cyp7a1 mRNA
expression and an increased Fgf15 mRNA expression,8 and
reduced hepatic damage in a severe model for cholestasis.10

Although we here identified clofazimine as the first OSTa-
OSTb inhibitor, its efficacy is insufficient to overcome the
compensatory up-regulation of OSTa-OSTb seen on FXR
activation. However, short-term treatment in vitro and
in vivo show that Fgf15/FGF19 is induced significantly,
showing proof of concept that OSTa-OSTb inhibitors can be
identified/developed.

Inhibition of OSTa-OSTb can activate intestinal FXR in an
indirect way. Two main advantages of this approach are that
FXR activation will now take place specifically in enter-
ocytes, thereby largely eliminating unwanted FXR activation
in other tissues,4 and the prolonged and enhanced post-
prandial FXR activation is more moderate compared with
synthetic FXR agonists and better matches the circadian
rhythm. Together, this is expected to reduce the risks for
excessive FGF19 signaling implicated with hepatocellular
carcinoma.27 The mild phenotype of OSTa knockout mice
suggests that this strategy is safe. Other bile acid efflux
pathways at the basolateral membrane of ileocytes prevent
toxic accumulation of bile salts. The clear protective role of
FXR in intestine suggests a third possible application of
OSTa-OSTb inhibitors. FXR activation dampens intestinal
inflammation, improves epithelial barrier function and
permeability, and inhibits proinflammatory cytokine pro-
duction in the mouse colonic mucosa.28,29 Notably, clofazi-
mine also is incidentally used in inflammatory bowel
disease and has an anti-inflammatory capacity.30,31

Finally, OSTa-/- mice are more resistant to age-related
weight gain and body fat accumulation and less prone to
lipid accumulation in liver and muscle tissue. However,
these effects are subtle and it is still unclear whether these
positive effects are generalizable in patients. Furthermore,
OSTa-deficient mice, and especially male mice, showed an
improved glucose tolerance and insulin sensitivity,9 albeit
less prominently on a high-fat/high-cholesterol diet.32 In
contrast, we observe slightly increased glucose levels in
mice receiving the low clofazimine dose. However, this
effect was not observed in the high-dose group, suggesting
that the effect on glucose levels is not caused by OSTa-
OSTb inhibition itself. Therefore, the concept of inhibiting
OSTa-OSTb and thereby specifically activating intestinal
FXR could provide an effective therapeutic approach in
diseases such as cholestasis, specific aspects of the meta-
bolic syndrome, and perhaps also for patients suffering
from low FGF19 levels as seen in primary bile acid
diarrhea.

In conclusion, by using our screening strategy we have
discovered a novel characteristic of an existing drug,
clofazimine, that selectively inhibits OSTa-OSTb and we
have shown the utility of our high-throughput screen
FRET-based assay to identify novel inhibitors for OSTa-
OSTb. This report shows that pharmacologic inhibition of
OSTa-OSTb in vitro and in vivo results in activation of FXR
specifically in the intestine. Therefore, OSTa-OSTb appears
to be a potential therapeutic target for diseases in which
intestinal FXR activation and the resulting increased
FGF15/19 levels seem beneficial. Furthermore, this
method also could have use for the identification of novel
inhibitors for other bile acid transporters, and therefore
has an application in elucidating candidates regulating bile
acid signaling that could have a therapeutic effect in other
metabolic diseases.
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