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Deep learning for the prediction of early on-
treatment response in metastatic colorectal cancer
from serial medical imaging
Lin Lu 1, Laurent Dercle1, Binsheng Zhao1 & Lawrence H. Schwartz 1✉

In current clinical practice, tumor response assessment is usually based on tumor size change

on serial computerized tomography (CT) scan images. However, evaluation of tumor

response to anti-vascular endothelial growth factor therapies in metastatic colorectal cancer

(mCRC) is limited because morphological change in tumor may occur earlier than tumor size

change. Here we present an analysis utilizing a deep learning (DL) network to characterize

tumor morphological change for response assessment in mCRC patients. We retrospectively

analyzed 1,028 mCRC patients who were prospectively included in the VELOUR trial

(NCT00561470). We found that DL network was able to predict early on-treatment

response in mCRC and showed better performance than its size-based counterpart with C-

Index: 0.649 (95% CI: 0.619,0.679) vs. 0.627 (95% CI: 0.567,0.638), p= 0.009, z-test. The

integration of DL network with size-based methodology could further improve the prediction

performance to C-Index: 0.694 (95% CI: 0.661,0.720), which was superior to size/DL-

based-only models (all p < 0.001, z-test). Our study suggests that DL network could provide a

noninvasive mean for quantitative and comprehensive characterization of tumor morpholo-

gical change, which may potentially benefit personalized early on-treatment decision making.
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In clinical trials of systemic therapies for solid tumors, response
is often measured by imaging endpoints such as progression-
free survival (PFS) and response rate (RR). In solid tumors,

these endpoints are based on Response Evaluation Criteria In
Solid Tumours (RECIST) 1.1 criteria1,2 and assessed using serial
computerized tomography (CT) images. Progression is defined as
an increase from baseline of 20% or more in the longest diameter
of target lesions, while response is similarly defined as decrease of
30% or more.

There is a desire for criteria which can assess response more
optimally and provide better guidance for clinical decision in
optimal treatment of metastatic colorectal cancer (mCRC)
patients. Early tumor shrinkage (ETS), defined as decrease in
tumor load measured at the time of first restaging, has recently
come to the attention of clinicians as a promising predictive early
on-treatment imaging biomarker for long-term outcome (overall
survival, OS) in mCRC patients3. Retrospective analysis of clinical
trials has shown that ETS criteria can identify prolonged survi-
vors who show clear benefit from continuation of treatment,
especially in first-line clinical trials which compared anti-EGFR
agent plus chemotherapy vs. chemotherapy alone4.

While both ETS and RECIST criteria rely on changes in tumor
size for their assessment of response, other morphological
changes, such as changes of overall attenuation, tumor–tissue
interface and peripheral rim of enhancement5, may occur even
earlier in treatment than tumor size change. For instance, in most
anti-VEGF therapies, changes in tumor architecture sometimes
happen prior to tumor shrinkage5–7. Many qualitative and
quantitative image analysis algorithms for assessing tumor mor-
phological change have been proposed over the last decade8–11.
These medical image analysis algorithms, also known as radio-
mics approaches12, allow high-throughput conversion of medical
images into mineable quantitative data, which make it feasible to
assess tumor morphological changes quantitatively. For example,
a recent study proposed by Dohan et al.9 used a radiomics sig-
nature that included three radiomics features to predict treatment

outcome for unresectable hepatic metastases in patients with
colorectal cancer. However, these medical image analysis algo-
rithms are usually subject to human predefined criteria, typically
involving manual or semi-automatic segmentation of the region
of interest (i.e., the tumor region) and using a priori human-
engineered image features.

In recent years, medical image analysis has been increasingly
shifting towards the deep learning (DL) method13, which has
demonstrated remarkable results in a variety of medical image
application, including dermatology14, ophthalmology15,
pathology16, and radiology17,18. The DL method were data-driven
approaches in which image features are automatically designed
and organized based on features’ predictive ability instead of
human pre-knowledge. However, until now, there is seldom
report on applying DL method on predicting early on-treatment
response in oncology, especially mCRC. For example, when
searching in the National Library of Medicine medical literature
database with the key words of ‘deep learning’, ‘metastatic
colorectal cancer’ and ‘response or survival’ (https://
pubmed.ncbi.nlm.nih.gov/), only one literature was found19 and
the literature was only about colorectal liver metastases with small
data. The challenges of predicting mCRC treatment response by
using DL method include, (1) mCRC involves multiple metastatic
lesions involving multiple organs, most commonly, liver, lung
and lymph nodes; (2) the prediction of response involves CT
images of multiple time points while the patient is on treatment
rather than a single time point; and (3) DL method requires large
dataset for training.

Therefore, the aim of this proof-of-concept study was to
explore the ability of DL method to predict the early on-treatment
response in mCRC patients by using OS as the primary end point.
To address the challenges mentioned above, a total of 1028
mCRC patients collected from the VELOUR trial (an interna-
tional prospective multi-institutional study20) were used for our
study (see Fig. 1), and a sophisticated DL network architecture,
which combines the convolutional neural network (CNN)13 and

Fig. 1 Overview of study design.
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the recurrent neural network (RNN)21, were proposed (see
Fig. 2). The CNN was used to characterize lesions from different
organs, while the RNN was used to characterize the lesions at
multiple time points. Our work builds upon a preliminary study
published in22, in which DL networks were utilized as a com-
putational tool to predict lung cancer treatment response. In this
study, of a different tumor type, colorectal cancer, a more
sophisticated DL networks and larger data were used, and the
performance of DL-based method as well as its incremental value
to traditional size-based method were assessed. In addition, to
gain a better understanding of the DL-based-response radi-
ological phenotypes, we mapped network-attention regions
in images as per their contributions to the prediction of OS

by using the gradient-weighted activation mapping method
(Grad-CAM)23.

Results
Patient characteristics. A total of 1028 patients derived from the
VELOUR trail were included in this study. Details for patient
characteristics of VELOUR trail can be found in existing
literatures20,24. The 1028 patients were randomized and assigned
into discovery (n= 502 patients) and test (n= 526 patients)
cohorts. The media OS for patients in the discovery and test
cohorts were 13.56 and 12.71 months, respectively (p= 0.691,
log-rank test) (see Supplementary Fig. 1). The two cohorts
involved 3757 lesions (averagely 3.53 ± 2.19 target lesions per
patient) coming from a total of 14 anatomic sites (see Table 1).
And the main lesion locations were liver (58.3%), lung (22.5%),
and lymph node (12.0%). There was no significant difference
between the discovery and test cohorts in terms of average
number, size, and anatomic position on target lesion (all p > 0.05,
t-test for numeric data and chi-square test for categorical data).

On the aspect of CT scanning, since the VELOUR trail was an
international multi-institutional study, the CT images were of
great heterogeneity in imaging acquisition settings (see Table 2).
As shown in Table 2, there were a total of 3193 CT scans used,
deriving from a total of 9 CT manufacturers, 81 manufacturer
models, and 65 CT image reconstruction algorithms, respectively.
There was a significant difference between the discovery and test
cohorts in terms of manufacturer models and CT image
reconstruction algorithms (both p < 0.05, chi-square test). For
those regular imaging parameters, e.g., slice thickness, voltage,
product of tube current and time, and pixel spacing, there was no
significant difference (all p > 0.05, t-test, except the product of
tube current and time) and mainstream ranges of settings were
covered.

Validation of prognostic performance for DL prediction score.
The concordance correlation coefficient (CCC)25 for DL predic-
tion score was 0.901 (95% CI: 0.880,0.913), suggesting a good
reproducibility of prediction score under potential variation of
ROI selection. The AUC (95% CI) of DL prediction score on the
tuning set to classify DL-responder/ non-responder was 0.76
(95% CI: 0.72,0.80), and the optimal stratification cutoff was ‘DL
prediction score ≥ 0.6’ according to the Youden-Index26 (seeFig. 2 The architecture of the proposed DL network.

Table 1 Lesion characteristics.

All lesions Train Test p

Total number 3757 1864 1893
Number of selected lesions per patient (mean (±SD)) 3.53 (±2.19) 3.53 (±2.23) 3.54 (±2.15) 0.952
Lesion size (mm, mean (±SD)) 29.72 (±21.79) 29.99 (±19.78) 30.39 (±20.03) 0.546
Anatomic position (n (%)) 0.122
Abdomen 119 (3.2) 55 (3.0) 64 (3.4)
Adrenal 57 (1.5) 33 (1.8) 24 (1.3)
Bone 1 (0.02) 0 (0.0) 1 (0.1)
Kidney 3 (0.06) 1 (0.1) 2 (0.1)
Liver 2190 (58.3) 1087 (58.3) 1103 (58.3)
Lung 847 (22.5) 427 (22.9) 420 (22.2)
Lymph node 449 (12.0) 216 (11.6) 233 (12.3)
Ovary 3 (0.06) 2 (0.1) 1 (0.1)
Pancreas 3 (0.06) 1 (0.1) 2 (0.1)
Pelvis 23 (0.6) 17 (0.9) 6 (0.3)
Pleural 3 (0.06) 3 (0.2) 0 (0.0)
Soft tissue 45 (1.2) 15 (0.8) 30 (1.6)
Spleen 13 (0.8) 7 (0.4) 6 (0.3)
Thyroid 1 (0.02) 0 (0.0) 1 (0.1)

Note: p-Values were calculated via t-test and chi-square test for numerical and categorical data, respectively. All tests are two sided.
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Supplementary Fig. 2). When applying the ‘DL prediction
score ≥ 0.6’ to stratify patients into groups of DL-responder and
DL-non-responder in the test cohort, the DL-responders had a
significant better OS than the DL-non-responders, with median
OS 18.0 vs.10.4 months, hazard ratio (HR) (95% CI)= 0.49
(0.40,0.61), p= 1 × 10−6, log-rank test (see Fig. 3a). A landmark
analysis with similar results is provided as Supplementary Fig. 3.

As a comparison, the size-based RECIST criteria, which defines
response as decrease of tumor burden of 30% or more, resulted in
median OS 17.2 vs.12.5 months, HR (95% CI)= 0.60 (0.42,0.85),
p= 0.02, log-rank test (see Fig. 3b). The percentage of responders
defined by DL criteria vs. RECIST criteria was 41% vs. 6.7%.
When compared to another size-based criterion, the ETS criter-
ion (the optimal stratification cutoff for the ETS criterion was
‘ETS ≥ 5%’ (see Supplementary Fig. 4), DL network still showed
better performance in terms of a larger delta median OS, with 7.3
vs. 5.4 (Δmonth) and 7.8 vs. 4.6 (Δmonth) in the FA and F arms,
respectively. Linear correlation was performed to test the asso-
ciation between DL score and ETS (see Supplementary Fig. 5). It
was found that there was a weak linear correlation between the
DL prediction score and ETS with correlation coefficient (95%
CI)= 0.45 (0.38,0.52) and R2= 0.21. A comparison and supple-
mentary discussion between DL-based and size-based criteria that
are based on existing literatures were also provided in the Sup-
plementary Table 1.

Assessment of incremental value of DL-based method to tra-
ditional size-based method. As shown in Table 3, seven prog-
nostic models were built, i.e., the RECIST, TB, ETS, DL-BS, DL-
PS, Size-Nomo, and DL-Nomo models. The DL-Nomo model as
well as its calibration curve27 on 1-year survival prediction is
presented in Fig. 4 (nomograms for the other six models and their
calibration curves were provided in Supplementary Figs. 6–8). In
Fig. 4, we could see that the DL-Nomo model showed good
agreement between the prediction of model and the actual
outcome.

The Harrell concordance index (C-Index)28 for the seven
prognostic models are listed in Table 4. On the aspect of
discrimination performance of models in test cohort, some
important observations could be attained. Firstly, the perfor-
mance of DL-PS model was better than that of its counterpart, the
ETS model (0.649 (95% CI: 0.619,0.679) vs. 0.627 (95% CI:
0.567,0.638), p= 0.009, z-test), which again indicated the superior
of DL-PS to ETS; secondly, the performance of DL-PS model was
better than that of the DL-BS model (0.649 (95% CI: 0.619,0.679)
vs. 0.607 (95% CI: 0.574,0.639), p= 8.6 × 10−5, z-test), showing
the necessity of using multiple time points rather than only using
baseline; thirdly and the most importantly, the DL-Nomo model,
which incorporated DL-PS into the Size-Nomo model, achieved
the best performance among all the models (0.694 (95% CI:
0.661,0.720), all p < 1 × 10−3, z-test), suggesting improvement of
integration of DL-based method to traditional size-based method.

Further, a decision curve analysis29 showed that the multi-
variate DL-Nomo model had a higher overall net benefit than all
other univariate models as well as the multivariate Size-Nomo
model across the majority of the range of reasonable threshold
probabilities in both of the discovery and test cohort (see Fig. 5).
Another interesting finding was that the RECIST model added
little clinical value to the early prediction of OS, although it
showed acceptable discrimination performance (0.657 (95% CI:
0.546,0.769)). This is because, the RECIST criteria which defined
response as decrease of tumor burden of 30% or more, could only
definitively identify a limited number of patients in the early
treatment period (see Fig. 3b).

Activation mapping of network. The magnitude of intensity in
the activation mapping indicates the ‘importance’ of each pixel in
CT image that contribute to the eventual prediction. Activation
mapping may help clinicians gain understanding of regions
within CT images where the predictions of DL network were
derived, and thus provide more information inside/outside tumor
region. Examples for four patients are presented in Fig. 6, all of

Table 2 CT scanning characteristics.

All CT scans Train cohort Test cohort p

Number of scans 3193 2141 1052
Manufacturer
(n (%))

0.26

GE MEDICAL
SYSTEMS

1059 (33.2) 694 (32.4) 365 (34.7)

Philips 445 (13.9) 315 (14.7) 130 (12.4)
SIEMENS 1314 (41.2) 889 (41.5) 425 (40.4)
TOSHIBA 312 (9.8) 204 (9.5) 108 (10.3)
Five other

manufacturers
63 (2.0) 39 (1.8) 24 (2.3)

Manufacturer
models (n (%))

<0.05

Aquilion 243 (7.6) 157 (7.3) 86 (8.2)
Brilliance 64 166 (5.2) 114 (5.3) 52 (4.9)
Definition 161 (5.0) 124 (5.8) 37 (3.5)
HiSpeed NX/i 132 (4.1) 104 (4.9) 28 (2.7)

LightSpeed VCT
240 (7.5) 136 (6.4) 104 (9.9)

LightSpeed16 197 (6.2) 128 (6.0) 69 (6.6)
Sensation 16 303 (9.5) 196 (9.2) 107 (10.2)
Sensation 64 309 (9.7) 216 (10.1) 93 (8.8)
Seventy-three
other models

1442 (45.2) 966 (45.1) 476 (45.2)

CT image
reconstruction
algorithms
(n (%))

<0.05

B 249 (7.8) 165 (7.7) 84 (8.0)
B30f 332 (10.4) 226 (10.6) 106 (10.1)
B31f 233 (7.3) 172 (8.0) 61 (5.8)
LUNG 118 (3.7) 82 (3.8) 36 (3.4)
STANDARD 623 (19.5) 399 (18.6) 224 (21.3)
STD+ 141 (4.4) 108 (5.0) 33 (3.1)
Fifty-nine other

algorithms
1497 (46.9) 989 (31.0) 508 (15.9)

Slice thickness
(n (%))

0.301

≤3mm 531 (16.6) 340 (15.9) 191 (18.2)
3~5mm 2335 (73.1) 1582 (73.9) 753 (71.6)
>5mm 327 (10.2) 219 (10.2) 108 (10.3)

Voltage (n (%)) 0.52
120 kVp 2751 (86.2) 1841 (85.9) 910 (86.5)
Others 442 (13.8) 300 (14.0) 142 (13.5)

Product of tube
current and time
(n (%))

<0.05

≤100mAs 654 (20.5) 449 (21.0) 205 (19.5)
100~200mAs 1196 (37.5) 782 (36.5) 414 (39.4)
200~400mAs 757 (23.7) 515 (24.0) 242 (23.0)
>400mAs 261 (8.2) 70 (3.3) 191 (18.2)
NAN 325 (10.2) 325 (15.2) 0 (0.0)

Pixel spacing
(n (%))

0.408

0.5~0.75mm 1528 (47.9) 1010 (47.2) 518 (49.2)
0.75~1.00mm 1640 (51.4) 1112 (51.9) 528 (50.2)
>1 mm 25 (0.8) 19 (0.9) 6 (0.6)

Note: p-Values were calculated via two-sided chi-square test.
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whom had similar tumor growth/shrinkage patterns but different
OSs. In Fig. 6a, b, the tumor burden increased in both patients (all
with 29% increase at month-2 follow-up), but patient (a) survived
8.2 months longer than patient (b). In Fig. 6a, activation mapping
showed that, DL network paid attention to the occurrence of low-
attenuation regions along tumor boundary (lesions #1, #2, and
#4), indicating that such morphological patterns might lead to an
improved prediction of outcomes. In Fig. 6c, d, the tumor burden
decreased in both patients (one with 23% and the other with 22%
decrease at month-2), but patient (d) survived 4.3 months less
than patient (c). Interesting, in Fig. 6d, although tumors
demonstrated decrease in size, the heterogeneity pattern (lesion
#1) and vessel involvement (lesion #2) occurred at the month-2,
which might suggest a prediction of short survival.

Discussion
In this study, a DL network was constructed to predict early on-
treatment OS in patients with mCRC using CT images retrieved
at baseline and the first evaluation at 2 months. The validation in
the test cohort including 526 mCRC patients demonstrated that
patients with ‘DL Score ≥ 0.6’ predicted a prolonged survival with
high probability. When compared with size-based ETS criteria,
the DL-based criteria showed an enhanced ability to stratify
patients into prolonged or short survivors. When incorporating
DL prediction score with size-based predictors, the combined
model, the DL-Nomo, achieved better prediction performance
than any other size-based/DL-based model.

The motivation of this study was based in part on the under-
standing that size-based criteria have limitations for assessing

tumor response to anti-cancer therapies because size change only
represents one dimension of tumor morphological change and
does not include information on changes such as tumor density,
heterogeneity, border thickness, etc. In clinical practice, different
treatments might induce different tumor change patterns in
mCRC patients, which may be difficult for size-based criteria
alone to discern the complexities and differences.

Therefore, in this study, a DL network was proposed for
characterization of tumor morphological change. The proposed
DL network utilized two types of networks, the CNN and RNN.
CNN is basically the type of network that is specified for image
analysis and computer vision. Since the wide dissemination
of CNN in the medical field over the past five years, it has
already demonstrated remarkable capabilities in medical image
classification14–16, detection17,18 and segmentation30,31. In this
work, we followed the ‘pretraining and fine-tuning’ paradigm to
transfer the GoogLeNet, which was pretrained on over 14 million
images, from the domain of natural images to that of the mCRC
CT images. The fine-tuned GoogLeNet showed promise on
extracting morphological image features that were able to char-
acterize tumor change beyond tumor size change (see Fig. 6).
Although there was a correlation between CNN features and
tumor size change, the correlation was weak (see Supplementary
Fig. 5). Thus, it is reasonable that the integration of DL network,
which was based on CNN features, could benefit the size-based
methods by providing additional information on morphological
change (see Fig. 5). Also, we adopted RNN to build a time-
dependent model. RNN is basically the type of network designed
for doing prediction based on temporal sequence. RNN allowed

Fig. 3 Survival analysis on DL score criterion and conventional RECIST criteria. Plots of Kaplan-Meier estimator as well as hazard ratios and p-values
estimated via log-rank test are present. For (a) DL score criterion, the responders are defined as score≥ 0.6 and (b) for the conventional RECIST criteria,
the responders are defined as tumor burden decreasing 30% or more.

Table 3 Seven different prognostic models for early prediction of OS in patients with mCRC.

Model name (short name) Cox proportional hazards model Predictors (data type) Time points used

RECIST Univariate RECIST criteria (dichotomous) Baseline and the 1st follow-up
Tumor Burden (TB) Univariate Measurement of TB (continuous) Baseline
Early Tumor Shrinkage (ETS) Univariate Measurement of TB (continuous) Baseline and the 1st follow-up
DL Baseline Score (DL-BS) Univariate Prediction score by DL network (continuous) Baseline
DL Prediction Score (DL-PS) Univariate Prediction score by DL network (continuous) Baseline and the 1st follow-up
Size Nomogram (Size-Nomo) Multivariate RECIST+ TB+ ETS Baseline and the 1st follow-up
DL Nomogram (DL-Nomo) Multivariate DL-PS+ RECIST+ TB+ ETS Baseline and the 1st follow-up

Note: ‘+’ In the table indicates combination of predictors.
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automated learning of time-dependent relation between features
rather than using human curate modeling, e.g., the tumor growth
inhibition modeling32.

In addition to the application of DL method, strengths of our
study also include the use of the VELOUR trial. First, VELOUR trial
is an international, prospective, randomized study, allowing any
results derived from it to be potentially incorporated into interna-
tional guidelines in near future. Second, imaging data in the
VELOUR trial are CT images. Although in recent years, imaging
features derived from other imaging modalities (e.g., perfusion
CT33, contrast-enhanced ultrasound34, diffusion–perfusion MRI35,
etc.) have been proposed as imaging biomarker of early on-

treatment prediction of patient outcome, however, these techniques
have failed widespread implementation primarily because they are
not the standard imaging techniques currently recommended by
international guidelines for follow-up due to the lack of reprodu-
cibility. The DL-based criteria developed based on CT image has
quite potential to be a widespread technique in both clinical trials
and clinical practice. Third, the VELOUR trial included a total 1028
mCRC patients and 3757 lesions deriving from up to 14 anatomic
locations, which was a large dataset in terms of cancer imaging,
allowing development of DL method which favors large data input.
Finally, the VELOUR trial included a total of 3193 CT scans, which
were of great heterogeneity and wide coverage in terms of image

Fig. 4 The nomogram for the DL-Nomo model with the assessment of its calibration. a The nomogram for the DL-Nomo model. To use the nomogram,
firstly, locate the patient’s DL prediction score on the DLScore axis. Then, draw a line straight upward to the points axis to determine how many points
toward the 1-year survival probability that the patient is received according to his or her DL prediction score. Repeat the same process for each variate.
Thirdly, sum the points received from each of the variates and locate the final sum on the total point axis. Finally, draw a line straight down from the total
point axis to the 1-year survival probability axis to find the patient’s final 1-year survival probability. b, c The calibration curves for the DL-Nomo model in
the discovery (n= 502) and test cohorts (n= 526), respectively. The calibration curve shows the calibration in terms of the agreement between the
predicted and observed 1-year survival probability. Model-predicted 1-year survival probability is plotted on the x-axis, while the observed actual 1-year
survival probability is plotted on the y-axis. The diagonal gray line indicates a perfect prediction by an ideal model, in which the predicted outcome perfectly
corresponds to the actual outcome. The red lines indicate the performance of the model, a closer lining of which with the diagonal gray line represents a
better estimation. And the predicted survival probability for the three patient groups (The short, median, and long survival groups with patients of n= total
patients/3 in each group) were shown as error bars, i.e., mean value ± standard error.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26990-6

6 NATURE COMMUNICATIONS |         (2021) 12:6654 | https://doi.org/10.1038/s41467-021-26990-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


acquisition settings, allowing the development of a robustness
algorithm for potential clinical use in practice.

As mentioned in the introduction, our work built upon the
preliminary study of Y. Xu et al.22 which utilized DL method to
predict treatment response in lung cancer. However, in Y. Xu’s
work, the developed DL network did not show superior perfor-
mance to size criteria. In contrary, our work demonstrated that
DL network was capable to characterize tumor morphological
change beyond size change. Some of the advantages of our DL
method over the previous work could be, the use of more
sophisticated network (GoogLeNet-Inception-v3 fine-tuned on
tissue images), well-customized parameters for image pre-
processing, and large number of data collected from well-
organized clinical trial for network training. Another study that
inspired our work was the study proposed by Dohan et al.,9 which
used a radiomics signature consisting of three image features to
do treatment outcome prediction in patients with colorectal
cancer. Although the radiomics signature showed good perfor-
mance in the corresponding datasets, it still has the common
limitations existing in radiomics approach, such as the manual/
semi-manual contouring of lesion and the human engineering of
image features.

Our study has several limitations. First, as a proof-of-concept
study, we only included patients from a single clinical trial,
although the trial was multicenter and did have two distinct trial
arms. In future, as the developing of the Vol-PACT project21,
more patients from additional trials will be continuously collected
to further validate the effectiveness of the DL-based criteria. For
instance, recently, another two large-scale clinical trials on

mCRC, the CRYSTAL36 (NCT00154102) and the PRIME
(NCT04549935)37, both of which contain more than one thou-
sand patients, have already been available in the Vol-PACT.
Secondly, the proposed DL criteria only utilized medical imaging
information. In future, clinical information (e.g., patient char-
acteristics) as well as other domain knowledge (e.g., genomics)
will be incorporated into the DL network to further improve the
performance. Finally, the interpretability of DL network is still
limited, because the theory behind how the hidden neural units
and layers interact and function has not yet been established13.
Nevertheless, we believe that this limitation can be overcome in
future as the development of DL theory38,39.

In conclusion, this study demonstrated the impact of the
proposed DL network on quantitative characterization of tumor
morphological changes from pretreatment and follow-up CT
scans which have association with patient’s OS. There were
increases in performance of OS prediction by using the proposed
DL network. Since all required inputs to the DL network were
only standard-of-care CT images and tumor measurement based
on RECIST 1.1, it is hopeful that the DL network could be
integrated into clinical practice as a computational tool to provide
comprehensive and quantitative information on tumor morpho-
logical change for early on-treatment decision making at minimal
or no cost.

Methods
Study design. The design of our study is presented in Fig. 1. First, we retrieved data
from the VELOUR trial from the Vol-PACT (Advanced Metrics and Modeling with
Volumetric CT for Precision Analysis of Clinical Trial Results)21. A total of 1028

Table 4 Harrell C-Index for the seven prognostic models.

Model name Discovery cohort Test cohort

C-Index 95% CI p-value* C-Index 95% CI p-value*

RECIST 0.669 0.544,0.794 0 0.657 0.546,0.769 0
TB 0.621 0.590,0.652 1.7 × 10−10 0.628 0.597,0.658 1.7 × 10−5

ETS 0.639 0.608,0.670 7.9 × 10−7 0.627 0.567,0.638 1.7 × 10−5

DL-BS 0.618 0.588,0.648 6.5 × 10−8 0.607 0.574,0.639 3.6 × 10−10

DL-PS 0.678 0.650,0.706 1.5 × 10−4 0.649 0.619,0.679 1.6 × 10−4

Size-Nomo 0.677 0.649,0.707 8.9 × 10−5 0.674 0.644,0.704 3.7 × 10−3

DL-Nomo 0.707 0.680,0.734 – 0.694 0.661,0.720 –

Note: * Indicates the comparison to the DL-Nomo model. The p-values were calculated via two-sided z-test.

Fig. 5 Decision curve analysis for the RECIST, Size-Nomo, DL-PS, and DL-Nomo models in the discovery (a) and test (b) cohorts, respectively. In the
figures, the y-axis measures the model benefit, and the x-axis shows the corresponding threshold. The model benefit is defined as the percentage of
patients whose 1-year survival status (alive/dead) are correctly predicted. And the threshold is the cutoff used by the model, which is with the range of
zero to one. As shown in the figures, the DL-Nomo model shows the highest level of benefit across the range of thresholds in both the discovery (a) and
test (b) cohorts.
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patients with both OS data and CT images at baseline and month-2 were included.
Patients were randomized into discovery and test cohorts, which were used to train
and validate the DL networks, respectively. The randomization was provided by Vol-
PACT along with the data. The analysis of our study consisted of two phases, the
training and validation phases. In the training phase, the data in the discovery cohort
were further randomized into training and tuning datasets, which were used to train
network parameters and select optimal hyperparameters for the DL network,
respectively. In the validation phase, the prognostic performance of DL network as

well as its incremental value to traditional size-based method were assessed. In
addition, activation mapping technique was applied to provide visualization on
region of interest defined by DL network to further human understanding.

Datasets. The VELOUR trial is an international prospective multi-institutional
study that evaluated whether the antiangiogenic agent aflibercept in combination
with 5-fluorouracil, leucovorin and irinotecan (FOLFIRI) could significantly

Fig. 6 Examples for attention mapping on four mCRC patients. In each picture, descriptions at the top-left corner show lesion’s numbering, site and size
measurement, white arrows indicate lesion location, and white frames at the bottom-left/right corner show the zooming region of interest and the
correspond attention mapping for the region of interest. Each picture contained two rows, of which the upper showed CT scans of baseline and the bottom
showed CT scans of follow-up. Descriptions in yellow at the bottom of each picture show the tumor shrinkage, deep learning (DL) method predicting score
and overall survival (OS) for the correspond patients. a, b Were patients with tumor burden increasing, while (c, d) were patients with tumor burden
decreasing; and although patients showed similar tumor load growth/shrinkage patterns, they had varying survival times.
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improve survival in a phase III study of patients with mCRC previously treated
with an oxaliplatin-based regimen20,24. Detailed information of the VELOUR trial,
including ethical regulation, trail approval, trial design, patient eligibility, patient
randomization, and dose administration, can be found in the previous report20.
The dataset from this trial provided for research by Vol-PACT21 included 1141
mCRC patients with available OS data. After excluding patients without CT scans
at month-2, a total of 1028 patients were used to create the discovery (n= 502
patients) and test cohorts (n= 526 patients) according to the randomization
defined by the Vol-PACT. The discovery cohort was further split randomly into
training and tuning sets at a ratio of 3:2. Training set was used to establish DL
network, while tuning set was used to optimize network hyperparameter. Within
each patient, up to 10 annotated ‘target’ lesions (metastases)40 from whole body,
whose diameters were greater than 1 cm at baseline, were used.

The proposed DL networks. The DL method used in this study deployed two
types of networks, the convolutional neural network (CNN)13 and the recurrent
neural network (RNN)41, as shown in Fig. 2. CNNs are typically used for auto-
mated extraction of image features from static images (e.g., image classification42

and detection43), while RNNs are used to automatically build relation between
dynamic time-dependent features from series of signals (e.g., speech recognition44

and video analysis45). In our study of automated response assessment, CNN was
utilized to extract image features from CT scan at each time point, while RNN was
utilized to build up a time-dependent network from the image features extracted by
CNN at the series of time points.

Our CNN architecture was the GoogLeNet (version Inception-v342, see
Supplementary Fig. 9), initially pretrained on the ImageNet database46 containing
over 14 million natural images and then fine-tuned to mCRC image domain by
using transfer learning according to a ‘pretraining and fine-tuning’ paradigm47

(Details on fine-tuning the GoogLeNet were provided in ‘GoogLeNet Fine-tuning’
in the Supplementary Methods.). The proposed RNN architecture was composed of
a series of bi-directional long short-term memory (LSTM)41. Bi-LSTM is an
extension of traditional LSTM that can access information from past (backwards)
and future (forwards) time points simultaneously. Image features extracted by the
CNN at each time point (i.e., a vector consisting of 1024 features output by the last
convolutional layer of GoogLeNet) were provided as input for the RNN training.
Then, when RNN received inputs from CNN, it was trained to build an optimal
combination of inputs to predict the patient outcome. The probability outputted by
the softmax layer in the RNN is the final DL prediction score, that is, the DL-based
signature to predict patient’s probability to be a DL-responder/non-responder, i.e.,
the probability to be a prolonged/short survivor who survived longer/shorter than
the median OS (In the VELOUR trail, the median OS is 12 months). The DL
prediction score was a continuous value with a range from 0 to 1, where low value
indicated poor survival and high value indicated good survival.

In the implementation, there points should be noted when training the CNN-
RNN network. First, four image preprocessing procedures were applied to prepare
inputs to the network as so to alleviate the impact of variation from CT image
acquisition settings and selection of region of interest (ROI)48. They were; (1)
normalize all CT images to homogenous voxel spacing of 1.0 × 1.0 × 1.0 mm³ by
using trilinear interpolation; (2) normalize image intensity a range of 0~255 by
using CT window-levels; (3) crop lesion ROI from CT image, which was defined as
a box of size 2d × 2d (where d is the length of diameter measured at baseline
according to the RECIST 1.1 evaluation) with the center point corresponding to the
center of the measurement line at baseline CT scan (It is noted that, lesion ROI at
follow-up scan used the same d as that at baseline scan); and (4) Spatially augment
ROIs by applying random rotation (−30°~30°), shifting (−0.05d~0.05d), and
scaling (0.95d~1.05d) (More details for the preprocessing were provided in ‘ROI
preparation’ in the Supplementary Methods. Specially, a picture example for input
of DL network on training was provided as Supplementary Fig. 10.). Subsequently,
since most patients contained multiple targeted lesions, a weighted aggregation
approach was used to combine the multi-lesion features, i.e., feature vectors
extracted from each lesion in the same patient were element-wisely summarized
into one vector by weighting with lesion diameters10. Third, when training RNN on
the training set, the input number of time points was not limited, i.e., the number
of follow-ups were allowed as many as possible, so as to reduce time-dependent
signal noise. Of course, when testing on the test cohort, the input to RNN was
limited by two, that is, only the baseline and the first follow-up at month-2 were
allowed (Details on training the RNN were provided in ‘RNN construction and
training’ in the Supplementary Methods).

Validation of DL prediction score. The validation of prognostic performance of
DL prediction score consisted of four steps. First, reproducibility analysis was
performed to test the reproducibility of DL prediction score under potential var-
iation of ROI selection (Details are provided in ‘Reproducibility analysis’ in the
Supplementary Methods.). Second, in the tuning set, a cutoff for DL prediction
score to stratify patients into high- or low-risk groups was determined according to
the Youden Index26 on the receiver operator characteristic curve (ROC), i.e., to
select the point that was with the maximal value of sensitivity+ specificity− 1 on
ROC. Third, in the test set, Kaplan-Meier survival analysis was performed to assess
the association between DL-based stratification (using the cutoff determined in the

tuning set) and patient’s OS. Finally, the DL prediction score was compared to its
size-based counterparts, the RECIST and ETS criteria.

Assessment of incremental value of DL-based method. To demonstrate the
incremental value of DL-based method to traditional size-based method, the DL
prediction score model as well as six other prognostic models were built via the
Cox proportional hazards regression, and compared in terms of calibration, dis-
crimination, and clinical usefulness. The seven models are listed in Table 3. Among
the seven models, the RECIST, TB, ETS, and Size-Nomo models were traditional
size-based methods, the DL-BS and DL-PS models were DL-based methods, and
the DL-Nomo was the combination of the size- and DL-based methods.

To evaluate the calibration, calibration curves27 were generated to measure the
agreement between the observed outcomes and the model-predicted outcomes. To
quantify the discrimination performance, Harrell C-Index (C-Index)28 was
employed. The Harrell C-Index was a commonly used algorithm to evaluate
prognostic models in survival analysis, where data may be censored. For the Harrell
C-Index, value 1.0 indicated perfect concordance, while value 0.5 indicated no
better concordance than random choice. The decision curve analysis29 was
performed to evaluate the clinical usefulness of prognostic models by quantifying
the net benefits at different threshold probabilities, that is, to see whether more net
benefits could be attained by the addition of DL-based method to the tradition size-
based methods.

Network visualization. Techniques of attention mapping could be used for
indication of regions where DL network pay attention to49,50. In our work, the
gradient-weighted activation mapping method (Grad-CAM)23 was adopted to
highlight the regions in an input CT image with respect to their contribution to the
prediction by the GoogLeNet. The code of Grad-CAM was downloaded at https://
github.com/ramprs/grad-cam/.

Statistical analysis. Statistical analyses were performed in MATLAB version 9.5,
R version 4.0.1, MedCalc version 15.8, and Microsoft Excel 2019. In the repro-
ducibility analysis, CCC25 were used to evaluate the reproducibility of DL pre-
diction score. In Kaplan-Meier analysis, log-rank test was used to compare the
difference in the survival curves of high- and low-risk groups. The Cox propor-
tional hazards regression was used to build prognostic model and to estimate the
HR for predictors. The 95% confidence interval (CI) was provided as well. A
landmark analysis correcting for bias was also performed. The comparison of two
Harrell C-Indexes was implemented by R-package ‘compareC’51, which used
nonparametric approach to estimate the variance of C estimators as well as their
covariance and compared the two C-Indexes with a z-test. The calibration curves
for models were plotted via R-package ‘rms’ (https://github.com/harrelfe/rms).
Linear correlation between variables were indicated by correlation coefficient and
R2. The two-sample t-test and chi-square test were used to compare the difference
within continuous and categorical data, respectively. A p-value less than 0.05 was
used to indicate statistical significance, and all the statistical tests in this study were
two sided.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are provided by the Vol-PACT
(Advanced Metrics and Modeling with Volumetric Computed Tomography for Precision
Analysis of Clinical Trial Results), which is a program under the Foundation for the
National Institutes of Health (FNIH) Biomarkers Consortium (https://fnih.org/our-
programs/biomarkers-consortium/programs/vol-pact). Since the fNIH Biomarkers
Consortium is a public–private partnership, the data are available with permission from
the Foundation’s Biomarkers Consortium. Please contact the corresponding author of
this paper who is also the PI of the Vol-PACT consortium to request access to the data.
Data may be accessed by informing of the use for the data and permission of the
consortium will be granted through the PI and project manager. Replies to initial
requests will be made within 1 week and follow-up based upon the answers will be made
within one consortium review cycle which is generally 3 months. While institutional
membership is not obligatory for data sharing, an institution may also join the Vol-
PACT Consortium by completing the application for participating the Vol-PACT
through the program manager of Vol-PACT at the Biomarkers Consortium, Dana E.
Connors (Senior Scientific Program Manager, Cancer Research Partnerships) at
dconnors@fnih.org.

Materials availability
L.S. is the guarantor of the present work, to whom correspondence should be addressed.

Code availability
The complete source codes that support the findings of this study consist of three parts,
data management, CNN feature extraction, and RNN construction and training. Among
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them, the source codes for RNN construction and training in MATLAB language is
publicly available at, https://github.com/LinLu1912/CNN-RNN-paper.git, as they do not
involve direct access to the data provided by the Vol-PACT, which is a program under
the FNIH Biomarkers Consortium (https://fnih.org/our-programs/biomarkers-
consortium/programs/vol-pact). In contrary, the source codes for data management and
CNN feature extraction are not publicly available because they involve direct access to
the data provided by the Vol-PACT. To apply for the access of data as well as codes for
data management and CNN feature extraction, please see the Data availability
statement above.
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