
sensors

Article

Research on a Task Offloading Strategy for the Internet of
Vehicles Based on Reinforcement Learning

Shuo Xiao 1, Shengzhi Wang 1, Jiayu Zhuang 2,3,*, Tianyu Wang 1 and Jiajia Liu 2,3

����������
�������

Citation: Xiao, S.; Wang, S.; Zhuang,

J.; Wang, T.; Liu, J. Research on a Task

Offloading Strategy for the Internet of

Vehicles Based on Reinforcement

Learning. Sensors 2021, 21, 6058.

https://doi.org/10.3390/s21186058

Academic Editor: Ilsun You

Received: 16 July 2021

Accepted: 8 September 2021

Published: 9 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Technology, China University of Mining and Technology,
Xuzhou 221000, China; sxiao@cumt.edu.cn (S.X.); ts20170045a31@cumt.edu.cn (S.W.);
ts20170072p31@cumt.edu.cn (T.W.)

2 Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100080, China;
liujiajia@caas.cn

3 Key Laboratory of Agri-Information Service Technology, Ministry of Agriculture, Beijing 100080, China
* Correspondence: zhuangjiayu@caas.cn

Abstract: Today, vehicles are increasingly being connected to the Internet of Things, which enables
them to obtain high-quality services. However, the numerous vehicular applications and time-
varying network status make it challenging for onboard terminals to achieve efficient computing.
Therefore, based on a three-stage model of local-edge clouds and reinforcement learning, we propose
a task offloading algorithm for the Internet of Vehicles (IoV). First, we establish communication
methods between vehicles and their cost functions. In addition, according to the real-time state of
vehicles, we analyze their computing requirements and the price function. Finally, we propose an
experience-driven offloading strategy based on multi-agent reinforcement learning. The simulation
results show that the algorithm increases the probability of success for the task and achieves a balance
between the task vehicle delay, expenditure, task vehicle utility and service vehicle utility under
various constraints.

Keywords: Internet of Vehicles; mobile edge computing; task offloading; Stackelberg game;
reinforcement learning

1. Introduction

The past years have seen a growth in mobile communication, chip technology, sensor
technology and artificial intelligence. Vehicles are becoming more intelligent by installing
advanced sensors, such as cameras and LIDAR. These vehicles are no longer limited to
human control, but gradually become an intelligent and connected computing system. Such
vehicles are called intelligent and connected vehicles (ICV) [1]. ICV are equipped with high-
precision sensors and other computing devices such as powerful CPU and GPU, and can
realize the information exchange and resource sharing of vehicle-to-vehicle (V2V), vehicle-
to-pedestrian (V2P) and vehicle-to-infrastructure (V2I). The ICV industry [2] is based on
artificial intelligence, big data, cloud computing and 5G communication technology, and
supported by electronic information industry, communication industry, integrated circuit
industry, internet industry, transportation industry; it is applied to the Internet of Vehicles,
autopilot and market service industry. Based on the automation degree of the autopilot
system, the Society of Automotive Engineers (SAE) divides autopilot into six levels (L0–L5).
From level 0 to level 5 is a process of human-driven to machine-driven. In level 5, all
driving operations of a driver are performed by the autopilot.

There are two modes of ICV, one is autonomous vehicle, the other is connected
vehicle [3]. As an autonomous vehicle is equipped with advanced sensors and computing
devices, it has situational awareness. Autopilot of the vehicle can analyze the driving
state through on-board computing unit. The connected vehicle uses the next generation of
mobile communication technologies to establish V2V, V2I, and V2P connections. Autopilot

Sensors 2021, 21, 6058. https://doi.org/10.3390/s21186058 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21186058
https://doi.org/10.3390/s21186058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21186058
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21186058?type=check_update&version=2

Sensors 2021, 21, 6058 2 of 18

of the connected vehicle obtains external environmental data to assist vehicle control [4].
European union countries focus on developing autonomous vehicles; they attempt to
achieve high-level autonomous driving by enhancing the perception and computing power
of a single vehicle. However, as it is difficult to balance the environmental sensor’s accuracy
and price, and the lack of reliability and security of related algorithm, the development of
this mode has entered a bottleneck period. To solve the problems of autonomous vehicles,
it is more and more important to explore the cooperative vehicle infrastructure system by
installing sensors, communication devices, and edge computing nodes on road sections
to improve the accuracy and range of vehicle perception, enhance computing power, and
improve the reliability of autopilot.

In recent years, with the rapid popularization of ICV, road traffic density has greatly
increased [5,6]. Computing resources of ICV are limited and cannot meet the huge amount
of data generated by autopilot; uploading data to a remote cloud server results in high
time delays and additional communication costs. Therefore, it is a problem to make the
intelligent connected vehicle meet the requirements of low time delay and provide users
with a high quality experience. The existing solution is to offload the task to edge cloud
servers [7]. In IoV, vehicles can offload tasks to edge servers or other vehicles to accelerate
task processing. However, moving vehicles cause communication interruptions during task
offloading, and unstable long-distance communication between vehicles and cloud servers
greatly increases the time delay. This environment cannot meet the needs of time-sensitive
tasks. In recent years, as an improved resource allocation architecture of cloud computing,
mobile edge computing has been introduced into the IoV to improve vehicles’ computing
power during task processing [8].

With the development of 5G technology, an increasing number of vehicles have
been connected to the IoV, and computing resources have become increasingly scarce.
Energy consumption should have a low priority of intelligent connected vehicles that have
sufficient power [9]. In view of this, we give priority consideration to the utilization of
computing resources and propose a task offloading strategy based on deep reinforcement
learning. The novelty and major contributions of this paper include the following:

1. Based on the Stackelberg game, we propose a new task offloading algorithm with
deep reinforcement learning. It is different from previous research on minimizing
task delays and power consumption. The goal of optimization is to reach a balance
between time delay and task cost.

2. We conduct experiments and solve the Nash equilibrium between service vehicles
and task vehicles.

3. We compare the proposed method with other algorithms. Our proposed algorithm
achieves high system utility and better performance.

The rest of the paper is organized as follows. Section 2 introduces the related work
of our research. In Section 3, we introduce the system framework, communication and
cost model of this paper. In Section 4, the calculation model and utility function of the
service vehicle are presented. In Sections 5 and 6, we describe the algorithm and analyze
the simulation results, respectively. Finally, the conclusion is drawn in Section 7.

2. Related Work

At present, many researchers and manufacturing companies have carried out related
research work in the field of IoV [10,11]. Raza et al. [12] proposed the framework of
vehicle edge computing (VEC). Using artificial intelligence technology, the author of [13]
proposed a method of V2V communication to maximize the vehicle traffic flow in the
transport system. Si et al. [14] proposed a solution to utilize the potential resources
of vehicles in the Internet to solve the congestion problem in other data networks. To
solve the problem of limited computing resources of edge servers, Zhang et al. [15]
introduced a backup server to expand computing capacity and proposed a vehicular
offloading framework. To balance the average delay and the server load, a dynamic service
allocation algorithm based on Pareto optimality was proposed by Hu et al. [16] that solved

Sensors 2021, 21, 6058 3 of 18

the problem of edge node assignment. To expand the available cloud services for vehicle
mobile applications, Li et al. [17] proposed a framework that combines a long-distance
cloud server, edge computing node and vehicular cloud service. Huang et al. [18] proposed
a reputation management system based on a vehicular network in which the allocation of
computing resources was determined by the reputation of users. Liu et al. [19] introduced
game theory into vehicle edge calculation, modeled task offloading as a multi-user non-
cooperative game, and proved the existence of a Nash equilibrium solution in the game.
Because wireless channel resources are limited, compared with binary offloading, it is more
reasonable for us to use partial offloading [20–23].

In addition, the Doppler effect caused by the high-speed movement of vehicles, the
shielding of peripheral objects on the road, and the communication interruption caused
by the movement of edge nodes all lead to frequent changes in the topology of IoVs.
To improve service quality, Hou et al. [20] proposed a method that used vehicles with
residual resources as communication nodes and computing nodes. In [24], factors such as
resource limitations and delay tolerances of IoV were taken into account, and K. Zhang et
al. proposed a computing resource allocation model based on contract theory to maximize
the benefits of edge server providers. Ren et al. [25] proposed a new partial offloading
model in which part of the data is processed locally and the other part is processed on
the edge nodes. This model improved the resource utilization of local and edge nodes
and reduced the computing delay. In [26], Luoto Pet al. proposed a task offloading model
with a low signal-to-noise ratio for IoV connected to roadside units (RSU) by combining
V2I and V2V communication. To realize the joint optimization of servers and vehicles,
Zhang et al. [27] proposed an effective combination mode of delay prediction in which
computing tasks were transmitted to edge nodes through V2I or V2V communication.

In summary, the results of recent research on task offloading architecture can be
divided into three methods: vehicle-to-vehicle architecture, vehicle-to-edge server ar-
chitecture, vehicle-to-edge server and cloud server architecture. The vehicle-to-vehicle
architecture was proposed to solve the cooperation problem among vehicles. To fully uti-
lize the computing power of moving vehicles, the vehicle-to-edge server architecture was
designed. The vehicle-to-edge server and cloud server architecture was proposed to realize
a balance among vehicles, edge servers and cloud servers. To optimize the task delay, task
energy consumption, load balancing of edge nodes and task completion probability, an
intelligent optimization algorithm, contract strategy, game strategy, reinforcement learning
algorithm [28–30], etc., are used to solve the offloading problem of moving vehicles.

3. System Model

Suppose that there are two roads, the lengths of which are defined as Lroad−h and
Lroad−v, respectively, and the widths as Lwidth. These two roads are perpendicular. Four
RSUs are located in each road. These RSUs are connected to each other through optical
fibres. To save on construction costs, only one RSU can connect to the cloud server [31].
Vehicles are randomly distributed at the crossroads. In each time slot, vehicles that are idle
in the system have a probability of generating computing tasks. Vehicles with computing
tasks are called task vehicles, while vehicles without computing tasks and with rich
computing resources are called service vehicles. Vehicles at the crossroads can choose to go
straight, wait, turn left or right. Vehicles in other positions continue to move in a straight
line. If the distance between the task vehicle and the service vehicle is less than the V2V
distance, then V2V communication is used. If the distance between the task vehicle and the
service vehicle exceeds the V2V distance, V2I communication is used. The system model is
shown in Figure 1.

Sensors 2021, 21, 6058 4 of 18

Figure 1. Task offloading system model based on Stackelberg–MADDPG algorithm.

As shown in Figure 2, this paper proposes a three-stage Stackelberg game model.
In the first stage, the cloud server broadcasts the unit price of its computing power to
the service vehicle according to its maximum computing power. In the second stage, the
service vehicle determines the unit price of its computing power based on its current CPU
utilization rate and the unit computing power price of the cloud server. Then, the service
vehicle broadcasts its unit price of computing power to other task vehicles. In the third
stage, the task vehicle chooses offloading strategies based on its price sensitive factor, delay
sensitive factor, task priority, task success sensitivity factor and task information.

Figure 2. Three-stage Stackelberg game model.

Sensors 2021, 21, 6058 5 of 18

3.1. Communication Model

There are two communication modes in this system: V2I communication between
vehicles and infrastructure and V2V communication between vehicles. V2V communication
uses orthogonal frequency to enable vehicles to transmit without interference. This adopts
the simple independent same-distributed channel. According to [26], the path loss PL of
V2V communication at time t can be calculated as Equation (1):

PLV2V(t) = 63.3 + 17.7 log2 di,j(t), (1)

where di,j(t) denotes the distance between vehicles vi and vj at time t. Assuming that the
value of noise is 0, the communication bandwidth is denoted by B, the fading factor of the
transmission channel is denoted by h, N is the white Gaussian noise power, and P is the
transmission power of the vehicular communication equipment. Therefore, according to
the Shannon equation, the data transfer rate between any two communicating vehicles vi
and vj at time t can be calculated as Equation (2):

RV2V = BV2V log2

1 +
PV2V10

PLV2V (t)
10 h2

N

. (2)

In V2I communication mode, PLV2I denotes the path loss between the vehicle and the
RSU, which is calculated in Equation (3):

PLV2I = d−δ, (3)

where d denotes the distance between the vehicle and the RSU, and δ denotes the path loss
factor. The upstream and downstream links between vehicles and RSUs are Rayleigh flat
fading channels. According to the Shannon equation, the data transmission rate between
the vehicle and the RSU is

RV2I = BV2I log2

(
1 +

PV2I PLV2Ih2

N

)
. (4)

3.2. Cost Model

Task data are denoted by a quad < D, α, tmax, β >, where D denotes the task data size,
tmax denotes the latest completion time of the task, α denotes the number of cycles required
by the CPU to complete the calculation of one bit of data, and β is the compression rate of
the return value of the task.

The service vehicle v broadcasts its basic price pbase
v and sets the differential price

according to the priority of each task. The differential price is proportional to the priority of
the task. To balance the load of all edge servers, we need to increase the computing power
price of high-load servers and reduce the computing power price of low-load servers. The
unit price of computing power charged by service vehicle v to task vehicle u is calculated
using Equation (5):

pv,u = pbase
v + ωp

Du

tmax
u

+ ωu

(
f f ree
v

f max
v
− 1

)
, (5)

where Du denotes the data size of task vehicle u. tmax
u denotes the latest completion

time of task vehicle u. ωp denotes the normalization factor of the differential price. ωu

is the normalization factor of server utilization, and f f ree
v / f max

v − 1 is the server CPU
utilization rate.

Sensors 2021, 21, 6058 6 of 18

4. Computing Model and Utility Function
4.1. Computing Model

In this model, there are M service vehicles and N task vehicles. The task vehicle sends
offloading requests to all service vehicles when task vehicle u decides its purchase strategy
fu = (fu,1, fu,2, . . . fu,m). Task T is divided into M + 1 subtasks {T0, T1, T2, . . . , Tm}. T0 is
computed locally, and T1 ∼ Tm are offloaded to corresponding vehicles. After service vehi-
cle v receives offloading requests of N task vehicles in a time slot, the service vehicle sends
messages to all task vehicles if the computing resource value of total requests fv = ∑n

i=1 fi,v

is less than the maximum value f f ree
v . If the computing resource value of total requests is

greater than the maximum value and the excess part is fv,cloud = fv − f f ree
v = ∑n

i=1 fi,v,cloud,
then the service vehicle purchases computing resources, and all the computing resources
purchased from the cloud server are fu,v,cloud. After the task vehicle receives the offloading

message, it sends fu,v− fu,v,cloud
α size data to the service vehicle and fu,v,cloud

α size data to the
cloud server, where α denotes the number of cycles required by the CPU to complete the
calculation of one bit of data. All task vehicles receive a message after the calculation is
done, and the task is completed.

In a real environment, vehicles away from crossroads tend to offload entertainment
tasks for comfort, and this type of task has a low priority. Vehicles near crossroads tend to
offload tasks to ensure safe driving, and this type of task has a higher priority. tmax denotes
the latest completion time of the task:

tmax = γpr

(
x2

t + y2
t

)
D, (6)

where xt and yt denote the abscissa and ordinate of the vehicle position at time t, respec-
tively, the coordinate of intersection is (0, 0), D denotes the task data size, γpr denotes
the discount factor of task priority, and the task priority is proportional to the square of
the distance from the task vehicle to intersection. We assume that task vehicle u needs to
offload the subtask Tm to service vehicle v and the computing resources that need to be
purchased is fu,v. The computing resources of a service vehicle is f f ree

v . If fu,v < f f ree
v , then

the service vehicle does not need to purchase additional computing resources from the
cloud server, and it only uses the V2V communication mode. The completion time of the
task is divided into three parts: upload time tup

u,v, execution time texec
u,v and feedback time

tdown
u,v . Therefore, the completion time of the task can be calculated using Equations (7)–(10):

tmec
u,v = tup

u,v + texec
u,v + tdown

u,v , (7)

tup
u,v =

aDu

RV2V
, (8)

texec
u,v =

aαuDu

fu,v
, (9)

tdown
u,v =

aβuDu

RV2V
, (10)

where a = fu,v/ ftotal denotes offloading proportion, f total
u = f local

u +∑m
i=1 fu,i, f local

u denotes
the computing power of the task vehicle, RV2V denotes the data transfer rate, αu denotes
the number of cycles required by the CPU to complete the calculation of one bit of data in
service vehicle v, and Du is the task data size of task Tm. The completion time of the task
can be expressed as Equation (11):

tcomplete
u = max

{
tlocal
u , tmec

u,1 , tmec
u,2 , . . . , tmec

u,m

}
, (11)

Sensors 2021, 21, 6058 7 of 18

where the local execution time tlocal
u = (αD)/ f local

u , according to Equation (9), Equation (12)
can be derived as follows:

texec
u,v =

aαuDu

fu,v
=

fu,v
f total
u

αuDu

fu,v
=

αuDu

f total
u

, (12)

From Equation (12), we can conclude that all subtasks’ texec
u,v have the same value.

The completion time of task tcomplete
u is determined by the uploading time of each subtask

and the computing resources purchased. Then, the task completion time tcomplete
u can be

calculated as Equation (13):

tcomplete
u = tlocal

u + max
{

tup
u,1 + tdown

u,1 , tup
u,2 + tdown

u,2 ,

. . . , tup
u,m + tdown

u,m

}
,

(13)

cloud server is introduced as backups. If all the computing resources purchased from the
service vehicle are greater than free computing resources, subtasks T1 ∼ Tm will be divided
into

{
tmec
1 , tcloud

1 , tmec
2 , tcloud

2 , . . . , tmec
m , tcloud

m

}
. The task time is divided into three parts if

fv > f f ree
v . These parts are the local execution time, service vehicle execution time and

cloud server execution time. The local execution time and service vehicle execution time
have been expressed. The execution time of the cloud server using V2I communication can
be calculated with Equation (14):

tcloud
u,v = tup

u,v + trsu,cloud
u,v + tcloud_exec

u,v + tcloud,rsu
u,v + tdown

u,v , (14)

upload time from task vehicle to the RSU is

tup
u,v =

aDu

(
fu,v − f f ree

v

)
RV2I fu,v

, (15)

upload time from the RSU to cloud server is

trsu,cloud
u,v =

aDu

(
fu,v − f f ree

v

)
RLAN fu,v

+ c∆t, c ∈ {0, 1, 2}, (16)

the value of RLAN is 109, 10-GB Ethernet (10 GigE) was used between RSUs in proposed
model. Due to the distance between two RSUs is too close, the transfer time is denoted as a
constant ∆t. c ∈ {0, 1, 2} denotes the hop counts between two RSUs. The execution time
on cloud servers is calculated as Equation (17):

tcloud_exec
u,v =

aαuDu

fu,v − f f ree
v

, (17)

transfer time from cloud server to RSUs is

tcloud,rsu
u,v =

aβuDu

(
fu,v − f f ree

v

)
RLAN fu,v

+ c∆t, (18)

feedback time of the task result is

tdown
u,v =

aβuDu

(
fu,v − f f ree

v

)
RV2I fu,v

, (19)

Sensors 2021, 21, 6058 8 of 18

In summary, the task completion time of the task vehicle can be calculated as
Equation (20):

tcomplete
u,v = max

{
tlocal
u , tmec

u,v , tcloud
u,v }. (20)

4.2. Utility Function

We hope that the offloading task be completed within reasonable costs. Therefore, the
optimization goals of the task vehicle are the task time, task costs, and task rewards. The
utility function of the task vehicle can be calculated as Equation (21):

Utask = aUtime − bUpay + cUsuccess, (21)

where a + b + c = 1, a denotes price sensitive factor, b denotes delay sensitive factor, and c
denotes task success sensitive factor. Utime denotes the satisfaction caused by time savings,
and the more computing power the task vehicle purchases, the larger the value of Utime.
Upay denotes the satisfaction produced by task costs. The value of the task costs is larger,
and the value of Upay is smaller. Utime can be calculated as Equation (22):

Utime = γ1 Pr ln(1 + tsave), (22)

where tsave denotes the value of time saved by an offloading task. γ1 denotes the normaliza-
tion coefficient. As the value of tsave increases, the utility of vehicles with higher offloading
priority become higher. tsave can be calculated as Equation (22):

tsave = tall_local −max
{

tlocal , tmec, tcloud
}

, (23)

where, tall_local denotes the completion time that all tasks compute locally. Usuccess denotes
the task reward, and it is a constant greater than 0. c is a positive number. If the task is
completed within the latest completion time, then the value of c is c. Otherwise, the value
of c is −c. Last, the utility function of the task vehicle can be derived as follow equation:

Utask = aγ1 Pr ln
(

1 + tall_local − tcomplete
)
− b

(
γ2

(
m

∑
i=1

ft,i pi,t + Eblocal

)y)
+ cUsuccess

= aγ1
D

tmax ln
(

1 +
αD
flocal

−max
{

αD
ftotal

, tmec
1 , . . . , tcloud

m

})
− b

(
γ2

(
m

∑
i=1

ft,i pi,t + Eblocal

)y)
+ cUsuccess

s.t. :0 ≤ a ≤ 1, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1, a + b + c = 1

γ1 > 0, γ2 > 0, D > 0, α > 0, β > 0, y > 0, Pmin ≤ pi,L, Rsuccess > 0 ≤ Pmax, i ∈ Vs

c =

 c, i f max
{

αD
ftotal

, tmec
1 , . . . , tcloud

m

}
≤ tmax

−c, i f max
{

αD
ftotal

, tmec
1 , . . . , tcloud

m

}
> tmax

,

(24)

where, Utime is an increasing function of tsave. However, considering user’s economic
factor, the marginal utility of Utime decreases when the task vehicle continuously purchases
computing resources to increase tsave. Meanwhile, the satisfaction of task vehicles is a
subtraction function of ft = ∑m

i=1 ft,i, ft is the total computing resources a task vehicle buys
from all service vehicles. Upay = γ2

(
ppay + Eblocal

)y. Eblocal is the electricity consumption
for local computing. pi,t denotes the unit price of computing resources sold by service
vehicles. γ1 is the time discount factor of utility function. γ2 is expenditure discount factor.

The revenue of the service vehicle is the task vehicle cost minus the electricity cost
for computing and the cost for purchasing resources from the cloud server. To ensure that

Sensors 2021, 21, 6058 9 of 18

Uservice is always greater than 0, we assume that ps,t ≥ Pcloud and cloud server resources
are unlimited. The utility function of service vehicle v can be calculated as Equation (25):

Uservice =
n

∑
i=1

fi,v pv,i − ek
n

∑
i=1

f 2
i,v

αiDi

f total
i
− Pcloud

n

∑
i=1

f cloud
i , (25)

Pu,v denotes the unit price of computing resources sold by the service vehicle. Pcloud denotes
the unit price of computing resources sold by the cloud server. e is unit price of electricity.
We used Pcpu to denote the power of equipment, according to [32], Pcpu = k f 2, where k is
CPU energy coefficient.

5. Stackelberg–MADDPG Task Offloading Algorithm

We propose an offloading strategy based on multi-agent reinforcement learning. In the
traditional multi-agent deep deterministic policy gradient(MADDPG) algorithm, agents
lack a hierarchical relationship and make decisions at the same time. To solve this problem,
we propose a Stackelberg–MADDPG algorithm with a master–slave relationship. The state
space S, action space A and reward function r of the agent are defined as follows:

The state space of the leader agent at time t is defined as Equation (26):

sleader
t =

{
i(t), Pcloud(t), f f ree(t), u(t)

}
, (26)

where Pcloud(t) denotes the unit price of the cloud server at time t. f f ree(t) denotes the
computing resources available to the service vehicle at time t, and u(t) denotes the resource
utilization of each service vehicle at time t. i(t) denotes the vehicle information set at time
t including the position, speed, acceleration, etc.

The action space of the leader agent at time t is defined as Equation (27):

aleader
t = {p(t)}, (27)

where p(t) denotes the unit price of computing power at time t. The state space of each
follower agent is defined as Equation (28):

s f ollower
t = {i(t), Pservice(t), T(t), R(t)}, (28)

where Pservice(t) denotes the decision set of the leader agent at time t. T(t) denotes the
parallel task set at time t, including the task size, latest completion time, time-sensitive
factor, price-sensitive factor, etc. R(t) denotes the data transmission rate set of each V2V
and V2I link at time t. The action space of each follower agent is defined as Equation (29):

a f ollower
t = { f (t)}, (29)

where f (t) denotes the set of computing resources purchased by the task vehicle from
service vehicles. The reward function for the follower is calculated as Equation (30):

r
(

s f ollower
t , a f ollower

t

)
= Utask. (30)

The reward function for the leader is calculated as Equation (31):

r
(

sleader
t , aleader

t

)
= Uservice. (31)

The total reward of each agent, which is the objective function of MADDPG, can be
calculated as Equation (32):

J(θ) = max E

[
T

∑
t=0

γtr(st, at)

]
. (32)

Sensors 2021, 21, 6058 10 of 18

Algorithm 1 shows the pseudo-code of the Stackelberg–MADDPG.

Algorithm 1: Stackelberg-MADDPG algorithm in Internet of Vehicles
Input: Set of vehicles (v1, v2, . . . , vn+m, . . .), Initial parameters of vehicles

< x0, y0, v0, a, t, fc p u, ftime , fpay , i >, and IoV environment parameters
(Lroad, Ltask, LserviceRv2v, B, Pv2v, N, h, θ1, θ2). Number of steps in each
episode and number of episode.

Output: Total utility function values in each episode.
1 Initialize leader_env, follower_env;
2 Initialize leader_network,follower_network;
3 Initialize leader_D, follower_D space;
4 for episode=1:n_episode do
5 for step=1:steps do
6 Calculate rates of V2V and V2I according to Equations (2) and (4);
7 Cloud server randomly sets prices and broadcasts them;
8 l_s=leader_env.getState(); f_s=follower_env.getState(); // Obatin states

of leader and follower, respectively;
9 Update vehicle position and utilization rate of service vehicle;

10 l_a=leader_network.action(l_s); f_a=follower_network.action(f_s);
// Obtain actions of leader and follower, respectively;

11 l_a+=noise; f_a+=noise; // add noise to the action to ensure the
discovery rate;

12 f_reward, f_next_s, f_done=follower_env.step(f_a,l_a); // Get follower
reward;

13 l_reward, l_next_s, l_done=leader_env.step(l_a,l_a); // Get leader
reward;

14 leader_D.store(l_s,l_a,l_reward,l_next_s,l_done);
15 follower_D.store (f_s,f_a,f_reward,f_next_s,f_done); // Record learning

process;
16 leader_network.learn(leader_D);
17 follower_network.learn(follower_D); // Learn based on MADDPG

algorithm;
18 Update network parameters according to MADDPG algorithm;
19 l_s=l_next_s; f_s=f_next_s; // Assign next state to current state;
20 end
21 end

The Stackelberg–MADDPG algorithm model is shown in Figure 3.

Figure 3. Stackelberg–MADDPG algorithm model.

Sensors 2021, 21, 6058 11 of 18

6. Simulation and Analysis
6.1. Experimental Settings

Our experimental environment is Python 3.7, PyTorch 1.7.1, CUDA 11.0, Intel (R)
Core (TM) I7-9750H 2.60-GHZ CPU, NVIDIA GTX1650 GPU, 8GB RAM and Windows 10.
In our experiments, there are five service vehicles and 20 task vehicles. Each service
vehicle can provide 5 Ghz of computing resources. Task vehicles compete for limited
computing resources. The price sensitivity coefficient a, delay sensitivity coefficient b, task
success sensitivity coefficient c and initial coordinate (xt, yt) of each vehicle are randomly
generated. In a real scenario, communication parameters are determined by the vehicle and
the edge equipment; Task parameters are determined by users’ computing requirements
and external environment; The parameters in reinforcement learning algorithm can be
determined by continuous debugging.

There are 25 agents in our experiment. Each agent has two networks and two target
networks: Actor network, Critic network, Actor target network, and Critic target network.
Actor network and Critic network adopt four-layer fully connected network. The first
layer of Actor network and Critic network is the input layer. The number of neurons for
Actor network is equal to the dimension of the state vector. The number of neurons for
Critic network is equal to the dimension of the state vector plus the dimension of action
vector. The number of neurons in the second layer of Actor network and Critic network is
256, and the number of neurons in the third layer is 128. The fourth layer is output layer.
Since the Actor network outputs the actions of agents, the number of neurons in the output
layer is the dimension of the agent’s action vector. The output layer of Critic network has
one neuron. We adopt the Adam optimizer as the training optimizer. When updating the
Actor network and Critic network by the stochastic gradient method, the learning rate of
the Actor network is 0.0001, that of the critic network is 0.001, the reward discount is 0.9,
the batch size is set to 64, the size of the experience playback pool is 106 and the number of
training rounds is 32. The number of training rounds for the agent is determined according
to the complexity of the environment and is generally 2000–4000 rounds. The parameters
and values in the Internet-of-Vehicles environment are listed in Table 1.

Table 1. Experimental parameters of Stackelberg–MADDPG offloading algorithm.

Parameter Definition Value

Lwidth width of road 20 m
Lroad_h transverse length of road 200 m
Lroad_v longitudinal length of road 200 m
RV2V V2V communication distance 50 m
PV2V V2V communication power 20 W
PV2I V2I communication power 30 W

B communication bandwidth 3.5 GHz
flocal computing power of task vehicle 2.2 GHz

fs computing power of service vehicle 2∼5 GHz
N white Gaussian noise power 2.5 ∗ 10−13 W
h fading factor 4

ωp differential price factor 7 ∗ 10−11

ωu server utilization normalization factor 2 ∗ 10−9

a price sensitive factor 0∼1
b delay sensitive factor 0∼1
c task success sensitive factor 0∼1
D task data size 1000∼1700 MB

Usuccess reward for mission success 20
γ1 time discount factor of utility function 10
γ2 expenditure discount factor 0.15
γpr task priority discount factor 0.16667
γt discount factor of task vehicle 0.26

Sensors 2021, 21, 6058 12 of 18

Table 1. Cont.

Parameter Definition Value

γs discount factor of service vehicle 0.0001
Pcloud computing power price of cloud sever 1.5 ∗ 10−9

u_p unit price of computer power 4 ∗ 10−9

e unit price of electricity 2.78 ∗ 10−6

a acceleration 0∼1
v0 initial velocity 30∼50 km/h

6.2. Results and Analysis

Figure 4 shows the iterative convergence of the service vehicle price decision. It
fluctuates greatly before the service vehicle price decision converges, mainly because
the algorithm needs all the information of the leader during training. In other words,
the proposed algorithm relies on full cooperation among all leaders to achieve the goal
of global optimization. Service vehicle 3 is closer to other task vehicles and has more
computing resources. Offloading to service vehicle 3 can save more time and improve
users’ satisfaction with time delay. Therefore, setting a higher price can get more revenue
for service vehicle 3. After convergence, except for service vehicle 3, the decision curves of
all service vehicles intersect near the price of 6.8 and fluctuate slightly with changes in the
environment. It can be concluded that when the change in the environment is small, the
price of 6.8 is the equilibrium point of all service vehicles. At this time, a change in strategy
does not increase the utility value.

Figure 5 shows the average purchase decision of task vehicles. The purchase of the
task vehicles drops sharply before 250 episodes and then converges gradually. At this time,
the decision of each task car reaches the optimal level.

Figure 4. Price decision for service vehicles.

Sensors 2021, 21, 6058 13 of 18

Figure 5. Average purchase for task vehicles.

Figure 6 shows the changes of leader’s price strategy and follower’s purchasing
strategy when the unit price is 4× 10−9. The leader’s strategy and follower’s strategy
converge after 1200 episodes and 250 episodes, respectively. In 0∼280 episodes, the leader’s
price strategy and the follower’s purchasing strategy continues to decrease. Reduced
purchasing strategies and lower prices lead to lower time delay and lower expenses;
then, Utime increases and upay decreases. As a result, the average reward for followers
Utask increases. Leaders’ rewards decrease with lower prices and fewer purchases. In
Figure 4, we can see that the price touches the bottom at 9000th steps (281th episodes).
Meanwhile, the leader’s average utility reaches local minimum value and the follower’s
average utility reaches the maximum value. Followers’ purchasing strategies tend to
stabilize. Leaders learn that utility continues to go down and starts to increase prices.
Then, upay increases, which leads to a sharp drop in followers’ average rewards and an
increase in leaders’ rewards. The growth rate of the leader’s utility tends to 0 when the
leader’s price strategy increases from 4.6 to 6.7. In 14,000∼60,000 steps (420∼2000 episodes),
leaders’ prices increase slowly, and followers adjust their strategies to keep rewards steady.
The service vehicle price decision, task vehicle purchase decision, service vehicle reward
and task vehicle reward converge after roughly 1200 iterations. Therefore, the Nash
equilibrium solution in the current Internet-of-Vehicles environment is as follows: the price
is approximately 6.8 units per 1 Hz, and the task vehicles purchase approximately 110 GHz
each time.

Figure 7 shows the curve for task success rate. During 0∼300 iterations, the task
success rate fluctuates in 0∼80%. After 500 iterations, the task success rate is stable at 80%.
During 500∼1250 iterations, the task success rate increased slowly from 80% to 85%. After
that, the task success rate fluctuates 70∼85% up to 1800 iterations. After 1800 iterations,
the task success rate rocketed to 90% and then stabilized. Why can the task success rate
not rise above 95%? First, as a, b, c are generated randomly, the value of task success
sensitive factor c could be small, and the task cannot be completed within the specified
time. Second, the task data size is randomly generated from 800 MB to 1300 MB, and the
task completion delay within 1∼5 s. Assume that the data size of a task is 1300 MB and
the task completion delay is 1 s. If enough computing resources are purchased, the task
vehicle’s utility will reach −20, where the gains do not make up for the losses. Therefore,

Sensors 2021, 21, 6058 14 of 18

the proposed offloading algorithm can maintain a high task success rate and make a
trade-off between utility and success rate.

Figure 6. Changes in average utility.(a) Task vehicles, (b) service vehicles.

Figure 7. Curve for task success rate.

To further verify the performance of this algorithm, several typical algorithms are
compared in Figure 8:

1. Non-dominated Sorting Genetic Algorithms (NSGA): To obtain a Pareto optimal
solution of purchase strategy and price strategy, both purchase strategy and price
strategy are determined by the algorithm simultaneously. We select the results and
running time of NSGA-II, NSGA-III and NSGA-III-DE algorithms. For NSGA-IIIS, to
compare the influence of genetic algebra on the results, we set the maximum genetic
algebras (maxgen) to 1000 and 10,000, respectively. NSGA-III-DE combines the
advantages of NSGA-III and differential evolution (DE) algorithm, which optimizes
the generation of offspring.

2. Deep deterministic policy gradient (DDPG) algorithm: DDPG is a single agent rein-
forcement learning algorithm. The service vehicles and task vehicles are abstracted as

Sensors 2021, 21, 6058 15 of 18

an agent, and they make decisions simultaneously. The optimization objective is the
weighted sum of service vehicle and task vehicle rewards.

3. MADDPG algorithm: The service vehicles and task vehicles are abstracted as multiple
agents, and each agent makes strategies at the same time. The optimization objective
is to maximize the cumulative rewards of each agent.

4. Random algorithm: Purchasing decision, local offloading ratio and edge server of-
floading ratio are randomly generated.

5. Quality of service (QoS) algorithm: All the tasks are equally allocated to service vehicles.
Task vehicles purchase the maximum computing resources to save time delay.

6. All-Local algorithm: All tasks are executed locally without offloading.

Figure 8. Average utility curve of task vehicles with different algorithms.

In the change curve of the average utility of task vehicles, the utility of the DDPG
algorithm decreases rapidly with an increase in the number of task vehicles. The QoS
algorithm [22], all-local algorithm and random algorithm are mediocre. Both the QoS
algorithm and all-local algorithm are extreme and cannot achieve a compromise between
delay, payment and task success or failure. The Stackelberg–MaddPG algorithm, NSGA-III
algorithm [33] and NSGA-III-DE algorithm exhibit excellent performance. The utility value
of the task vehicle does not decrease with the increase in the number of task vehicles,
and the utility value is higher than that of other algorithms. The Stackelberg–MaddPG
algorithm has a 25% higher average utility than the NSGA-III algorithm and 1.5 times the
average utility value of the NSGA-III-DE algorithm.

As the Internet-of-Vehicles environment is time sensitive, the offloading system needs
to make offloading decisions in a very short time. Table 2 shows the execution and training
time of this algorithm and other algorithms. In Table 2, the QoS algorithm, all-local
algorithm and random algorithm do not need to be trained, and the algorithm execution
time is negligible. Several NSGA algorithms also do not require training, but the execution
time of the algorithm is too long, even up to hundreds of seconds, which is certainly not
suitable for the time-sensitive networking environment. Although the DDPG algorithm,
MADDPG algorithm and Stackelberg–MADDPG algorithm take a long time to train, after
training, they take only 50 milliseconds to calculate an offloading decision.

Sensors 2021, 21, 6058 16 of 18

Table 2. Execution time and training time of different task offloading strategy algorithms.

Task Offloading Algorithm Execution Algorithm Training
Decision Algorithm Time (s) Time (h)

QoS 0.0056 0
All-Local 0.0032 0
Random 0.0068 0

NSGA-III-DE 973 0
NSGA-III (maxgen = 1000) 62 0

NSGA-III (maxgen = 10,000) 1061 0
NSGA-III 467 0

DDPG 0.040 3
MADDPG 0.043 9

Stackelberg-MADDPG 0.052 20

7. Conclusions

In view of the insufficient computing power of service vehicles in the Internet of
Vehicles, we use the computing power of a cloud server as a supplement. Based on the
idea of mobile edge computing, we propose a task offloading scheme of local-edge-cloud
collaborative computing in the IoV environment. The simulation results show that our
Stackelberg–MADDPG algorithm performs faster than other algorithms. It improves the
success rate of task execution while effectively achieving a balance between task vehicle
delay and cost. However, the proposed system could be further improved. First of all,
there is only one or two roads in this model, which is too simple and far from real roads.
Real roads simulation will be used for modeling in the future. In addition, vehicles are
selected as edge servers in this paper. In fact, tasks could be offloaded to other devices.
Then, when modeling in real scenarios, the price model needs to be taken more factors into
account. Many parameters are only experimentally desirable. We can also set a smaller
price sensitive factor to reduce the effect of price on utility. In the real world, parameters
will be changed according to the environment. However, the main purpose of this paper
is to study the offloading method in IoV. We will further improve the price model in the
future work, such as introducing a business model to make our experiment more realistic.
Finally, we will study how task vehicles reserve computing resources of service nodes in
advance and plan offloading paths according to pre-set destinations.

Author Contributions: Conceptualization, S.X. and T.W.; methodology, S.W. and J.Z.; software, S.X.;
validation, S.W. and J.L.; formal analysis, S.X.; resources, T.W.; data curation, S.W.; writing—original
draft preparation, J.Z.; writing—review and editing, S.X.; visualization, S.W.; supervision, J.L.; project
administration, T.W.; funding acquisition, S.X. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by National Natural Science Foundation of China under
Grant 62071470 and 61971421; in part by the Science and Technology Innovation Project Fund of
Chinese Academy of Agricultural Sciences (CAAS–ASTIP-2021-AII-01).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, D.; Jiang, K.; Zhao, D.; Yu, C.; Cao, Z.; Xie, S.; Xiao, Z.; Jiao, X.; Wang, S.; Zhang, K. Intelligent and connected vehicles:

Current status and future perspectives. Sci. China Technol. Sci. 2018, 61, 1446–1471. [CrossRef]
2. Zhao, F.; Tan, H.; Liu, Z. Analysis of the Business Models of the Intelligent and Connected Vehicle Industry. In MATEC Web of

Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 325, p. 04002.
3. Lin, P.; Liu, J.; Jin, P.J.; Ran, B. Autonomous vehicle-intersection coordination method in a connected vehicle environment. IEEE

Intell. Transp. Syst. Mag. 2017, 9, 37–47. [CrossRef]
4. Contreras-Castillo, J.; Zeadally, S.; Guerrero-Ibañez, J.A. Internet of Vehicles: Architecture, protocols, and security. IEEE Internet

Things J. 2017, 5, 3701–3709. [CrossRef]

http://doi.org/10.1007/s11431-017-9338-1
http://dx.doi.org/10.1109/MITS.2017.2743167
http://dx.doi.org/10.1109/JIOT.2017.2690902

Sensors 2021, 21, 6058 17 of 18

5. Sharmin, Z.; Malik, A.; ur Rahman, A.; Noor, R.M. Toward Sustainable Micro-Level Fog-Federated Load Sharing in Internet of
Vehicles. IEEE Internet Things J. 2020, 7, 3614–3622. [CrossRef]

6. Song, F.; Zhu, M.; Zhou, Y.; You, I.; Zhang, H. Smart Collaborative Tracking for Ubiquitous Power IoT in Edge-Cloud Interplay
Domain. IEEE Internet Things J. 2020, 7, 6046–6055. [CrossRef]

7. Flores, H.; Hui, P.; Tarkoma, S.; Li, Y.; Srirama, S.; Buyya, R. Mobile code offloading: From concept to practice and beyond. IEEE
Commun. Mag. 2015, 53, 80–88. [CrossRef]

8. Cardellini, V.; Persone, V.D.N.; Valerio, V.; Facchinei, F.; Grassi, V.; Presti, F.L.; Piccialli, V. A game-theoretic approach to
computation offloading in mobile cloud computing. Math. Program. 2016, 157, 421–449. [CrossRef]

9. Ning, Z.; Dong, P.; Wang, X.; Guo, L.; Rodrigues, J.; Kong, X.; Huang, J.; Kwok, R.Y.K. Deep Reinforcement Learning for
Intelligent Internet of Vehicles: An Energy-Efficient Computational Offloading Scheme. IEEE Trans. Cogn. Commun. Netw. 2019,
5, 1060–1072. [CrossRef]

10. Song, F.; Ai, Z.; Zhang, H.; You, I.; Li, S. Smart Collaborative Balancing for Dependable Network Components in Cyber-Physical
Systems. IEEE Trans. Ind. Inform. 2021, 17, 6916–6924. [CrossRef]

11. Xu, X.; Xue, Y.; Qi, L.; Yuan, Y.; Zhang, X.; Umer, T.; Wan, S. An edge computing-enabled computation offloading method with
privacy preservation for internet of connected vehicles. Future Gener. Comput. Syst. 2019, 96, 89–100. [CrossRef]

12. Raza, S.; Wang, S.; Ahmed, M.; Anwar, M.R. A survey on vehicular edge computing: Architecture, applications, technical issues,
and future directions. Wirel. Commun. Mob. Comput. 2019, 2019. [CrossRef]

13. Rocha Filho, G.P.; Meneguette, R.I.; Neto, J.R.T.; Valejo, A.; Weigang, L.; Ueyama, J.; Pessin, G.; Villas, L.A. Enhancing intelligence
in traffic management systems to aid in vehicle traffic congestion problems in smart cities. Ad Hoc Netw. 2020, 107, 102265.
[CrossRef]

14. Si, P.; He, Y.; Yao, H.; Yang, R.; Zhang, Y. DaVe: Offloading delay-tolerant data traffic to connected vehicle networks. IEEE Trans.
Veh. Technol. 2016, 65, 3941–3953. [CrossRef]

15. Zhang, K.; Mao, Y.; Leng, S.; Maharjan, S.; Zhang, Y. Optimal delay constrained offloading for vehicular edge computing
networks. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017;
pp. 1–6.

16. Hu, B.; Chen, J.; Li, F. A dynamic service allocation algorithm in mobile edge computing. In Proceedings of the 2017 IEEE
International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 18–20 October
2017; pp. 104–109.

17. Li, B.; Zhao, X.; Han, S.; Chen, Z. New sdn-based architecture for integrated vehicular cloud computing networking. In
Proceedings of the 2018 IEEE International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT), Tianjin,
China, 15–16 August 2018; pp. 1–4.

18. Huang, X.; Yu, R.; Kang, J.; Zhang, Y. Distributed reputation management for secure and efficient vehicular edge computing and
networks. IEEE Access 2017, 5, 25408–25420. [CrossRef]

19. Liu, Y.; Wang, S.; Huang, J.; Yang, F. A computation offloading algorithm based on game theory for vehicular edge networks.
In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018;
pp. 1–6.

20. Hou, X.; Li, Y.; Chen, M.; Wu, D.; Jin, D.; Chen, S. Vehicular fog computing: A viewpoint of vehicles as the infrastructures. IEEE
Trans. Veh. Technol. 2016, 65, 3860–3873. [CrossRef]

21. Li, S.; Ni, Q.; Sun, Y.; Min, G.; Al-Rubaye, S. Energy-efficient resource allocation for industrial cyber-physical IoT systems in 5G
era. IEEE Trans. Ind. Inform. 2018, 14, 2618–2628. [CrossRef]

22. Zhou, J.; Sun, Y.; Cao, Q.; Li, S.; Xu, H.; Shi, W. QoS-based robust power optimization for SWIPT NOMA system with statistical
CSI. IEEE Trans. Green Commun. Netw. 2019, 3, 765–773. [CrossRef]

23. Song, F.; Li, L.; You, I.; Zhang, H. Enabling Heterogeneous Deterministic Networks with Smart Collaborative Theory. IEEE Netw.
2021, 35, 64–71. [CrossRef]

24. Zhang, K.; Mao, Y.; Leng, S.; Vinel, A.; Zhang, Y. Delay constrained offloading for mobile edge computing in cloud-enabled
vehicular networks. In Proceedings of the 2016 8th IEEE International Workshop on Resilient Networks Design and Modeling
(RNDM), Halmstad, Sweden, 13–15 September 2016; pp. 288–294.

25. Ren, J.; Yu, G.; Cai, Y.; He, Y.; Qu, F. Partial offloading for latency minimization in mobile-edge computing. In Proceedings of the
GLOBECOM 2017–2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6.

26. Luoto, P.; Bennis, M.; Pirinen, P.; Samarakoon, S.; Horneman, K.; Latva-Aho, M. Vehicle clustering for improving enhanced
LTE-V2X network performance. In Proceedings of the 2017 IEEE European Conference on Networks and Communications
(EuCNC), Oulu, Finland, 12–15 June 2017; pp. 1–5.

27. Zhang, K.; Mao, Y.; Leng, S.; He, Y.; Zhang, Y. Mobile-edge computing for vehicular networks: A promising network paradigm
with predictive off-loading. IEEE Veh. Technol. Mag. 2017, 12, 36–44. [CrossRef]

28. Song, F.; Zhou, Y.; Wang, Y.; Zhao, T.; You, I.; Zhang, H. Smart collaborative distribution for privacy enhancement in moving
target defense. Inf. Sci. 2019, 479, 593–606. [CrossRef]

29. Du, Z.; Wu, C.; Yoshinaga, T.; Yau, K.; Ji, Y.; Li, J. Federated Learning for Vehicular Internet of Things: Recent Advances and
Open Issues. IEEE Open J. Comput. Soc. 2020, 1, 45–61. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/JIOT.2020.2973420
http://dx.doi.org/10.1109/JIOT.2019.2958097
http://dx.doi.org/10.1109/MCOM.2015.7060486
http://dx.doi.org/10.1007/s10107-015-0881-6
http://dx.doi.org/10.1109/TCCN.2019.2930521
http://dx.doi.org/10.1109/TII.2020.3029766
http://dx.doi.org/10.1016/j.future.2019.01.012
http://dx.doi.org/10.1155/2019/3159762
http://dx.doi.org/10.1016/j.adhoc.2020.102265
http://dx.doi.org/10.1109/TVT.2016.2550105
http://dx.doi.org/10.1109/ACCESS.2017.2769878
http://dx.doi.org/10.1109/TVT.2016.2532863
http://dx.doi.org/10.1109/TII.2018.2799177
http://dx.doi.org/10.1109/TGCN.2019.2914736
http://dx.doi.org/10.1109/MNET.011.2000613
http://dx.doi.org/10.1109/MVT.2017.2668838
http://dx.doi.org/10.1016/j.ins.2018.06.002
http://dx.doi.org/10.1109/OJCS.2020.2992630
http://www.ncbi.nlm.nih.gov/pubmed/32386144

Sensors 2021, 21, 6058 18 of 18

30. Song, F.; Ai, Z.; Zhou, Y.; You, I.; Choo, K.; Zhang, H. Smart Collaborative Automation for Receive Buffer Control in Multipath
Industrial Networks. IEEE Trans. Ind. Inform. 2020, 16, 1385–1394. [CrossRef]

31. Wu, C.; Chen, X.; Yoshinaga, T.; Ji, Y.; Zhang, Y. Integrating Licensed and Unlicensed Spectrum in the Internet of Vehicles with
Mobile Edge Computing. IEEE Netw. 2019, 33, 48–53. [CrossRef]

32. Guo, S.; Xiao, B.; Yang, Y.; Yang, Y. Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing.
In Proceedings of the IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications,
San Francisco, CA, USA, 10–14 April 2016; pp. 1–9.

33. Xu, X.; Xue, Y.; Li, X.; Qi, L.; Wan, S. A Computation Offloading Method for Edge Computing With Vehicle-to-Everything. IEEE
Access 2019, 7, 131068–131077. [CrossRef]

http://dx.doi.org/10.1109/TII.2019.2950109
http://dx.doi.org/10.1109/MNET.2019.1800453
http://dx.doi.org/10.1109/ACCESS.2019.2940295

	Introduction
	Related Work
	System Model
	 Communication Model
	 Cost Model

	Computing Model and Utility Function
	Computing Model
	Utility Function

	Stackelberg–MADDPG Task Offloading Algorithm
	Simulation and Analysis
	 Experimental Settings
	Results and Analysis

	Conclusions
	References

