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Abstract

Background: While progresses have been made in mapping transcriptional regulatory networks,
posttranscriptional regulatory roles just begin to be uncovered, which has arrested much attention
due to the discovery of miRNAs. Here we demonstrated a combinatorial approach to incorporate
transcriptional and posttranscriptional regulatory sequences with gene expression profiles to
determine their probabilistic dependencies.

Results: We applied the proposed method to microarray time course gene expression profiles
and could correctly predict expression patterns for more than 50% of 1,132 genes, based on the
sequence motifs adopted in the network models, which was statistically significant. Our study
suggested that the contribution of miRNA regulation towards gene expression in plants may be
more restricted than that of transcription factors; however, miRNAs might confer additional layers
of robustness on gene regulation networks. The programs written in C++ and PERL implementing
methods in this work are available for download from our supplemental data web page.

Conclusion: In this study we demonstrated a combinatorial approach to incorporate miRNA
target motifs (miRNA-mediated posttranscriptional regulatory sites) and TFBSs (transcription
factor binding sites) with gene expression profiles to reconstruct the regulatory networks. The
proposed approach may facilitate the incorporation of diverse sources with limited prior
knowledge.

Background
Transcription factors (TFs) regulate gene expression by
binding selectively to DNA sequences in promoters, and
genes regulated by the same TFs have been assumed to
share the common binding sites in their promoter regions
and exhibit similar expression patterns [1]. Numerous
experimental and computational studies [2] have been
done on locating transcriptional regulator DNA binding
sequences and understanding their working mechanisms.

These binding motifs can be used as building blocks of
gene regulatory networks and several approaches were
developed to identify how a set of cis-regulatory elements
in a gene's promoter region governed its behavior and
explained the observed expression profiles [3-5]. Using
different approaches, Segal et al. [3] and Beer and Tavazoie
[4] both showed that a substantial fraction of yeast gene
expression profiles could be explained in terms of the
combination of cis-regulatory elements. However, a
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limitation of such approaches is that many genes are
posttranscriptionally regulated [3]. The progresses have
been made in mapping transcriptional regulatory
networks in recent years, whereas posttranscriptional
regulatory roles just begin to be uncovered [6,7].
Posttranscriptional regulation through RNA-RNA interac-
tion has arrested much attention due to the discovery of
microRNAs (miRNAs).

miRNAs regulate gene expression by inducing mRNA
cleavage or translational repression of their targets [8].
Plant miRNAs are usually perfectly complementary to
their targets and cause the cleavage of their targets by
RNA-induced silencing complex (RISC), whereas in
animals targets with weaker complementarities appear
to have decreased translational efficacy [9]. However, the
role of miRNA in regulatory networks needs to be further
explored [7]. To address this need, we introduced a
combinatorial approach to determine the transcriptional
and posttranscriptional regulatory elements based on
gene expression profiles.

Various plant growth and development processes are
critically influenced by light [10-12]. Wild type Arabidopsis
seedling development follows two patterns, etiolation in
darkness and photomorphogenesis in the light [13].COP/
DET/FUS (CONSTITUTIVE PHOTOMORPHOGENIC/
DE-ETIOLATED/FUSCA) is a class of genes which were
identified as downstream signalling components of all
photoreceptors [14-16]. Mutation in COP/DET/FUS
causes constitutive photomorphogenic development
even in the dark [14,17]. One important light-signalling
component involved in plant light responses is COP1
[14], which regulates not only photomorphogenesis but
also other developmental processes. The constitutive
photomorphogenic phenotype of cop1mutation indicates
that COP1 acts as a negative regulator of photomorpho-
genesis [13,18].

We applied this approach to a CONSTITUTIVE PHOTO-
MORPHOGENIC1 (COP1) mutant time course micro-
array dataset to detect sequence elements that selectively
bind to TFs and miRNAs in the process. Inspired by Beer
and Tavazoie [4], we used Bayesian network – a
probabilistic model to integrate gene expression profiles,
transcription factor binding sites (TFBSs) as well as
miRNA target motifs to deduce the combination of
sequence elements that modulate gene expression, and
we tried to explain the observed gene expression profiles
in terms of the adopted motifs. Firstly, we conducted a
genome-wide screening to detect potential miRNA target
motifs in Arabidopsis based on an inhomogeneous Hidden
Markov model (HMM), and cross-species conservation as
well as minimum binding energy of miRNA/mRNA
duplex were used as additional filters to reduce the rate

of false positives. Secondly, genes in the cop1mutant time
course microarray dataset were clustered into 12 expres-
sion patterns and overrepresented sequence elements in
the upstream of the genes belonged to the same cluster
were detected using AlignACE [19]. Thirdly, Bayesian
network strategy was applied to selecting these motifs in
both upstream sequences and transcript sequences that
were most related to the gene expression patterns. Lastly,
we measured the degree to which gene expression could
be determinedmerely by these adopted regulatorymotifs.
Figure 1 illustrated the flow diagram of the approach.

Results
miRNA target motifs in Arabidopsis
Various algorithms developed to predict plant miRNA
targets are on the same basis thatmiRNAs and their targets
are perfectly complementary, and most of the algorithms
predict miRNA targets through detecting transcripts that
have less than or equal to 4 mismatches to miRNAs [20].
However, there are natural targets with 5 mismatches
[21], which are not able to be found by these algorithms.
Moreover, we believe that sequences with the same
number of mismatches to a miRNA might not have the
same probability to be cleaved by themiRNA owing to the
mechanism of RISC. In several cases, particular miRNA-
target mismatches are conserved through the evolution-
ary distance that separates Arabidopsis and rice [22],
suggesting that certain mismatches might be under
positive selective pressure rather than merely being
tolerated. Furthermore, properly placed mismatches
might improve the enzyme turnover rate [22].

We chose HMM because of its capability of capturing the
position specific information about particular matches/
mismatches. In spite of the variable miRNA sequences,
the complementarities between miRNA-target duplex
might follow some rules according to the RISC mechan-
isms, and we believed that the HMM could be used to
find these hidden rules by learning from a training set of
potential miRNA targets of only 19 mature miRNAs
contained in miRBase 3.0, a three years old release, and
in this way we also assessed the ability of our method to
extrapolate from a limited prior knowledge [23]. To
obtain the training set, we set the maximum number of
mismatches tolerated at 4, and the direct search detected
223 genes whose mRNAs had the complementary sites
with at least one of the 19 miRNAs. The 223 miRNA-
target candidates were used as training data. The Baum-
Welch algorithm estimated the transition and emission
probabilities and the optimal state chains of each of the
miRNA-mRNA pair were computed using Viterbi algo-
rithm, which represented possible miRNA-target
duplexes that could be recognized by RISC and cleaved
by its Argonaute component.
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Figure 1
Flowchart of the combinatorial approach to determine the transcriptional and posttranscriptional regulatory
motifs based on gene expression profiles. Firstly, we conducted a genome-wide screening to detect potential miRNA
target motifs in Arabidopsis based on an inhomogeneous HMM and cross-species conservation and minimum binding energy of
miRNA/mRNA duplex were used as additional filters to reduce the rate of false positives. Secondly, genes in the cop1 mutant
time course microarray dataset were clustered into 12 expression patterns and overrepresented sequence elements in the
upstream of the genes belonged to the same cluster were detected using AlignACE. Thirdly, Bayesian network strategy was
applied to selecting these motifs in both upstream sequences and transcripts that were most related to the gene expression
patterns. Lastly, we measured the degree to which gene expression could be determined merely by these adopted regulatory
motifs.
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Totally 103 non-redundant optimal state chains were
produced by using Viterbi algorithm, which were much
less than the number of possible chains that randomly
allowed up to 4 mismatches for a 20 mer mRNA. After
scanning the genome, we found about 150,299 potential
miRNA target motifs for all the 212 miRNAs in the
miRBase newest release (Release 12.0). This result
covered almost all the experimentally validated miRNA
targets (90/91) in Arabidopsis [20,21,24]. To reduce the
false positive rate of our HMM predictions we used the
cross-species conservation and minimum binding energy
of miRNA/mRNA duplex to do two rounds of filtering.
There are 122, 844 HMM predictions passed through the
first round of selection, and among them 30,451 passed
through the second round of selection. Almost all of the
91 experimentally validated miRNA targets (90/91)
passed through the first round of selection, and among
them 75 passed through the second round of selection.
The majority of the 91 experimentally validated miRNA
targets (58/91) were the targets for those miRNAs that
were not included in the training set.

We did simulation study by random shuffling of miRNA
sequences to test whether our method could distinguish
a miRNA from its shuffled version during the detecting
process. Two kinds of randomly shuffled sequences were
generated, i.e. monoshuffled and dishuffled sequences. The
monoshuffling method generated a truly permuted ran-
dom sequence while the dishuffling method further made
the count of each dinucleotide the same as that of
miRNAs. Fifty cohorts of randomly shuffled sequences
were generated. The noise to signal ratio (the average
number of predicted targets in 50 cohorts of randomly
shuffled sequences versus the number of targets detected
for authentic miRNAs) was 0.49 (monoshuffling) and 0.50
(dishuffling), respectively. The detailed simulation results
are available in our supplemental web page http://vhp.
ntu.edu.sg/cop1/.

Discovery of transcriptional and posttranscriptional
regulatory motifs in cop1 mutant time course
microarray data
In the cop1 mutant time course experiment, there were in
total 10 time points, i.e. 0th hour, 12th hour, 24th hour,
36th hour, 48th hour, 60th hour, 72nd hour, 4th day, 5th day
and 6th day. The log expression ratio reflected the
difference between the expression level of cop1 mutant
and that of wildtype for each gene.

Maximal log likelihood value obtained by BIC showed
that the optimal number of clusters was 12, so we divided
the 5,689 genes into 12 clusters using GQLCluster [25].
Each cluster contained 755, 157, 400, 509, 275, 638, 725,
374, 658, 422, 186 and 590 genes, respectively. The mean

expression profiles were calculated for each cluster
(Figure 2), and the 12 gene clusters and their mean
expression profiles are available in our supplemental data
web page http://vhp.ntu.edu.sg/cop1/index.html.
Sequences that were 3000 bp upstream of transcription
start sites (TSSs) were retrieved for each gene and TFBSs
were detected using AlignACE for the genes belonged to
the same cluster. The computer program ScanACE http://
arep.med.harvard.edu/mrnadata/mrnasoft.html with
default parameters was used to identify the TFBSs in the
upstream region of each gene. The predicted TFBSs for
each cluster are available in our supplemental data web
page. We also added 15 known hexamer motifs described
in Gao et al. [26] to the TFBS dataset.

The TFBSs and miRNA target motifs were fed to the
Bayesian network model and the models weighted
sequence motifs according to their contribution to the
expression profiles. There had been no evidence that the
TF binding to a gene's upstream region could also
posttranscriptionally affect its cleavage by miRNA and
vice versa, therefore the TFBSs and miRNA target motifs
were treated independently in the network construction.
No interaction is allowed between two motifs of
different kinds. For TFBSs, their distances to TSSs, their
orientations, copy numbers and the interaction between
any two adopted TFBSs are all taken into account. Our
microarray time course experiment was not specially
designed to test miRNA targets expression, so we gave
upstream motifs the priority in the network construction.
Therefore, a network might only have upstream motif
nodes without any miRNA target nodes, but could not
only have miRNA target nodes instead. About 80% of
the genes (4,557) were used to train the Bayesian
network model and the rest 20% genes (1,132) were
used to estimate the proportion of the genes whose
expression patterns could be correctly predicted by
merely the adopted transcriptional and posttranscrip-
tional regulatory motifs in the networks.

The average number of nodes was 7 for the 12 networks,
and in average 3 were upstream motif nodes and 4 were
miRNA target nodes (listed in supplemental Tables S1
and S2). The most frequent constraints added to each
TFBS node was its distance to TSS. Two known upstream
motif nodes had been added, respectively, to two
networks, namely MYB1At to network 8 and I-box to
network 12. Totally 48 miRNA target nodes were
adopted by the 12 networks.

Predicting gene expression patterns
We used the upstream motif nodes and the miRNA target
nodes adopted in the Bayesian network model to predict
gene expression patterns. Each of the 1,132 genes was
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assigned to the respective network with the highest
probability p(vc = 1|D, Sc). Some expression patterns
were quite similar; hence we calculated the correlation
coefficient of the mean expression pattern between any
two of the 12 clusters. If two expression patterns have a
correlation coefficient greater than 0.9, they are regarded
as overlapped expression patterns. We regarded over-
lapped expression patterns as in a single cluster, in this
way we classified the 12 expression patterns into 4
qualitative distinguished super-clusters (Table 1). A gene
assigned to the correct super-cluster would be regarded
as correctly predicted [4].

More than 50% genes (569/1132) were correctly
assigned. We did simulation study by randomly assigning

the 1,132 genes to the 4 super-clusters for 100,000 times.
The number of correctly assigned genes was 329 in
average, and the P-value of correctly assigning 569 genes
was less than 1e-05. Moreover, 552 out of the 569 genes
could still be correctly assigned without miRNA nodes
and the introducing of miRNA nodes could further
correctly assigned 17 genes. We retrieved the functional
annotation of these 17 genes and found that two genes
(At5g63460 and At5g67300) have the annotation term
"DNA or RNA binding" in the GO [27]. Furthermore, we
made a 5-fold cross validation test and the average
number of correctly assigned genes was 530.

Discussion
Transcriptional and posttranscriptional regulatory
networks
We applied our method to shorter promoter regions; say
1000 upstream to 500 downstream of each TSS. And the
accuracy of the expression pattern prediction with (-1000,
500) region is lower than that of (-3000, 0) region. Only
486 genes could be correctly assigned to its respective
expression pattern; and without the integration of

Figure 2
Maximal log likelihood value obtained by BIC showed that the optimal number of clusters was 12, so we
divided the 5,689 genes into 12 clusters using GQLCluster. Each cluster contained 755, 157, 400, 509, 275, 638, 725,
374, 658, 422, 186 and 590 genes, respectively. The mean expression profiles for each of the 12 clusters were calculated and
plotted.

Table 1: Gene expression patterns (clusters) in each of the four
super-clusters

Super-cluster 1 Cluster 1, 3, 8, 9
Super-cluster 2 Cluster 3, 4, 9, 10, 11
Super-cluster 3 Cluster 5
Super-cluster 4 Cluster 6

BMC Systems Biology 2009, 3:43 http://www.biomedcentral.com/1752-0509/3/43

Page 5 of 10
(page number not for citation purposes)



miRNA nodes, 474 genes could be correctly assigned
merely based on TFBSs nodes.

Most genomic studies of gene expression regulation focus
on transcriptional rather than on posttranscriptional
regulation. Based on a model in which upstream motifs
contribute additively to the log-expression level of a gene,
Bussemaker presented a computational method [28] for
discovering cis-regulatory elements that circumvented the
need to cluster genes based on their profiles. Beer and
Tavazoie [4] correctly predicted 70% of the gene expres-
sion patterns by use of Bayesian network only based on
upstreammotifs. Li et al. developed a promoter classifica-
tion method using a Relevance Vector Machine (RVM)
and Bayesian statistical principles to identify discrimina-
tory features in the promoter sequences of genes that
could classify transcriptional responses and they correctly
predicted 70% genes as being up- or down-regulated [29],
based on a small set of discriminative promoter motifs.

In the meanwhile, Foat et al. identified functional 3' UTR
motifs (including miRNA target sites) that best correlated
with the observed changes in mRNA levels [30,31]. Sood
et al. used computational methods to explore the effects
of endogenous miRNA expression on endogenous steady-
state mRNA levels [32]. In their model, changes in mRNA
levels of a given gene (measured by the microarray
experiment) are written as a sum over contributions from
all sequence motifs in the 3' UTR of that gene, which
could explain changes in mRNA levels for 50% genes. In
order to understand the importance of sRNAs in gene
regulation, Levine et al. [6] studied examples from two
distinct classes of bacterial sRNAs based on a quantitative
approach combining experiments and theory. Their
results suggested that sRNA provides a distinct mode of
gene regulation from that of protein-mediated one.

Although Beer and Tavazoie as well as Rajewsky [4,31]
all suggested the integration of posttranscriptional and
transcriptional motifs in the future studies of gene
regulatory networks, respectively,[4,30] none of the
aforementioned groups had correlated both transcrip-
tional and posttranscriptional regulatory elements
together with the gene expression data. Recently Hobert
[7] briefly reviewed the principles of TF and miRNA
working mechanisms and how they control gene
expression.

Plant miRNA target prediction
In the Rhoades et al.'s study [33], random permutation
was used to evaluate the performance of the proposed
method of plant miRNA target prediction. Annotated
Arabidopsis mRNAs were searched for targets for 16
Arabidopsis miRNAs. Identical searches with 10 cohorts

of 16 randomized miRNAs were also performed. When
constrained to 0–4 mismatches, 157 targets were pre-
dicted for 16 miRNAs, whereas in average 55.4 targets
were predicted for the cohorts of random sequences,
which gave a noise to signal ratio of 0.35 (55.4/157).
When the number of mismatches was exactly 4 in their
prediction method, the ratio became 0.53 (51/96). In our
simulation study using two different shuffling methods
(see Figure S1 in our supplemental web page), the noise
to signal ratio (the average number of predicted targets in
50 cohorts of randomly shuffled sequences versus the
number of targets detected for authentic miRNAs) were
0.49 (monoshuffling) and 0.50 (dishuffling), respectively.

If the number of mismatches allowed in Rhoades et al.'s
method was 0 to 4, our method may generate more false
positives (0.50 or 0.49 versus 0.35), which might be due
to the fact that our HMM method allows for more
mismatches. However, when the number of mismatches
was fixed at 4 in Rhoades et al.'s method, the noise to
signal ratio increased to 0.53. Our proposed HMM
method of plant miRNA target prediction allows for
more than four mismatches in the target sequences,
however, we proposed this method here as an alternative
instead of a replacement of the published method, since
the HMM method may increase the number of false
positive predictions due to the allowance of more than 4
mismatches.

Contribution of miRNAs in gene regulation networks
In our study, 3% of the 569 genes could only be correctly
assigned after introducing miRNA nodes, which might
suggest that the consequence of miRNA-mediated post-
transcriptional regulation was marginal in our time
course expression profiles though miRNA is considered
as one of the most important posttranscriptional gene
regulators. This might result from a possible bias in the
predictive power of TFBS since the motif finding was
done for each fixed cluster. In view of this, we did a
reference test using only the aforementioned 15 known
hexamer motifs [26] and miRNA target motifs. Using the
15 known hexamer motifs, we could only correctly
assign 296 genes, which was even less than that from
random assignment (P-value < 0.98) and this suggested
that the observed expression profiles could not be
explained solely by the combination of the 15 known
motifs. After adding miRNA target nodes, we could
correctly assign 509 genes (P-value < 1e-05). The result
suggested that miRNAs might confer additional layers of
robustness on gene regulation networks. Exploration of
miRNA regulatory mechanism together with known
transcriptional regulatory interactions and other func-
tional genomics data might help to further elucidate the
function of miRNAs at a system-wide level [7,31].
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The 213 genes, which could only be correctly assigned
once miRNA nodes were adopted, might have functions
related tomiRNA regulationmechanism.We retrieved the
functional annotation of these 213 genes and found
that three of them, namely At5g12840, At5g60120 and
At5g43780 are experimentally validated miRNA targets.
Furthermore, we grouped these genes based on their GO
annotations (Table 2). It is not surprising to find that both
functional annotation terms "DNA or RNA binding" and
"transcriptional factor activity" are enriched as it is well-
known that plant miRNAs are biased toward to target TFs
and other regulatory genes [24]. Functional annotation of
"response to abiotic or biotic stimulus" and "response to
stress" are also significantly enriched (the corrected
P-values < 1e-10), which is consistent with the fact that
miRNAs play important roles in plant responses to
environmental stresses as well as in development and
genome maintenance [34,32].

Conclusion
Aiming at integrating transcription factor binding motifs
and posttranscriptional regulatory motifs toward a better
quantitative modeling of changes in mRNA level, we
proposed a probabilistic approach to determine the
context-dependent role of genomic TF binding motifs
together with miRNA binding motifs in transcriptional
and posttranscriptional regulation. Regardless the simple
strategy employed, our method may provide an incom-
plete or coarse-grained portrait of the underlying tran-
scriptional and posttranscriptional regulatory network.
Consequently, our method facilitated the incorporation
of diverse sources with limited prior knowledge. The
relationship between sequence motifs and gene expres-
sion profiles could be investigated more precisely from
datasets that observe expression profiles of miRNAs,
mRNAs and proteins from the same samples simulta-
neously. Other posttranscriptional mechanisms, such as
alternative splicing, may also be taken into considerations
in the further network construction.

Methods
Dataset
The 212 Arabidopsis mature miRNA sequences were
downloaded from miRBase (Release 12.0) released in
September 2008 [35]. The 19 miRNA sequences in
Release 3.0 were used to generate the training set of
potential miRNA targets for the HMM of miRNA target
prediction.

The entire intergenic region or 3000 bp, whichever was
shorter, in the upstream of the TSS for each Arabidopsis
gene was retrieved from TAIR (The Arabidopsis Informa-
tion Resource) released in Mar 2006, and sequences of
all the Arabidopsis transcripts were retrieved from the
same site. GO annotation file of Arabidopsis genes was
also downloaded from TAIR released in April 2007.

The cop1 mutant time course microarray dataset was
kindly provided by Prof Deng Xingwang's lab in Yale
Department of Biology. Both wildtype (reference sam-
ple) and cop1 mutant (test sample) were grown at 30
degree for a 10 time periods (0 hrs, 12 hrs, 24 hrs, 36 hrs,
48 hrs, 60 hrs, 72 hrs, 4 days, 5 days and 6 days) before
transferred to 22 degree. The protocols for hybridization
to the Arabidopsis microarray, microarray slide washing,
and scanning were as described previously in Ma et al.
[36]. Microarray spot intensity signals were acquired by
using Axon GenePix Pro 3.0 software package (Axon
Instruments Inc). The ratios were the expression inten-
sities of cop1 mutant divided by that of wild type,
respectively. The microarray time course gene expression
data can be downloaded from http://vhp.ntu.edu.sg/
cop1/index.html. Average normalized log-transformed
expression ratios of 5,689 genes were subjected to
clustering analysis.

Clustering and motif finding
To take into account the temporal relationship between
time points, a HMM based approach, GQLCluster [37],
was chosen for clustering analysis. The related software
was downloaded from: http://ghmm.org/gql. BIC (Baye-
sian Information Criterion) was used to determine the
'optimal' number of clusters for the dataset, and the
5,689 genes were divided into 12 clusters. AlignACE [38]
was then used to detect overrepresented sequence motifs
(TFBS candidates) in the 3000 bp upstream of the genes
in the same cluster. The upstream sequences of all the
genes were scanned using ScanACE for the motifs found
by AlignACE [4].

Potential miRNA targets prediction using HMM
In our HMM model, hidden states are defined over the
binary space {T, F}, where T means a true matching
state, namely an endogenous miRNA needs to match to

Table 2: The functional enrichment for the 213 genes in GO
annotation

GO annotation Within group
(213 genes)

All genes
(25,676 genes)

P-Value

DNA or RNA binding 41 2801 8.8e-003
Transcription factor activity 62 3212 5.1e-009
Transcription 41 2466 5.0e-004
Nucleus 57 3087 1.9e-007
Transport 43 2780 1.8e-003
Response to abiotic or
biotic stimulus

97 3911 5.1e-024

Response to stress 47 1821 9.9e-011

The P-values were adjusted for multiple tests using Bonferroni
correction.
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its target on the specific site. A matching state could
generate A-U, U-A, G-C or C-G as an emission symbol. F
means a false matching state, namely a miRNA dos not
need to match to its target on this specific site. A false
matching state could emit one of the remaining
combinations except the aforementioned four symbols
(Figure 3). Two types of probabilities need to be
estimated: transition probabilities and emission prob-
abilities. These probabilities are position specific in the
inhomogeneous HMM. The parameters were estimated
from a training set of the potential targets with up to 4
mismatches to one of the 19 miRNAs. Baum-Welch
algorithm was used to update the parameters in the
model until it reached (local) maximal log likelihood
[39]. Convergence of the negative log-likelihood was
checked up to a precision of 1e-12.

The Viterbi algorithm was used to find the most probable
(optimal) state transition paths in the HMM [39]. We got
103 optimal paths in total after removing the redundant
ones. The experimentally verified miRNAs and their
optimal state paths obtained above were then used to
scan for miRNA target motifs in the Arabidopsis genome.

The HMM was implemented as a Perl script and a genome-
scale scanning for miRNA targets took about 10 hrs on a
UNIX work station with 2 GHz processor and 2 G memory.

We used the cross-species conservation and minimum
binding energy of miRNA/mRNA duplex as two

additional filters to reduce the false positives in our
HMM prediction. If a predicted Arabidopsis miRNA target
can be mapped to a rice cDNA with the matched region
longer than 15 bps and the identity higher than 80%, we
keep this predicted target for further analysis. In the
second round of filtering, we used RNAcofold [40] to
calculate the minimum binding energy of miRNA/target
duplex, and we only keep a predicted target when its
minimum binding energy is less than -15 kcal/mol.

Building Bayesian network
We followed the approach established by Beer and Tavazoie
[4] and considered two layer networks with parent nodes
representing sequence motifs (TFBS or miRNA target
motifs) and descendent nodes representing gene expression
patterns. Edges are directed and connected only from
sequence elements to expression profiles. The network
structure could be describedwith a 0–1matrix, withM rows,
as many as genes under consideration, and N columns,
where N is the number of nodes [41].

The descendent nodes are gene expression pattern vc,
where c = 1, 2,...., C, and C is the total number of clusters
(expression patterns). The parent nodes are TFBSs with
specific constraints or miRNA target motifs. The con-
straint of a TFBS is its orientation, its distance to TSS, and
the presence or absence of other TFBSs. If two or more
TFBSs are present, the interactive constraints are the
distance between them, and/or their order relative to

Figure 3
An exemplar diagram of the inhomogeneous HMM. Hidden states are defined over the binary space {T, F},
where T means a true matching state and a matching state could generate A-U, U-A, G-C or C-G as an emission symbol.
F means a false matching state and a false matching state could emit one of the remaining combinations except the
aforementioned four symbols. The position specific transition probabilities and emission probabilities would be estimated
using a training-set of potential miRNA targets. (The transition probabilities and emission probabilities shown in the
diagram were arbitrarily assigned.)
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TSS, respectively. Let ω = (s1, s2,..., sK) be the sequence
constraints. If a constraint n is satisfied for a particular
gene, then we have sn = 1, otherwise sn = 0. The final
networks encode the distribution of P(vc|s1, s2,..., sK),
namely the probability of the gene being a member (vc =
1) or not being a member (vc = 0) of the cluster c, given
the states of the sequence constraints ω. About 80% of
the total genes were used as training set and the rest 20%
genes were used as testing set [4].

From Bayes' theorem, we have:

p S D p S p D S p D( | ) ( ) ( | ) / ( ),=

where D is the data and S is the network structure. In our
case, a network was learnt for each cluster. Assuming
unrestricted multinomial distribution, parameter inde-
pendence, Dirichlet priors and complete data, the p(D|S)
was given by

p D S
a j
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where r is the number of unique instantiations for each
descent node, so we have r = 2, and q is the number of
parent instantiations. We use Njk to denote the number
of cases in D in which variable vc has the value k and its
parent was instantiated as j, and N Nj jkk

r= =
−∑ 0

1 . We
assume uniform priors, such that ajk = 1 and
a aj jkk

r= ==
−∑ 0

1
2 . Parents are added progressively to a

node until no additional parent could increase the
structure probability [42].

A model with the highest log marginal likelihood (or the
highest posterior probability, assuming equal priors on
structure) is the best sequential predictor of the data D.
For any given gene, the probability that this gene is a
member of cluster c could be calculated by [43]:

p v D S
j k N j k

j N j
c c( | , )

* *

* *
,= =

+
+

1
a

a

where j* is the parent instantiate of the network structure
for gene expression pattern c and k = 1.

The algorithms for Bayesian network building and gene
expression pattern prediction were implemented as C++
programs and the total runtime is about 1 hour on a
desktop PC with 1 G memory.

Enrichment of functional annotation terms from Gene
Ontology
Genes with the same annotation terms from Gene
Ontology (GO) were grouped. The size of each group

was compared to the total number of genes having the
same GO annotation term in the Arabidopsis genome. P-
value, which indicated the significance of enrichment, is
calculated from the hypergeometric tail [44,45]:

P
i
C

g i
G C

g
G

i c

g

= −
−

=
∑

( )( )

( )
,

where C is the number of genes with a particular GO
annotation term in the Arabidopsis genome, G is the total
number of genes in Arabidopsis which is 25,676, c is the
number of genes in a group with the particular GO
annotation term and g is the total number of genes in
that group. In our case, g is 213. The P-value was
adjusted for multiple tests using Bonferroni correction.

Availability and requirements
The C++ and Perl programs that implement the methods
in this work are available for download from our
supplemental data web page http://vhp.ntu.edu.sg/
cop1/, and a README file can be found in the package
for the instructions to run these programs. Additional
files are available in the above web site: Tables S1 and S2
listed TFBSs and miRNA target nodes adopted in the
networks, respectively. Table S3 listed the known motifs
that were adopted by the networks. The COP1 micro-
array time course gene expression data, the 12 gene
clusters and their mean expression profiles, the simula-
tion results of miRNA target prediction as well as the
predicted TFBSs for each of the 12 gene cluster are also
available for download.
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