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Abstract

Objective: Head and neck squamous cell carcinoma (HNSCC) describes a set of

malignancies of the head and neck that continue to inflict considerable morbidity and

mortality. Because HNSCC often presents at an advanced stage, patients frequently

undergo intensive multi-modal therapy with an intent to cure. Vitamin D is a precur-

sor to the biologically active hormone calcitriol which governs bone and calcium

physiology that is obtained from diet and UV-B exposure. Vitamin D is known to

have pleiotropic effects on health and disease. In this review, we examine the role of

vitamin D in cancer with emphasis on HNSCC and discuss potential avenues for fur-

ther research that might better elucidate the role of vitamin D in the management of

HNSCC.

Review methods: A review of MEDLINE database indexed literature concerning the

role and biology of vitamin D in HNSCC was conducted, with special consideration

of recently published work and research involving immunobiology and HNSCC.

Conclusions: The available evidence suggests that vitamin D may play a role in

protecting against HNSCC, particularly in persons who smoke, although conflicting

and limited data exists. Promising initial work encourages the pursuit of further

study.

Implications for practice: The significant morbidity and mortality that HNSCC brings

warrants continued research in available and safe interventions that improve patient

outcomes. With the rise of immunotherapy as an effective modality for treatment,

continued research of vitamin D as an adjunct in the treatment of HNSCC is

supported.
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1 | INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is a heterogenous

disease entity that poses a significant clinical and surgical challenge.

HNSCC can be defined by anatomical origin, etiology, molecular pro-

file, and clinical behavior, with implications on treatment choice and

prognosis. Newly diagnosed cancers of the head and neck in the US

are estimated to number 65410 in 2019.1 In this same period, an esti-

mated 14 560 deaths from head and neck cancer will occur. Optimal

care of these patients is delivered by a multidisciplinary team com-

prised of radiation oncologists, medical oncologists, and head and

neck surgeons.2 Between 60% and 70% of patients present with stage

III or IV disease and frequently require intensive multi-modality treat-

ment which carries significant morbidity.2 As our understanding of the

molecular mechanisms driving HNSCC have improved, so too have

the range of treatments made available for these patients.

The role of micronutrients in the development and progression

of cancer has been a subject of study for decades. This research has

produced mixed results regarding the health benefits of micronutri-

ent supplementation in those not already suffering from defi-

ciency.3,4 Of particular interest has been vitamin D, which in this

review we refer to as encompassing the precursors to the biologi-

cally active hormone calcitriol unless otherwise indicated. Vitamin D

acts in a pleiotropic manner in health and disease.5 Traditionally con-

sidered as a key regulator of bone, calcium, and phosphate homeo-

stasis, the sphere of influence of vitamin D has steadily grown with

continued study. Evidence of cellular proliferation, angiogenesis, cel-

lular metabolism, inflammatory cascades, and immunity as being sen-

sitive to vitamin D status has been reported.5,6 A combination of

basic science, clinical, and epidemiological research has examined

the mechanisms by which vitamin D exerts its biological effects

attempted to identify those patients where vitamin D may have

therapeutic benefit.

In this review, we describe the current understanding of the path-

ophysiology of HNSCC and the mechanisms by which vitamin D may

act in HNSCC. Potential avenues for further research to better inform

how to deploy vitamin D for the greatest therapeutic benefit are also

explored.

2 | HEAD AND NECK SQUAMOUS CELL
CARCINOMA AS A COMPLEX DISEASE
ENTITY

The epithelium lining the aerodigestive tract is subject to a variety of

carcinogenic insults. These insults notably include tobacco smoke,

alcohol, and high-risk strains of human papilloma virus (HPV).

Squamous cell carcinomas are the dominant histological neoplasm

type arising in the head and neck, comprising upwards of 90% of

all head and neck malignancies.2,7 The inciting event of HNSCC is

prognostically relevant. Patients bearing HPV-negative oropharyngeal

tumors experience worse outcomes than patients with HPV-positive

tumors.8 As the rates of smoking have decreased across the Western

world the typical demographic of the head and neck cancer patient

has trended toward a younger, healthier individual with improved

tolerance for treatment and better outcomes.7

2.1 | Genetic character of head and neck
squamous cell carcinoma

Genomic studies have identified molecular profiles that characterize

HPV-negative vs HPV-positive HNSCC. The Cancer Genome Atlas

(TCGA) profiled HPV-positive and HPV-negative HNSCC to identify

patterns of shared or distinct gene expression.9 Given the association

of HPV-negative HNSCC with environmental carcinogens like tobacco

smoke and alcohol, an enrichment of genes in the oxidative stress

pathway, which includes the master transcriptional regulator of the

cellular response to oxidative stress NRF1, were found to be selec-

tively upregulated as compared to HPV-positive HNSCC.9 In HPV-

positive tumors activating mutations in PIK3CA were more common,

though HPV-negative HNSCC also exhibited high rates of PIK3CA

mutations as well.

Despite the diversity in the genetic alterations occurring in HPV-

positive vs HPV-negative HNSCC, network analysis suggests common

pathways are recurrently involved in both subtypes of HNSCC. Acti-

vation of the PI3K/Akt/mTOR pathway is a common occurrence in

HNSCC, and heightened activity of this pathway is associated with

more aggressive tumorigenesis and invasiveness.10,11 Both HPV-

negative and HPV-positive HNSCC also display activation of the NF-

κB transcriptional program, which promotes cell survival, migration,

and inflammation.9,12

2.2 | The immune system in head and neck
squamous cell carcinoma

The elevation of the immune system to a significant actor in the

development, progression, and treatment of cancer is a defining fea-

ture of modern cancer research. A growing literature examining the

role of the immune system in HNSCC has been pursued at the pre-

clinical and clinical levels. In order to persist and grow, HNSCC

has been found to engage in several mechanisms to evade

anti-tumorigenic immune responses.

Mutations in HLA genes responsible for antigen presentation are

found in a subset of HNSCC at similar rates in HPV-positive and

HPV-negative tumors (11% vs 7%, respectively).9 Disruption of tumor

antigen presentation via mutations in the antigen presentation

machinery (APM) interferes with the ability of the immune system to

mount an adaptive response to tumor cells. Laryngeal squamous cell

carcinomas bearing HLA mutations and defective APM were found to

correlate with reduced T cell infiltration into tumor stroma and worse

prognosis.13 Notably, laryngeal squamous cells carcinomas feature

more frequent alterations in antigen presentation than do maxillary or

tonsillar squamous cell carcinomas, though the underlying reasons for

this subsite variability is unclear.13
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Beyond immune evasion, HNSCC also acts to suppress immune

reactivity using systemic and localized mechanisms. Patients with

HNSCC experience a general state of immunosuppression with signifi-

cantly decreased absolute T lymphocyte levels in circulation as com-

pared to healthy controls, possibly secondary to increased circulating

levels of immunosuppressive cytokines (TGF-β, IL-10).14,15 Notably, as

T cell counts decrease, the risk of disease recurrence following treat-

ment has been reported to increase.14 Another immunosuppressive

mechanism used by HNSCC involves the upregulation of inhibitory

immune checkpoint signaling to enforce immune cell anergy and toler-

ance to tumor antigens. T cells expressing the PD-1 coinhibitory

receptor interact with tumor associated PD-L1 which triggers T cell

exhaustion and relieves immune-mediated cancer suppression.15 A

study investigating tumor samples taken from HNSCC patients dem-

onstrated a correlation between elevated tumoral PD-L1 expression

and fewer tumor infiltrating T lymphocytes.16 Exemplifying the impor-

tance of the immune-tumor interface in HNSCC is the observation

that immunosuppressed patients are more likely to develop

pre-malignant and malignant lesions of the head and neck.17,18

3 | VITAMIN D IN HEALTH AND DISEASE

Vitamin D is a fat-soluble vitamin obtainable by diet or UV-B exposure

and has been the focus of research due to its pleiotropic effects on

the maintenance of health and prevention of disease (Figure 1). Vita-

min D is the precursor metabolite to the hormonally active calcitriol,

or 1α,25-dihydroxyvitamin D. Vitamin D is well-known to have regula-

tory activity on bone, calcium, and phosphate homeostasis. Continued

study, however, has illustrated that the scope of vitamin D activity is

wider than previously appreciated, and vitamin D is now shown to be

involved in regulation of the immune system, musculoskeletal system,

cardiovascular system, and whole-body metabolism.6,19

3.1 | The biochemistry and physiology of
vitamin D

The majority of circulating vitamin D is supplied by peripheral

conversion of 7-dehydrocholesterol by UV-B radiation in the skin,

F IGURE 1 Vitamin D metabolism and activity in cancer. A, Cholecalciferol is obtained through either skin exposure to UV-B or diet.
Cholecalciferol is converted to 25-hydroxyvitamin D [25(OH)D)]via CYP27A1 activity in the liver. 25(OH)D is converted to calcitriol (1α,25(OH)
2D) via CYP27B1 activity primarily in the kidney. Calcitriol is the active form of vitamin D and is the primary ligand for the vitamin D receptor
(VDR). Vitamin D-bound VDR heterodimerizes with RXR before translocating to the nucleus to engage VDR response elements and effect
transcription. Vitamin D is metabolized for excretion by CYP24A1 which produces the inactive metabolite 24,25(OH)2D. B, Vitamin D via
activation of VDR alters numerous cascades relevant to the pathophysiology of head and neck squamous cell carcinoma. Upregulation of the
tumor suppressor Pten antagonizes PI3K-AKT–mTOR signaling downstream of receptor tyrosine kinase (RTK) activation by growth factors. The
pro-apoptotic factors Bax and Bak are upregulated by vitamin D and prime cells for apoptosis, which is reinforced by the inhibition of the pro-
survival Bcl-xL. Upregulation of p21 and p27 triggers inhibition of pRB phosphorylation and degradation by CDK complexes, thereby stabilizing

the pRB-E2F1 complex and inhibiting E2F1-driven progression through the cell cycle. Vitamin D also antagonizes dedifferentiation and
telomerase expression which limits malignancy. Upregulation of the master transcriptional regulator of the cellular antioxidant machinery, NRF2,
promotes genomic stability and limits oxidative damage. NF-κB is inhibited from translocating to the nucleus by vitamin D thereby reducing
transcription of pro-inflammatory cytokines including IL-6 and TNF-α. Vitamin D also downregulates prostaglandin (PG) synthesis via inhibition of
cyclooxygenase-2 (COX-2). Lastly, the expression of the PD-L1 cell surface glycoprotein, which acts as a mediator of peripheral tolerance and
attenuator of T cell activation, is up-regulated by VDR activation. Solid black arrows represent positive interactions, hatched black arrows
represent actions inhibited downstream of vitamin D activity, and hammerhead arrows represent repressive interactions
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with a smaller fraction being supplied by diet. Whether supplied by

diet or by UV-B conversion, vitamin D is transported to the liver

where it is metabolized by vitamin D 25-hydroxylase, CYP2R1 or

CYP27A1, to produce 25-hydroxyvitamin D (25-OHD), otherwise

known as calcidiol. Calcidiol is the predominant form of circulating

vitamin D and is the typical measure used to clinically assess vitamin

D status.19 Calcidiol is further metabolized in the kidney by

CYP27B1, otherwise known as 1α-hydroxylase, to produce calcitriol,

or 1α,25-dihydroxyvitamin D, which is the most biologically active

vitamin D metabolite.20 Circulating calcitriol distributes to target tis-

sues where it binds and activates its target receptor, the steroid

receptor family member vitamin D receptor (VDR).21 VDR is the

major effector of vitamin D at the cellular level. Calcitriol binding to

VDR promotes dimerization of cytosolic VDR with retinoid-X-

receptor (RXR), thereby allowing for nuclear translocation and bind-

ing to VDR elements upstream of target genes and driving changes

in the transcriptional activity of the cell.21 A key negative regulator

of vitamin D activity, and itself a transcriptional target of VDR, is

CYP24A1 which mediates 24-hydroxylation of calcitriol to promote

inactivation and excretion.20

Despite uncertainty regarding what cut-offs to use to define vita-

min D deficiency,22-24 epidemiologic studies have reported that geo-

graphic regions with lower sunlight exposure were inversely

correlated with cancer incidence and mortality.25,26 Population wide

studies linking lower circulating vitamin D levels to higher incidence

of breast, colorectal, gastric, and prostate cancer bolstered the idea of

vitamin D status as a protective factor in carcinogenesis.6,27-29

3.2 | Vitamin D and cancer

Several mechanisms by which vitamin D may protect against carcino-

genesis have been proposed (Figure 1). Vitamin D has been shown to

elicit anti-proliferative effects, inhibit survival signals and promote apo-

ptosis, limit DNA damage secondary to reactive oxygen species genera-

tion, and dampen inflammatory activity.30 As an anti-proliferative

agent, vitamin D increases the expression of CDK inhibitors p21 and

p27, thereby stabilizing the E2F-pRB complex and antagonizing cell

cycle progression.31 Breast cancer cells cultured in vitro with vitamin D

were demonstrated to have upregulated p53 expression.32 Vitamin D

also antagonizes the PI3K/AKT/mTOR pathway via upregulation of the

tumor suppressor PTEN.33 In terms of cell survival, cells are primed for

apoptosis by vitamin D by the upregulation of the pro-apoptotic factors

Bax, Bak, and Bad, and the simultaneous inhibition of the anti-apoptotic

factors Bcl-2 and Bcl-XL.34

Reactive oxygen species (ROS) are produced under normal physi-

ological conditions and may act as secondary messengers mediating

the balance between cell survival and death. Cells subject to reactive

oxygen stress upregulate antioxidant mechanisms to limit damage to

cellular macromolecules, including DNA. Several lines of evidence

suggest vitamin D acts to upregulate antioxidant pathways and limit

oxidative damage to DNA. A small clinical trial found that those

patients taking supplementary vitamin D demonstrated less oxidative

DNA damage in colorectal mucosa than those patients taking pla-

cebo.35 In agreement with this finding, mice lacking VDR have been

reported to endure higher levels of oxidative DNA damage in their

colorectal mucosa.36 Mechanistically, the master transcriptional regu-

lator of the cellular antioxidant response, NRF2, is found to be a tran-

scriptional target of VDR which may explain the connection between

vitamin D action and protection against oxidative stress.6,37 This

response is coincident with an upregulation in the expression of

reductive scavengers (eg, thioredoxin which mediates the reduction of

disulfide bonds, and superoxide dismutase 2 which reduces mitochon-

drial ROS into hydrogen peroxide and diatomic oxygen) as well as

upregulation of the pentose phosphate pathway and generation of

the NADPH required for neutralization of ROS.38,39 These data sug-

gest that vitamin D may play a role in determining the sensitivity of

tissues to oxidative stress on the path to malignancy.

The interplay between the immune system and cancer is complex

and evolves over the course of transformation.40 Evidence has

emerged that vitamin D acts as an immune regulator limiting inflam-

mation.41 Immune cells of all lineages, to varying degrees, express

VDR at some point in their maturation.41 Several mechanisms by

which vitamin D limits inflammation have been reported. Vitamin D

inhibits prostaglandin synthesis by repressing expression of the cyclo-

oxygenase COX2. An inverse correlation between VDR and COX2

expression has been noted in malignant breast, ovarian and prostate

cancer.42,43 When activated, VDR is also capable of inhibiting the

nuclear translocation of NF-κB and the transcription of TNF-α and

IL-6 mRNA.44,45 Interestingly, the expression of the PD-L1 cell surface

glycoprotein, which acts as a mediator of peripheral tolerance and

attenuator of T cell activation, is up-regulated by VDR activation.46

While the above data propose mechanisms by which vitamin D can

limit the chronic inflammatory milieu that promotes cancer develop-

ment, it should be considered that over-suppression of local immune

responses downstream of heightened vitamin D activity via

upregulation of tolerogenic factors (PD-L1) is also a possibility.

Indeed, in some thyroid and kidney tumors the levels of CYP27B1 and

local vitamin D production are increased, which may act to promote

an immune tolerant environment for tumor growth.47,48

VDR is widely expressed in human tissues and in different can-

cers. This widespread expression suggests that vitamin D may be

capable of exerting influence directly on VDR-positive cancer cells. As

an example, tumor differentiation status is reported to be correlated

with VDR expression. More aggressively dedifferentiated breast, ovar-

ian, and prostate cancers were correlated with reduced expression of

VDR.49-52 Patients with non-small cell lung carcinomas bearing higher

levels of VDR expression and nuclear localization had improved

overall survival when compared to tumors with minimal VDR.53 Local

regulation of vitamin D metabolism is also sensitive to tumor progres-

sion. Downregulation of CYP27B1 and local production of calcitriol

has been reported in cancers of the colon, prostate, and skin.6,54-56

Conversely, elevated expression of CYP24A1, which corresponds to

local vitamin D inactivation, is associated with more advanced cancers

of the colon, lung, and breast.6,57,58 These data suggest that cancer

cells arising from a variety of tissues reduce their sensitivity to vitamin
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D by reducing VDR expression, while also reducing local availability of

active hormone by altering vitamin D metabolism. To what extent

vitamin D can influence cancer cell biology would ultimately be

dependent on the above factors.

Preclinical work has suggested that vitamin D is also involved in

the cellular response to cancer therapies. Breast cancer cell lines

treated in vitro with radiation that exhibited treatment resistance and

persistent survival were sensitized to radiotherapy when it was co-

administered with vitamin D.59 Vitamin D treatment was also suffi-

cient to sensitize non-small cell lung cancer cell lines to radiotherapy

in vitro.60 Mice bearing breast tumor xenografts were similarly sensi-

tized to radiotherapy and exhibited reduced local tumor growth when

co-treated with a vitamin D analogue.61 The above studies suggest

that alterations in autophagy underlies the sensitization of tumor cells

to radiotherapy by vitamin D, although evidence of the clinical utility

of vitamin D as a radiosensitizer remains outstanding.

Studies reporting correlative data that suggest patients with

lower circulating levels of vitamin D were at higher risk of developing

cancer or succumbing to their cancer, particularly colorectal cancer,

provided the rationale for the launch of prospective trials.62-64 Data

from clinical trials examining whether vitamin D supplementation has

any effect on lowering cancer risk have been conflicting, however. A

nationwide, placebo controlled, randomized trial found no effect on

either the incidence of invasive cancer of any type, or death from can-

cer in those receiving daily high dose vitamin D supplementation com-

pared to placebo.65 Notably, the authors reported a median age at

enrollment of 67 years with a follow-up of 5.3 years and limited can-

cer subsite analysis. Other smaller studies with shorter follow-ups

were similarly non-significant.66,67 Alternatively, a pooled study of

17 cohorts found that decreasing levels of pre-diagnostic vitamin D

levels significantly increased risk of colorectal cancer among women,

with a trend toward increased risk in men.68 A recent systematic

review and meta-analysis similarly found reductions in circulating vita-

min D increased risk of cancer incidence and mortality in a dose

dependent fashion, although no further subsite analysis was made.69

With regards to vitamin D dietary intake, another systematic review

found increased intake to be associated with a lower risk of mortality

from any cause among cancer patients.70

Ultimately, discerning to what degree, if any, vitamin D is

able to influence the course of cancer will require prolonged

follow-up reflecting the long gestation of cancer with an empha-

sis on distinguishing between cancers of different anatomical and

histological type.

4 | THE ROLE OF VITAMIN D IN HEAD
AND NECK SQUAMOUS CELL CARCINOMA

The mechanisms by which vitamin D acts in cancer have been

explored in preclinical models of HNSCC. Treatment of an oral squa-

mous cell carcinoma cell line with increasing concentrations of vitamin

D as a single agent reduced cell proliferation in vitro.71 Several cell

cycle checkpoint inhibitors have been reported to be upregulated in

HNSCC in response to vitamin D treatment, including p21, p18, and

p27.72-74 Upregulation of telomerase is a common feature in HNSCC,

and vitamin D treatment has been shown to antagonize TERT expres-

sion in vitro.75 Other actions of vitamin D using in vitro models of

HNSCC include the promotion of cellular differentiation, promotion

of genomic integrity by upregulating DNA damage response path-

ways, and inhibition of invasive and metastatic activity.75-77 These

results were observed using both calcitriol and synthetic calcitriol ana-

logues of increased potency in hypopharyngeal and oral squamous cell

carcinoma cell lines. Using a hamster buccal pouch model of carcino-

genesis, vitamin D was shown to protect against carcinogen-induced

buccal squamous cell carcinoma.78 This study demonstrated that only

one of 10 hamsters treated with intraperitoneal injections of vitamin

D developed a histologically confirmed neoplasm after carcinogen

exposure, as compared to seven of 10 hamsters developing neo-

plasms when treated with vehicle control. The above combination of

in vitro and in vivo pre-clinical data suggests a protective relationship

exists between the action of vitamin D and HNSCC onset and

progression.

Genetic sequence variants in vitamin D metabolism pathway

genes have been shown to influence the risk and prognosis of

HNSCC. Patients with HNSCC bearing the VDR FokI T/T genotype,

which is a genetic variant thought to reduce the transcriptional activ-

ity of the activated VDR complex, experienced shorter progression-

free survival even after adjustment for age, smoking status, and

cancer stage.79,80 Genetic variants in other vitamin D metabolism

pathway genes, including vitamin D binding protein, CYP2R1, and

CYP24A1, were found to correlate to circulating vitamin D levels and

overall survival in HNSCC patients.81,82 These data suggest that

intrinsic differences in vitamin D metabolism may be prognostic

indicators, although larger studies that integrate genomic data with

clinical correlates would be required to establish this relationship.

In the course of the development of frank malignancy, distinct

histopathological precancerous lesions can be identified. In the case

of oral squamous cell carcinoma, these precancerous lesions can be

identified as simple hyperplasia or squamous intraepithelial carcinoma,

representing increasing degrees of local tissue derangement. A study

examining VDR expression in precancerous and invasive oral squa-

mous cell carcinoma found that all lesions expressed higher levels of

VDR when compared to healthy controls,83 a finding that has been

reported in subsequent work.84 Interestingly, early precancerous

lesions expressed VDR at higher levels than later precancerous lesions

or invasive carcinoma, suggesting that the degree of VDR expression

is sensitive to the degree of malignant derangement of affected tis-

sues.83 Consistent with previous work, vitamin D deficiency was

observed in all patients, and no correlation between circulating vita-

min D levels and tumor VDR expression was observed. It remains

unclear, however, what may be driving the increased VDR expression

seen in oral precancerous and invasive disease, or to what degree

these cells may be responsive to vitamin D supplementation as an

anti-neoplastic agent.

A common feature of HNSCC is tumor-driven immune dysfunc-

tion which produces an inflammatory environment conducive to
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malignancy.85 Mounting evidence suggests that the efficacy of the

immune response mounted against HNSCC is sensitive to vitamin D

levels. Immunosuppressive immature dendritic cells are defective at

antigen presentation and accumulate in the tumor stroma and serum

of HNSCC patients.86,87 Treatment of HNSCC patients with vitamin

D prior to surgical resection reduced the intra-tumoral levels of imma-

ture dendritic cell precursors, while increasing the levels of mature

dendritic cell infiltrates into tumor stroma.88 Infiltration of both acti-

vated CD4+CD69+ T cells and regulatory Foxp3+CD4+ T cells into

HNSCC tumor tissue has been reported to confer prognostic advan-

tage.89 In those HNSCC patients with higher circulating levels of vita-

min D, the levels of CD4+ T cell infiltrates in tumoral and peri-tumoral

stroma was elevated and associated with longer overall survival.90

Also reported was higher levels of cytotoxic CD8+ T cells, natural killer

cells, and M1 macrophages in HNSCC tumor tissue in patients with

higher vitamin D levels, suggesting vitamin D status may influence the

immunological composition of the tumor microenvironment with

some consequence on patient outcomes.90 An additional burden

experienced by patients with HNSCC is malnutrition both before and

after treatment.91 Malnutrition with consequent muscle wasting and

weight loss is exacerbated by the development of treatment-related

mucositis. Patients with HNSCC who developed treatment-associated

mucositis were significantly more likely to be vitamin D deficient at a

baseline and after treatment than those patients who did not develop

mucositis.91 A trend toward increased muscle wasting was also

observed in patients deficient in vitamin D.91 Limited data suggests

that in vitamin D deficient cancer patients experiencing mucocutane-

ous toxicity supplementation with vitamin D improved mucocutane-

ous integrity, although further study is required to investigate

whether this applies in HNSCC.92 Lastly, a report using a pre-

treatment food intake questionnaire found that those HNSCC

patients with the lowest reported dietary vitamin D intake had

increased risk of recurrence of their cancer as compared to patients

with high levels of dietary vitamin D.93

4.1 | Population studies of head and neck
squamous cell carcinoma and vitamin D

A number of retrospective studies have been conducted investigat-

ing vitamin D status and HNSCC. A small Danish study identified

38 HNSCC cases and reported no significant association between

vitamin D levels and HNSCC incidence.94 A larger Finnish study simi-

larly found no association between serum vitamin D levels and risk

of developing HNSCC among 348 incident cases.95 Importantly, no

analysis was made in this study regarding overall survival and base-

line vitamin D status in those diagnosed with HNSCC. The Copenha-

gen City Heart Study (CCHS) was a prospective cohort study

following 9791 patients with a median follow-up time of 21 years

with endpoints consisting of onset of a tobacco-related cancer, emi-

gration, or death.96 The authors found that those patients with lower

circulating vitamin D levels at baseline were at higher risk of devel-

oping tobacco related cancers (eg, cancers of the lung, bladder, head

and neck) but carried no change in risk of developing non-tobacco

related cancers.

The largest study to date examining a link between vitamin D sta-

tus and HNSCC incidence and mortality has been the European Pro-

spective Investigation into Cancer and Nutrition (EPIC) study; this

effort collected blood samples, questionnaire data, and demographic

information from over 380 000 patients between 1992 and 2000

across 10 European nations.97 By identifying those patients who later

developed HNSCC by either querying population-based cancer regis-

tries or by active follow-up, the authors collected the original blood

samples to measure circulating vitamin D levels, often years before

diagnosis.98 The authors identified 350 eligible cases of HNSCC and

employed an LC-MS/MS based approach for quantification of circu-

lating vitamin D from collected blood samples. They found that a dou-

bling in circulating vitamin D levels corresponded to an adjusted risk

reduction of developing HNSCC of 30%.98 Those patients with

25 nmol/L of circulating vitamin D were also 1.72 times more likely to

die from any cause than those patients with a level of 50 nmol/L.

Interestingly, as circulating levels of vitamin D began to exceed

50 nmol/L, an increase in risk of mortality from HNSCC became

apparent, suggesting a U-shaped response curve to vitamin D levels

may exist in HNSCC with very low or very high levels of vitamin D

being deleterious. Subsite analysis revealed that vitamin D status

exerted the most significant effects on the development of cancers of

the larynx and hypopharynx. A doubling of circulating vitamin D levels

corresponded to an adjusted risk decrease of developing cancer of

the larynx or hypopharynx of 58%.98 Of note, the protective effect of

vitamin D against HNSCC was limited to former or current smokers

(comprising 78% of cases), which was similar to the observed conclu-

sion in the CCHS study.96 Never smokers experienced similar risk of

HNSCC no matter their vitamin D levels, suggesting the protective

effects of vitamin D against HNSCC is modified by tobacco exposure.

The insights gleaned from the EPIC study are valuable given its

prospective nature following patients through HNSCC diagnosis and

death. An important limitation, however, was the reliance on a single

measure was taken at the outset of the study, with no other vitamin

D measures recorded at any point throughout the study. This leaves

open the question as to how, if at all, circulating vitamin D levels

changed throughout the course of disease. Taken together, the above

studies suggest that, for a select group of patients, the disease course

of HNSCC may be influenced by vitamin D status.

5 | FUTURE INVESTIGATION

The use of epidemiologic data to draw conclusions about nutrition

and health has its challenges.24,99 Careful consideration of the limita-

tions of such data is necessary to prevent overly broad interpretation.

When translating epidemiological research to molecular mechanisms,

plausibility and consistency with the existing literature are important.

Epidemiologic data is best leveraged when testable hypotheses can be

generated and scrutinized in controlled settings. The present literature

detailing vitamin D and HNSCC, while limited at present, provides
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some suggestion of meaningful interaction. Further study informed by

existing epidemiologic, basic, and clinical science remains necessary.

At the molecular level, vitamin D is reported to restrict some of

the mechanisms driving HNSCC. Activation of the PI3K signaling

cascade is a common feature of HNSCC, and vitamin D is reported to

upregulate negative regulators of PI3K including PTEN. To what

degree that vitamin D might affect PI3K signaling in HNSCC is not yet

known.9,11,33 Similarly, the NF-κB transcriptional program is often

engaged in HNSCC, but has been reported as being negatively regu-

lated downstream of VDR activation.9,12,44,45 Whether this regulatory

relationship is relevant in HNSCC models remains to be investigated.

A notable finding arising from prospective studies measuring

baseline circulating vitamin D and HNSCC incidence was that smokers

and former smokers were most likely to benefit from higher vitamin D

levels.96,98 Several potential mechanisms may explain why this is the

case. Vitamin D has been reported to increase the expression of

NRF2 and the anti-oxidant machinery in cells.6,37 The ROS generated

by tobacco smoke inhalation is partly responsible for its carcinogenic-

ity, and the improvement in ROS scavenging downstream of VDR

activation may limit the severity of this oncogenic insult in people at

risk of developing HNSCC. Moreover, tobacco smoke is rife with

carcinogenic compounds that directly exert mutagenic stress on DNA,

while mice lacking VDR have been reported to be more sensitive to

carcinogen-induced tumorigenesis.100,101 These data suggest that

further examination of vitamin D as a protector of genomic integrity

against tobacco smoke is worthwhile to better understand how

vitamin D may limit the development and progression of HNSCC.

Leveraging immunotherapy in the treatment of HNSCC has

become a priority in light of promising clinical trial results.102

Patients with HNSCC and low circulating vitamin D had fewer

immune cell infiltrates and impaired cytotoxic activity against

tumor cells as compared to patients with higher vitamin D levels.90

Moreover, patients with HNSCC treated pre-operatively with

vitamin D were found to have greater T cell infiltration into tumor

stroma and decreased recurrence rates following surgery and

adjuvant therapy.103 In light of the ability of vitamin D to regulate

the expression of immune checkpoint receptors on tumor cells46

and the degree of immune infiltration into tumor stroma,90 explo-

ration of vitamin D as a predictor of immunotherapy success or as

an agent used to bolster immunotherapy efficacy are intriguing

avenues for further research.

6 | CONCLUSION

A significant fraction of patients with HNSCC present with signifi-

cantly reduced circulating vitamin D levels compared to their healthy

counterparts.104 A ubiquitous micronutrient with pleiotropic functions

in health and disease, vitamin D is a potentially actionable target for

improving outcomes in HNSCC. The intersection between vitamin D

biology and novel immunotherapies in HNSCC remains understudied.

Promising preliminary work describing the relation between vitamin D

and HNSCC encourages further investigation into how best to lever-

age this essential nutrient in our approach to treatment.
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