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Genome Mining Demonstrates the Widespread
Occurrence of Gene Clusters Encoding Bacteriocins in

Cyanobacteria
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Abstract

Cyanobacteria are a rich source of natural products with interesting biological activities. Many of these are peptides and the
end products of a non-ribosomal pathway. However, several cyanobacterial peptide classes were recently shown to be
produced through the proteolytic cleavage and post-translational modification of short precursor peptides. A new class of
bacteriocins produced through the proteolytic cleavage and heterocyclization of precursor proteins was recently identified
from marine cyanobacteria. Here we show the widespread occurrence of bacteriocin gene clusters in cyanobacteria through
comparative analysis of 58 cyanobacterial genomes. A total of 145 bacteriocin gene clusters were discovered through
genome mining. These clusters encoded 290 putative bacteriocin precursors. They ranged in length from 28 to 164 amino
acids with very little sequence conservation of the core peptide. The gene clusters could be classified into seven groups
according to their gene organization and domain composition. This classification is supported by phylogenetic analysis,
which further indicated independent evolutionary trajectories of gene clusters in different groups. Our data suggests that
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cyanobacteria are a prolific source of low-molecular weight post-translationally modified peptides.
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Introduction

Bacteriocins are secondary metabolites and have been found in
all major lineages of bacteria [1]. They form a diverse group of
small peptides which are often viewed as a part of an elaborate
chemical defense system [2]. Bacteriocins are crafted from short
ribosomally produced precursor proteins that consist of a C-
terminal core peptide and a conserved N-terminal leader
sequence, which a processing peptidase recognizes and cleaves
[3]. The leader sequence of bacteriocin precursors commonly
contains a double glycine motif [3], which is processed by a C39
peptidase domain [4]. The core peptide may undergo further post-
translational modifications such as lanthionine formation [5],
macrocyclization [5], dehydration [6], or heterocyclization [7,8].
The proteins involved in the modification, export, and regulation
of bacteriocins are often encoded by genes adjacent to the genes
encoding the precursor protein [9-11]. Many bacteriocins have
antimicrobial activity and find applications as food preservatives
[12] and antibiotics [13,14]. During the last decades, bacteriocin
research has focused mostly on Gram-positive bacteria, especially
lactic acid bacteria [15]. A more detailed structural analysis of
bacteriocin gene clusters and precursor peptides in broader
families of bacteria most likely will yield invaluable insight into
features that are important for their biosynthesis, mode of action,
and potential applications.

Cyanobacteria are a prolific source of natural products and
secondary metabolites [16,17]. The biosynthesis of cyanobacterial
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peptides on non-ribosomal peptide synthetases has been widely
demonstrated [18]. Cyanobactins and microviridins were recently
shown to be the post-translationally modified peptides in a number
of cyanobacteria strains [19]. A genome-wide i silico screening for
bacteriocins in Gram-negative bacteria had revealed the presence
of sixteen double-glycine-type precursors and ten cognate
transporters from strains of the cyanobacteria Nostoc, Prochlorococcus,
Synechococcus and Synechocystis [20]. The consensus sequence of this
double glycine motif was refined to M(R/K)ELXEI/L)Xy(I/
V)IXG(G/A) [20]. A C39 peptidase domain-containing ABC
transporter was demonstrated to be a dedicated transporter of
double-glycine-type precursors [4]. Two types of such C39
peptidase domain-containing ABC transporters were distinguished
in cyanobacteria. The short type composed of an N-terminal C39
peptidase domain, an ABC transporter transmembrane region,
and a C-terminal ATP-binding cassette [20]. The long type has an
extra 300 amino acids N-terminal extension [20]. Recently, two
subclasses of double-glycine-type precursor peptides (NHLP and
NI11P) were recognized in cyanobacteria [21]. Large scale
phylogenetic profiling of bacteria genomes also suggests a link
between the biosynthesis of these natural products and a three-
gene transport cluster, which includes a C39 peptidase domain-
containing ABC transporter, an ABC transporter without
peptidase domain, and a secretion protein HlyD [21]. Lantibiotics
are a class of extensively modified bacteriocins [5]. A bifunctional
lanthionine synthetase (LanM) was discovered from a few
cyanobacterial strains and predicted to catalyze macrocyclization
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and lanthionine formation [22-24]. This further guided the
identification of lantipeptides from the marine cyanobacterium
Prochlorococcus marinus MIT9313 [25] and application of incorpo-
rating non-proteinogenic residues into natural products [26].

In order to explore the genetic potential for bacteriocin
production in cyanobacteria, we mined 58 cyanobacterial genomes
to identify the organization of bacteriocin-processing gene clusters.
Surprisingly, we found more than a hundred new putative
bacteriocin gene clusters from genomes of nearly all examined
cyanobacterial species. Nearly 300 putative precursor genes were
encoded in close proximity to the bacteriocin gene clusters. Our
results demonstrate the widespread presence of bacteriocin gene
clusters in cyanobacteria. The genetic diversity of the core peptides
of these bacteriocin precursors is enormous with little sequence
conservation.

Results

Putative cyanobacterial bacteriocin gene clusters and
their classification

A total of 145 putative bacteriocin gene clusters were identified
in 43 cyanobacteria (Figure 1, Table 1), by analyzing 58 complete
and partial genomes from strains with diverse genomic structures
and various morphologies (Table S1). These gene clusters were
classified into seven groups by comparison of their diverse gene
organization and domain composition (Figure 2).

Group I was the most abundant type with 57 gene clusters and
present in one to three copies in all but one cyanobacterial
genomes (Table 1). Group II was the second most abundant type,
and possess 23 gene clusters found in fifteen genomes. A total of 19
group III bacteriocin gene clusters appeared in twelve strains.
Gene clusters encoding LanM proteins were classified as group IV
in this study. Cyanothece PCC 7425 and Nostoc punctiforme PCC
73102 each have four LanM encoding gene clusters, the other
strains each have only one. Twelve gene clusters belong to group
V were found in nine genomes (Table 1). The gene clusters of
group VI were defined as the presence of proteins with S8
peptidase domain, and mostly found from filmentatous diazo-
trophic strains (Table 1). Group VII had three members found in
Cyanothece PCC. 7425, Nostoc punctiforme PCC 73102, and Tricho-
desmium  erythraeum IMS101 (Table 1). The majority of these
putative gene clusters were encoded on the chromosome.
However, eight gene clusters were found in plasmids from five
strains. The filamentous heterocyst-forming cyanobacterial strains,
which usually have larger genomes, tend to possess more gene
clusters than the unicellular marine strains. For example, Nostoc
punctiforme PCC 73102 had the maximum number of fourteen
bacteriocin gene clusters that cover all the seven groups (Table 1).
In addition, we found eleven incomplete gene clusters, which have
only separate modification or transportation gene/domain and
could not be classified into any previously described groups
(Table 1). Genomic rearrangements, including truncations,
msertions, and frameshifts, were frequently discovered from these
putative gene clusters, which can be partially attributed to
transposase activities.

Comparative genomic analysis illustrates that conserved do-
mains are arranged in different combinations, and formed the
basis of our classification of these gene clusters (Figure 2, Table
S2). Two types of C39 peptidase domain-containing ABC
transporters were reported from cyanobacteria as cognate
transporter of bacteriocins [20]. The short type appears in gene
cluster groups III, IV, and V and contains a C39 peptidase, an
ABC transmembrane and an ATP-binding cassette domain
(Figure 2, Table S2). The long type is found in groups I, II, and
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VI and differs from the short type in an extra N terminal
nucleotide-binding domain (CAP_ED) with putative transcrip-
tional regulative function (Figure 2, Table S2). Interestingly, there
are also bimodular proteins consisting of only two CAP_ED
domains encoded in group V gene clusters (Figure 2). The gene
clusters of groups IV and V encode an additional ABC
transporter, which has similar domain composition as the long
type transporter but lacks the C39 peptidase domain (Figure 2). All
three group VII gene clusters encode a large protein, which
appears to be a direct fusion of the short type ABC transporter
with C39 peptidase domain and the ABC transporter without the
peptidase domain (Figure 2). The type_I_hlyD and rotamase
domains are responsible for peptide secretion and modification
(Table S2). They are found in single domain proteins HlyD [27]
and SurA [28]. HlyD is found in every gene cluster group, while
SurA is located in groups I, II, and VI (Figure 2). These six
domains are likely to be integral to the biosynthesis of bacteriocins
since they are nearly found in every group of cyanobacterial
bacteriocin gene clusters (Figure 2, Table S2).

Seven of the LanM encoding gene clusters possess HlyD and the
short type transporter. Five of them also have the additional ABC
transporter without the peptidase domain (Figure 2). The other
nine lanM genes are distributed in distant genomic locations and
not physically associated with other biosynthetic genes. A total of
eight domains, including the rotamase domain, were firstly
discovered with putative activity in bacteriocin biosynthesis in
this study due to their frequent presence in specific gene cluster
groups (Figure 2, Table S2). The presence of M16 and S8
peptidase domains denotes more cleavage sites besides the double
glycine motif on the precursors. However, the others are domains
with predicted or unknown function (Table S2).

Diverse precursor proteins located in regions
surrounding the putative gene clusters

A total of 290 precursor proteins were predicted from the
analyzed cyanobacterial genomes, with size ranging from 28 to
164 aa, by screening the regions surrounding these putative gene
clusters (Table 2, Table S3). The genes encoding precursor
proteins were found densely arrayed, from one up to sixteen
copies, together with other bacteriocin modification enzymes
(Figure 2). Most of the precursor peptides we found have not been
reported before and were improperly annotated (Table S3). Based
upon our gene cluster classification, more than three precursors
were found from bacteriocin gene clusters on average in groups II,
III, IV, and V (Table 2). A lower number of precursor proteins
were encoded in group I and group VI gene clusters.

Two protein families of double-glycine-type precursors, NHLP
and N11P, were recently redefined [21]. A total of 121 identified
precursors can be classified into these two families based on
sequence similarity (Table 2). Sequence logos of double glycine
motif generated from precursors in the two families display the
conservation between them (Figure 3), and to the motif in other
bacteria [20,21]. Sequence alignments of the core peptides reveal
a high level diversity both in size and amino acid composition with
rich Gly, Cys, Ser and Thr residues that may undergo
posttranslational modifications (Figure 4). Moreover, in this study,
we also discovered 46 novel precursor proteins which are absent
from the current genomic annotation (Table 2); eleven of them
were grouped into NHLP and N11P families (Table S3).

HetP proteins are involved in the formation of heterocysts [29],
which are specialized nitrogen-fixing cells in cyanobacteria. In this
study, HetP-like proteins were found frequently adjacent to
cyanobacterial bacteriocin gene clusters and heavily skewed to
group II (Table 2). We further discovered a putative cleavage motif
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Figure 1. The widespread distribution of putative bacteriocin gene clusters in cyanobacteria. The neighbor-joining tree is based on
concatenated 16S and 23S rRNA genes from 55 cyanobacterial genomes. The strains which have at least one bacteriocin gene cluster are indicated
with a gray background. Phylogenetic analyses were conducted in MEGA4 [41] by using the Maximum Composite Likelihood model [42] and with
50000 bootstrap replications for each branch. The bootstrap values are shown next to the branches. Outgroup taxa Gammaproteobacterium HdN1,
Bradyrhizobium japonicum USDA 110, and Escherichia coli UMN026 were used to root the tree, which is drawn to scale. Strains Arthrospira PCC 8005,
Leptolyngbya valderiana BDU 20041, and Prochlorococcus marinus MIT 9202 are absent from this tree because they are partial genomes and have no

complete rRNA genes.
doi:10.1371/journal.pone.0022384.g001

KIXDLXYLEX, (GG from HetP proteins (Figure S1.A, Figure
S2), which might be attributed to another peptidase domain M16
found in group II gene clusters. Proteins with DUF37 domain are
also found close to bacteriocin gene clusters and possess conserved
double glycine (Figure S1.B). HetP and DUF37 family proteins are
short and may serve as precursors of bacteriocins (Table S2). Note
that precursors in these two families display opposite physical
properties to the precursors from NHLP and N11P families, which
are mostly in negative charge states (Table S3).

Phylogenetic analysis of C39 peptidase
domain-containing ABC transporters

A phylogenetic analysis was performed based on the C39
peptidase domain-containing ABC transporters in the seven gene
cluster groups (Figure 5). Although the phylogenetic tree was
constructed only from the C39 peptidase ABC transporters, it is
shown that the branching of this tree matches very well to the
grouping based on genetic organization of the gene clusters
(Figure 5). Proteins from group V and VII cluster together and
corroborates the conclusion that group VII was derived from
group V through a recent domain fusion. The partition of clades
III and V+VII in the tree is consistent with the absence or
presence of the ABC transporter without peptidase domain in the
gene cluster groups (Figure 5). The phylogeny shows that group I,
II, and VI are closely related. This conforms to the presence of not
only long type C39 peptidase domain-containing ABC transporter
but also the rotamase domain-containing SurA in their gene
clusters (Figure 2). However, clade VI displays a closer relationship
to clade I than clade II, though group I gene cluster seems part of
group II according to their genetic organization and they would be
just same if additional modification genes of group II were
removed by genomic rearrangements (Figure 2). This can explain
the only inconsistency in the tree, where one group I protein from
Acaryochloris marina MBIC 11017 was found in the clade II (Figure 5).
Interestingly, the C39 peptidase domain-containing ABC trans-
porters belong to group IV were not clustered together, but
scattered among the clades III and V+VII (Figure 5). We further
found that all proteins in clade V+VII come from gene clusters
containing the ABC transporter without peptidase domain, and
thus possessing the three-gene transport cassette [21].

Discussion

An initial genome mining study demonstrated the presence of
bacteriocin biosynthetic machinery [20]. A recent study demon-
strates that cyanobacteria produce bacteriocin-like peptides [25].
Here we show that the genetic machinery for making bacteriocins
is widespread in cyanobacteria (Figure 1, Table 1). Previous
phylogenetic analysis of CG39 peptidase domains demonstrated that
cyanobacterial domains clustered together and were separated
from those in other Gram-negative and Gram-positive bacteria
[20]. Owur analysis shows that the C39 peptidase domain-
containing ABC transporters from cyanobacteria form different
groups that evolve independently (Figure 5).

Lantibiotics form a subclass of bacteriocins due to their specific
intramolecular ring structures [30]. The LanM protein was
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particularly discovered in the genomes of Nostoc, Anabaena,
Synechococcus,  Prochlorococcus, Cyanothece, and Microcoleus through
homolog searches [22-24]. In this study, the sixteen LanM-
containing gene clusters with diverse genetic organization are
classified as group IV. There are nine lanM genes found without
associated bacteriocin biosynthetic machinery, like the one in
Prochlorococcus marinus MIT9313 which is the only strain that has
been demonstrated to produce bacteriocins in cyanobacteria to
date [25]. However, the distribution of C39 peptidase domain-
containing ABC transporters from LanM-containing gene clusters
suggests a closer relationship to groups III, V, and VII (Figure 5).
For example, the stand alone LanM tailoring enzymes in strain
Prochlorococcus marinus MIT9313 seems to work together with the
two group V gene clusters within the same genome for the
lantipeptide production [25].

Natural products of ribosomal origin are often derived from the
proteolytic cleavage of small precursor proteins, and this strategy
appears to be widespread in nature [3]. In cyanobacteria,
bacteriocin precursors were recently expanded by identifying
two new protein families of double-glycine-type precursors NHLP
and N11P [21]. Vast amount of lantibiotics produced by strains of
Prochlorococcus and Synechococcus were predicted in marine system by
survey of genes encoding LanM and lantipeptide precursor in
metagenomic data [25]. Here we further extended this informa-
tion by identifying hundreds of new putative precursors via
genome mining (Table 2, Table S3). The link between these
diverse precursors and the gene clusters with varied domain
composition (Figure 2) is the intrinsic specificity to the classic
double glycine motif exerted by the CG39 peptidase domain [4].
These pieces of evidence would lend support to the conclusion of
substrate promiscuity in lantipeptide biosynthesis discovered from
marine cyanobacterium Prochlorococcus marmus MIT9313  [25].
Consequently, it can be expected that cyanobacteria will become
important research subjects of ribosomally synthesized natural
products [31].

Research on natural products has been significantly impacted
by the surge of genome data in finding new lead structures [32]
and discovering new precursors [21]. Bacteriocin finding software
and tools often look for precursor genes before locating the gene
clusters in screening genomic sequence [33,34]. However, direct
identification of precursor genes from genomic data has been
obstructed by their compact sizes and they are often overlooked in
conventional annotation. In this study, we firstly identified the
putative bacteriocin gene clusters by locating several modification
enzymes encoded by conserved genes with large ORT's, which are
unlikely to be missed from homolog search. The large amount of
precursors identified from this pipeline proved the effectiveness of
our method, in spite of the precursors distantly located to the gene
clusters [21,25].

Conclusion

Cyanobacteria are a prolific source of biologically active
peptides with interesting pharmaceutical applications. Here we
demonstrate the widespread occurrence of bacteriocin gene
clusters in cyanobacteria. These gene clusters can be classified
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Table 1. Putative bacteriocin gene clusters in cyanobacteria.
Strain Genome Groups of bacteriocin gene clusters Total
Size (Mb) | ] 1} v v Vi Vil unclassified

Prochlorococcus marinus MIT 9303 2.7 2 0 0 1 1 0 0 0 4
Prochlorococcus marinus MIT 9312 1.71 1 0 0 0 0 0 0 0 1
Prochlorococcus marinus MIT 9313 2.41 2 0 0 1 2 0 0 0 5
Prochlorococcus marinus NATL1A 19 1 0 0 0 0 0 0 0 1
Prochlorococcus marinus NATL2A 1.8 1 0 0 0 0 0 0 0 1
Prochlorococcus marinus AS9601 17 1 0 0 0 0 0 0 0 1
Cyanobium PCC 7001 1 0 2 0 0 0 0 1 4
Synechococcus PCC 7335 1 0 0 0 1 0 0 0 2
Synechococcus RS9916 1 0 0 1 1 0 0 0 3
Synechococcus BL107 1 0 0 0 0 0 0 1 2
Synechococcus WH 7805 2 0 0 0 0 0 0 1 3
Synechococcus WH 5701 2 0 0 0 0 0 0 0 2
Synechococcus RS9917 1 0 0 0 0 0 0 0 1
Synechococcus sp WH 8102 243 3 0 0 0 0 0 0 1 4
Synechococcus RCC307 2.2 1 0 0 0 0 0 0 0 1
Synechococcus CC9902 22 2 0 0 0 0 0 0 0 2
Synechococcus elongatus PCC 6301 2.7 1 0 1 0 0 0 0 0 2
Synechococcus elongatus PCC 7942 275 1 0 1 0 0 0 0 0 2
Synechococcus PCC 7002 34 1 0 0 0 0 0 0 0 1
Synechococcus WH 7803 24 2 0 0 0 1 0 0 0 3
Synechococcus CC9311 261 1 0 0 0 0 0 0 1 2
Synechococcus CC9605 2.51 1 0 0 0 1 0 0 0 2
Synechococcus sp WH 8109 1 0 0 0 0 0 0 0 1
Cyanothece PCC 7425 5.82 0 0 0 4 0 0 1 0 5
Cyanothece PCC 8802 4.83 1 2 0 1 0 0 0 0 4
Cyanothece PCC 7424 6.52 1 2 0 0 0 0 0 0 3
Cyanothece PCC 8801 4.81 1 2 0 1 0 0 0 0 4
Cyanothece ATCC 51142 5.46 3 1 0 0 0 0 0 0 4
Cyanothece PCC 7822 1 0 0 0 0 0 0 0 1
Cyanothece CCY0110 1 2 0 0 0 0 0 0 3
Microcystis aeruginosa NIES 843 58 1 1 0 0 0 0 0 0 2
Synechocystis PCC 6803 3.95 1 0 0 0 0 0 0 1 2
Arthrospira maxima CS 328 1 0 0 0 0 0 0 0 1
Microcoleus chthonoplastes PCC 7420 1 2 0 1 0 0 0 1 5
Trichodesmium erythraeum IMS101 7.8 1 1 1 0 0 0 1 0 4
Acaryochloris marina MBIC11017 8.36 3 0 1 0 0 0 0 0 4
Nostoc punctiforme PCC 73102 9.01 2 2 1 4 3 1 1 0 14
Nostoc sp 7120 7.2 3 2 3 1 1 1 0 1 11
Nostoc azollae 0708 5.4 1 1 1 0 0 1 0 0 4
Anabaena variabilis ATCC 29413 7.07 1 1 2 1 1 1 0 1 8
Nodularia spumigena CCY9414 1 3 2 0 0 1 0 0 7
Cylindrospermopsis raciborskii CS505 1 1 2 0 0 1 0 0 5
Raphidiopsis brookii D9 1 1 2 0 0 0 0 0 4
Total 57 23 19 16 12 6 3 9 145
doi:10.1371/journal.pone.0022384.t001

into seven groups according to the diverse organization of catalytic evolutionary histories. Just a small number of these clusters encode

domains within the clusters. Phylogenetic analyses support the the enzymatic machinery necessary to form lanthionines. Hun-

gene cluster classification, and show their relatively independent dreds of novel precursors with highly diverse core peptides
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Figure 2. Organization of cyanobacterial bacteriocin gene clusters. The putatively identified gene clusters in this study were classified into
seven groups (from | to VII) based on their gene organization and domain composition. ORF sizes and directions are shown in relative scale with color
definition as precursor in red, ABC transporter in blue, HlyD in orange, SurA in green, LanM in pink, S8 peptidase-containing protein in yellow, other
modification enzymes in purple, adjacent ORFs in black, and tRNA gene in light green. Domains involved in cyanobacterial bacteriocin production
and modification are demonstrated within the ORFs with different colors, domain names are derived from the Conserved Domain Database [35]. (I)
An example structure of group | from strain Synechococcus PCC 7335, and the locus_tag of hlyD is $7335_4080. (Il) from Anabaena variabilis ATCC
29413, and the locus_tag of hlyD is Ava_4382. (lll) from Nostoc sp. 7120, and the locus_tag of hlyD is alr5148. (IV) from Nostoc punctiforme PCC 73102,
and the locus_tag of hlyD is Npun_F5048. (V) from Nostoc punctiforme PCC 73102, and the locus_tag of hlyD is Npun_R1804. (VI) from Anabaena
variabilis ATCC 29413, and the locus_tag of the S8 peptidase domain-containing protein is Ava_4226. (VIl) from Trichodesmium erythraeum IMS101,
and the locus_tag of hlyD is Tery_0894.

doi:10.1371/journal.pone.0022384.g002

structures were identified within these gene cluster regions.
Although the products of most of the precursor proteins are
completely unknown and awaiting verification, it is no doubt that
cyanobacteria are emerging as a prolific source of post-
translationally modified peptides. The organized information
given here would be useful in gaining further information on
biosynthetic mechanism of bacteriocins. In addition, this bioinfor-
matic study will not only improve the bacteriocin gene cluster
annotation in cyanobacteria but also complement other tools in
discovering novel bacteriocins.

Materials and Methods

Data sets

Genomic data of 58 cyanobacterial strains (Table S1) were
downloaded from the Genbank database (ftp://ftp.ncbi.nih.gov/
genbank/). Protein sequences of these genomes were extracted
and formatted for local BLAST searches. Three tailored query
files containing FASTA format protein sequences of bacteriocin
synthesis genes were constructed. The first one consisted of 30
representative proteins of the C39 peptidase domain-containing

@ PLoS ONE | www.plosone.org

Table 2. Summary of identified bacteriocin precursors and their classification.

Gene cluster groups Size Range (aa) NHLP N11P HetP DUF37 Other Subtotal Novel * Average #
| 45-164 1 2 1 1 15 20 1 0.35
] 39-152 12 7 10 0 58 87 11 3.78
1] 29-129 26 6 0 2 40 74 21 3.89
v 31-151 16 29 0 1 15 61 4 3.81
Vv 28-151 11 10 0 0 16 37 9 3.08
Vi 82-84 0 0 0 2 0 2 0 0.33
Vil 50-116 0 1 0 0 6 7 0 233
Unclassfied 159 0 0 2 0 0 2 0 0.22
Total 66 55 13 6 150 290 46

*Number of novel precursor genes that are absent from the current genomic annotation.

#Average number of precursor per gene cluster in different groups.

doi:10.1371/journal.pone.0022384.t002
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Figure 3. Sequence logos of double-glycine motif generated from cyanobacterial precursors in NHLP and N11P families. There is a
conserved region found near the peptide cleavage site with Gly-Gly motif from the precursor peptides. Relative frequency of acidic residues of the
conserved sequences from families (A) NHLP and (B) N11P are demonstrated. This figure was generated by web-based software [39].
doi:10.1371/journal.pone.0022384.g003
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Figure 4. Diverse structures of cyanobacterial bacteriocin precursors from known families. (A) Thirty-nine selected NHLP precursors are
shown in a ClustalW alignment [38]. The locus tag is given to the left of the sequence and the amino acid position is given on the right. The cleavage
site of the leader peptides is indicated by an arrow. (B) Twenty-four selected N11P precursors shown in a ClustalW alignment. The coloring scheme
and notation are identical to section A.
doi:10.1371/journal.pone.0022384.g004
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Figure 5. Evolutionary relationships of C39 peptidase domain-containing ABC transporters in cyanobacteria. The phylogenetic
analysis is based on C39 peptidase domain-containing ABC transporters in the seven gene cluster groups, except those with disrupted ORFs. The
midpoint neighbor-joining tree was constructed by using MEGA4 [41] with Poisson correction model [43] and 50000 bootstrap replications for each
branch. The tree is drawn to scale, and bootstrap values of major branches are shown. The name of each taxon is constituted by gene cluster group,
accession number, and strain name of the C39 peptidase domain-containing ABC transporters. Major clades of the tree are composed of proteins
distinctly from respective gene cluster groups and are named as the corresponding groups with different background colors. Independent
evolutionary histories were inferred between the gene clusters in different groups. Proteins from group IV scattered among clades of lll and V+VII,
and are highlighted in orange. The group | protein found in clade Il is shown in green.

doi:10.1371/journal.pone.0022384.9005

ABC transporter (cd02259), the second contained 14 HlyD family
proteins (TIGR01843). Sequences in these two files were collected
from the NCBI Conserved Domains database [35]. The 14
sequences in the third file were LanM proteins located in
cyanobacteria [23].

Gene cluster identification and classification

The three query files were utilized for searching against the
database containing all proteins of the collected cyanobacterial
genomes. Protein hits of blastP (£ < 0.00001) [36] were chosen as
candidates and labeled in the GenBank format genome sequences,
which were used to visualize gene organizations surrounding the
candidate proteins by using Artemis [37] for gene cluster
identification and intensive structural comparison. The compo-
nent domains of candidate proteins were identified by Conserved
Domain search [35]. Then these putative gene clusters were
divided into seven groups by combining the information of gene
organization and domain composition.

Precursor gene identification

Precursor genes were searched in a 20 Kb range upstream and
downstream for each gene cluster. Small ORFs and intergenic
regions were manually checked by searching for the double
glycines. These predicted precursors were compared to known
precursor families [21] by blastP (£ < 0. 1) [36] for classification.
Multiple sequence alignments were performed by using ClustalW
[38]. Motifs showing the relative frequency of amino acids in
leader peptides cleavage region were drawn online by WebLogo
[39]. Precursor features were calculated by using Pepstats [40].

Phylogenetic analysis

Two neighbor-joining trees, both with 50000 bootstrap
replications for each branch, were constructed by using the
MEGA package (Version 4.0) [41]. The first tree (Figure 1) is
based on concatenated 16S and 23S rRNA genes from 55
cyanobacterial genomes with the Maximum Composition Likeli-
hood model [42], and rooted by rRNA genes from Gammaproteo-
bacterium HAN1, Bradyrhizobwm japonicum USDA 110, and Escherichia
coli UMNO26. The second midpoint tree (Figure 5) is generated
with Poisson correction model [43] and from amino acid

References

1. Riley MA, Wertz JE (2002) Bacteriocins: Evolution, ecology, and application.
Annu Rev Microbiol 56: 117-137.

2. Riley MA, Wertz JE (2002) Bacteriocin diversity: Ecological and evolutionary
perspectives. Biochimie 84: 357-364.

3. Oman TJ, van der Donk WA (2010) Follow the leader: The use of leader
peptides to guide natural product biosynthesis. Nat Chem Biol 6: 9-18.

4. Ha???varstein LS, Diep DB, Nes IF (1995) A family of bacteriocin ABC
transporters carry out proteolytic processing of their substrates concomitant with
export. Mol Microbiol 16: 229-240.

. Willey JM, van der Donk WA (2007) Lantibiotics: Peptides of diverse structure
and function. Annu Rev Microbiol 61: 477-501.

6. Onaka H, Nakaho M, Hayashi K, Igarashi Y, Furumai T (2005) Cloning and

characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp.
TP-A0584. Microbiology 151: 3923-3933.

o

@ PLoS ONE | www.plosone.org

sequences of C39 peptidase domain-containing ABC transporter
from all seven gene clusters groups, excluding disrupted ORFs.

Supporting Information

Figure S1 Sequence alignments of putative novel cyanobacterial
bacteriocin precursors. (A) Ten selected HetP substrates are shown
in a ClustalW alignment [38]. The locus_tag is given to the left of
the sequence and the amino acid position is given on the right. An
asterisk implies an invariant residue, while the colon and period
show positions that are highly and moderately related, respective-
ly. Bold red text indicates the putative leader peptide cleavage
motif. (B) Six selected DUF37 substrates are shown in a ClustalW
alignment. The coloring scheme and notation are identical to
section A.

(PDF)

Figure 82 Sequence logo of motif with double-glycine found in
the putative HetP precursors in cyanobacteria. A conserved region
was found near the peptide cleavage site with Gly-Gly motif from
the putative HetP precursor proteins in cyanobacteria. Here the
sequence logo with relative frequency of acidic residues of the
conserved sequences is demonstrated. This figure was generated
by web-based software [39].

(PDF)
Table S1 Cyanobacterial genomes analyzed in this study (data

collected at May 17, 2010).
(PDF)

Table S2 Conserved domains identified in cyanobacterial
bacteriocin gene clusters.

(PDF)

Table 83 Cyanobacterial precursors identified in this study.
(XLS)

Author Contributions

Conceived and designed the experiments: HW. Performed the experi-
ments: HW. Analyzed the data: HW DF. Contributed reagents/materials/
analysis tools: KS. Wrote the paper: HW DF KS.

7. Li YM, Milne JC, Madison LL, Kolter R, Walsh CT (1996) From peptide
precursors to oxazole and thiazole-containing peptide antibiotics: Microcin B17
synthase. Science 274: 1188-1193.

8. Milne JC, Roy RS, Eliot AC, Kelleher NL, Wokhlu A, et al. (1999) Cofactor
requirements and reconstitution of microcin B17 synthetase: A multienzyme
complex that catalyzes the formation of oxazoles and thiazoles in the antibiotic
microcin B17. Biochemistry 38: 4768-4781.

9. Kodani S, Hudson ME, Durrant MC, Buttner MJ, Nodwell JR, et al. (2004) The
SapB morphogen is a lantibiotic-like peptide derived from the product of the
developmental gene ramsS in Streptomyces coelicolor. Proc Natl Acad Sci U S A 101:
11448-11453.

10. Lee SW, Mitchell DA, Markley AL, Hensler ME, Gonzalez D, et al. (2008)
Discovery of a widely distributed toxin biosynthetic gene cluster. Proc Natl Acad
Sci U S A 105: 5879-5884.

July 2011 | Volume 6 | Issue 7 | e22384



. Michiels J, Dirix G, Vanderleyden J, Xi C (2001) Processing and export of

peptide pheromones and bacteriocins in gram-negative bacteria. Trends

Microbiol 9: 164-168.

. Galvez A, Lopez RL, Abriouel H, Valdivia E, Omar NB (2008) Application of

bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit

Rev Biotechnol 28: 125-152.

. Wieland Brown LC, Acker MG, Clardy J, Walsh CT, Fischbach MA (2009)

Thirteen posttranslational modifications convert a 14-residue peptide into the
antibiotic thiocillin. Proc Natl Acad Sci U S A 106: 2549-2553.

. Piper C, Cotter PD, Ross RP, Hill C (2009) Discovery of medically significant

lantibiotics. Curr Drug Discov Technol 6: 1-18.

. Nes IF, Diep DB, Holo H (2007) Bacteriocin diversity in Streptococcus and

Enterococcus. J Bacteriol 189: 1189-1198.

. Burja AM, Abou-Mansour E, Banaigs B, Payri C, Burgess JG, et al. (2002)

Culture of the marine cyanobacterium, Lyngbya majuscula (Oscillatoriaceae), for
bioprocess intensified production of cyclic and linear lipopeptides. J Microbiol
Methods 48: 207-219.

Sivonen K, Borner T (2008) Bioactive compounds produced by cyanobacteria.
In: Herrero A, Flores E, eds. The cyanobacteria: molecular biology, genomics,
and evolution. Norfolk, UK: Caister Academic Press. pp 159-197.

. Welker M, von Déhren H (2006) Cyanobacterial peptides — nature’s own

combinatorial biosynthesis. FEMS Microbiol Rev 30: 530-563.

Sivonen K, Leikoski N, Fewer DP, Jokela J (2010) Cyanobactins - ribosomal
cyclic peptides produced by cyanobacteria. Appl Microbiol Biotechnol 86:
1213-1225.

. Dirix G, Monsieurs P, Dombrecht B, Daniels R, Marchal K, et al. (2004)

Peptide signal molecules and bacteriocins in gram-negative bacteria: A genome-
wide in silico screening for peptides containing a double-glycine leader sequence
and their cognate transporters. Peptides 25: 1425-1440.

. Haft DH, Basu MK, Mitchell DA (2010) Expansion of ribosomally produced

natural products: A nitrile hydratase- and Nifl I-related precursor family. BMC
Biol 8: 70.

. Begley M, Cotter PD, Hill C, Ross RP (2009) Identification of a novel two-

peptide lantibiotic, lichenicidin, following rational genome mining for LanM
proteins. Appl Environ Microbiol 75: 5451-5460.

. Goto Y, Li B, Claesen J, Shi Y, Bibb M]J, et al. (2010) Discovery of unique

lanthionine synthetases reveals new mechanistic and evolutionary insights. PLoS
Biol 8: ¢1000339.

O’Sullivan O, Begley M, Ross RP, Cotter PD, Hill C (2011) Further
identification of novel lantibiotic operons using LanM-based genome mining.
Probiotics & Antimicro Prot 3: 27-40.

. Li B, Sher D, Kelly L, Shi Y, Huang K, et al. (2010) Catalytic promiscuity in the

biosynthesis of cyclic peptide secondary metabolites in planktonic marine
cyanobacteria. Proc Natl Acad Sci U S A 107: 10430-10435.

@ PLoS ONE | www.plosone.org

10

26.

31.

32.

33.

34.

36.

37.

38.

39.

40.

41.

42.

43.

Bacteriocin Gene Clusters in Cyanobacteria

Shi 'Y, Yang X, Garg N, van der Donk WA (2011) Production of lantipeptides in
Escherichia coli. ] Am Chem Soc 133: 2338-2341.

. Pimenta AL, Racher K, Jamieson L, Blight MA, Holland IB (2005) Mutations in

HIlyD, part of the type 1 translocator for hemolysin secretion, affect the folding of
the secreted toxin. J Bacteriol 187: 7471-7480.

. Behrens-Kneip S (2010) The role of SurA factor in outer membrane protein

transport and virulence. Int J Med Microbiol 300: 421-428.

. Fernandez-Pinas F, Leganes I, Wolk CP (1994) A third genetic locus required

for the formation of heterocysts in Anabaena sp. strain PCC 7120. J Bacteriol 176:
5277-5283.

. Bierbaum G, Sahl HG (2009) Lantibiotics: Mode of action, biosynthesis and

bioengineering. Curr Pharm Biotechnol 10: 2-18.

Velasquez JE, van der Donk WA (2011) Genome mining for ribosomally
synthesized natural products. Curr Opin Chem Biol 15: 11-21.

Bode HB, Muller R (2005) The impact of bacterial genomics on natural product
research. Angew Chem Int Ed Engl 44: 6828-6846.

de Jong A, van Heel AJ, Kok J, Kuipers OP (2010) BAGEL2: Mining for
bacteriocins in genomic data. Nucleic Acids Res 38(Suppl): W647-51.

de Jong A, van Hijum SA, Bijlsma JJ, Kok J, Kuipers OP (2006) BAGEL: A
web-based bacteriocin genome mining tool. Nucleic Acids Res 34: W273-9.

. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, et al. (2011)

CDD: A conserved domain database for the functional annotation of proteins.
Nucleic Acids Res 39: D225-9.

Altschul SF, Gish W, Miller W, Myers EW, Lipman D] (1990) Basic local
alignment search tool. ] Mol Biol 215: 403-410.

Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, et al. (2000) Artemis:
Sequence visualization and annotation. Bioinformatics 16: 944-945.
Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment
using ClustalW and ClustalX. Curr Protoc Bioinformatics Chapter 2: Unit 2.3.
Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: A sequence
logo generator. Genome Res 14: 1188-1190.

Rice P, Longden I, Bleasby A (2000) EMBOSS: The european molecular
biology open software suite. Trends Genet 16: 276-277.

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary
genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596-1599.
Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large
phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A
101: 11030-11035.

Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in
proteins. In: V. Bryson HJV, ed. Evolving genes and proteins. New York:
Academic Press. pp 97-166.

July 2011 | Volume 6 | Issue 7 | e22384



