ORIGINAL PAPER

Vol. 26 no. 14 2010, pages 1699-1703
doi:10.1093/bioinformatics/btq268

Genome analysis

Advance Access publication May 30, 2010

Gapb5—editing the billion fragment sequence assembly

James K. Bonfield* and Andrew Whitwham

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK

Associate Editor: Dmitrij Frishman

ABSTRACT

Motivation: Existing sequence assembly editors struggle with the
volumes of data now readily available from the latest generation of
DNA sequencing instruments.

Results: We describe the Gap5 software along with the data
structures and algorithms used that allow it to be scalable. We
demonstrate this with an assembly of 1.1 billion sequence fragments
and compare the performance with several other programs. We
analyse the memory, CPU, I/O usage and file sizes used by Gap5.
Availability and Implementation: Gap5 is part of the Staden
Package and is available under an Open Source licence from http://
staden.sourceforge.net. It is implemented in C and Tcl/Tk. Currently
it works on Unix systems only.

Contact: jkb@sanger.ac.uk

Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on March 26, 2010; revised on May 17, 2010; accepted on
May 18, 2010

1 INTRODUCTION

With the latest wave of DNA sequencing technologies (Bentley ez al.,
2008; Margulies et al., 2005; Pandey et al., 2008), the number of
individual fragments readily available for both mapping and de novo
assemblies has grown many fold. This has often been coupled with
a shortening of each individual fragment. As a consequence, a full
mapping of the entire human genome may conceivably have as many
as a billion fragments.

While many applications of new sequencing technologies make
use of mapped assemblies, de novo sequence assembly is still
common. These may contain misassemblies or require further
“finishing” work to resolve gaps (Chain et al., 2009). To progress
from the draft standard toward finished sequence, we need tools
capable of both viewing and editing our large-scale assemblies.

Traditional algorithms used in earlier sequence assembly viewers
and editors such as Gap4 (Bonfield et al., 1995), Consed (Gordon
et al., 1998), HawkEye (Schatz et al., 2007) and EagleView (Huang
and Marth, 2008) tend to scale poorly with the number of fragments.
For example, Gap4’s memory and CPU usage typically scale linearly
with the number of fragments in the assembly. It became clear that
the underlying data structures in these older tools are insufficient for
the data volumes that we now routinely see.

Recently several viewers including SAMtools (Li et al., 2009),
MapView (Bao et al., 2009), IGV (http://www.broadinstitute.org/
igv), Tablet (Milne et al., 2010) and NGSView (Arner et al., 2010)
have been released that aim to reduce the algorithmic complexity

*To whom correspondence should be addressed.

and memory footprint. However, the solutions typically employed
by these programs are only amenable for read-only access, with the
exception of NGSView that can perform some minor editing tasks.

In addition to algorithmic efficiency, the large increase in
the number of DNA fragments has put a strain on our storage
requirements. By using data compression methods, the storage
burden can be greatly reduced, with the BAM file format being
one such recent example. When coupled with an index, compressed
BAM files can be randomly accessed.

We present the Gap5 program: a sequence assembly viewer and
editor. This encompasses both base by base editing operations as
well as high-level contig rearrangements (complementing, breaking
and joining). Being able to change data has a substantial impact on
the choice of data structures and file formats, which are described
below. We also demonstrate the compression techniques used in
Gap5 and compare their effectiveness to existing tools.

2 METHODS AND ALGORITHMS

A fundamental challenge for any assembly viewer or editor is how to identify
which sequences are visible within a specific region or range, such as the
portion of an assembly currently shown on screen. Without an index this
range query requires a linear scan, having O(N) complexity, where N is the
number of sequences to search through.

Some newer file formats, including MVF (MapView) and CALF (http://
www.phrap.org/phredphrap/calf.pdf), make use of an index on the sequence
start coordinates. This works well provided we can place a tight upper bound
on the maximum length of any sequence. We can rapidly identify sequences
entirely within our range query, but to identify those completely spanning
the range we have to search backwards, up to the maximum sequence length
base pairs away from our range boundaries. If we wish to mix both short and
long sequence fragments together this can become inefficient.

To address this programs such as SAMtools (implementing the SAM and
BAM file formats) and the UCSC genome browser (Kent ez al., 2002) employ
spatial indexing (or multidimensional indexing) techniques, e.g. recursive
binning and R-Trees (Guttman, 1984). These mechanisms index on both
the start and end positions at the same time meaning that we can rapidly
interrogate the index to identify sequences visible within a given range,
typically in O(Rxlog(N)) complexity, where N is the length of the contig
and R is the size of the query range. For Gap5, we chose a recursive binning
algorithm. A contig has a root bin, which in turn has two child bins, repeating
in a recursive manner to form a binary tree of bins until we reach a minimum
bin size. Sequences and annotations are then placed in the smallest bin that
they entirely fit within (Fig. 1).

For an editor another major problem to resolve is how to move data.
Storing the absolute position of a sequence leads to algorithmic inefficiencies.
Unfortunately this technique was employed in Gap4’s database, CAF (Dear
et al., 1998) and ACE file formats, and even in newer short-read formats
such as CALF, SAM, BAM and MVE. If we perform an edit that moves
sequences within a contig, such as making an insertion or joining the contig
to another, then we need to alter the location of potentially every sequence
within that contig.

© The Author(s) 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://
http://www.broadinstitute.org/
http://
http://creativecommons.org/licenses/

J.K.Bonfield and A.Whitwham

Contig

Bin N

Sequences

Fig. 1. Binning tree containing sequences from two libraries (represented
by solid and dashed lines). Information about the sequence positions and
pairings is stored in the bin records, while the sequence names, DNA and
qualities are held in the sequence records.

One solution to this comes from making sure that the location of sequences
and annotations are stored relative to the bin they have been placed within.
Additionally, the location of a bin itself is stored relative to its parent bin.
With all positional data being relative to the parent object, we can now shift
entire portions of a contig with just O(log(N)) operations.

There is one further editing operation that needs special attention:
complementing a contig. If we choose to have a single status flag on the
contig indicating whether this entire contig is to be viewed in the original or
complemented orientation, we will have a problem when we wish to join it to
a contig of the opposite orientation. For example, if we wish to join contig A
to the complement of contig B, then the resulting contig will have a mixture
of complemented and uncomplemented data. We do not wish to actually
reverse complement the data in contig B as this may require millions of
changes to be made. To resolve this, each bin has a flag indicating whether it
and its children are complemented with respect to its parent bin. This permits
multiple complement and join operations to occur with the minimum of data
editing.

The bins can also serve as a way to cache data views at different zoom
levels. When showing a narrow region at high magnification, we will query
deep into our tree; when showing a very large region at low magnification,
we may only need to query the top few levels of bins to achieve the
desired resolution. So far this has only been implemented experimentally
to store sequence depth data. By storing a fixed number of data points per
bin, regardless of the number of bases they span, we can rapidly draw the
sequence depth at any zoom level with a minimum amount of disk I/O. These
bin ‘tracks’ simply act as caches for the actual algorithms that obtain the data
to plot. They are invalidated after some types of edits and are recomputed on
demand. In a similar, albeit simpler manner we use one layer in the bin tree
to store cached fragments of the consensus. This means that after changing
the data we can mark small portions of the consensus as invalid, reducing
the overhead of recomputing it.

When interactively scrolling through a contig, most of the data required to
perform the range query will have been recently loaded for a previous query,
as the path down the bin tree will typically be the same except for a few
leaf nodes. By keeping a cache of recently accessed records in memory, we
substantially reduce the I/O overhead. To achieve this all database records
are accessed via a data structure, we term as a HacheTable: a caching hash
table. The programmatic interface to this gives the appearance of all database
records being held within memory; however, only the most recently used
items are stored with older items being discarded to keep memory usage low.
The hache hit rate while scrolling is typically >99%. The same HacheTable
is also used to keep track of edited objects by locking these items to prevent

TTG TCTéw = Th
AGTTGATTAATTTCTRaa T TTACAGTH
AGTTGATTASTTICTASATTTACAGTH
ARRSATATAGTTGAT ATTTCTASATTTACA

FIGATTR TTCTASATTTACA

C T
CTRCTTCGCGATTTTAT TARAATAT
ICGEGATTTTAT T
9 TRCTTCGLGATTTTATIGT T
BA TGTGGTETATCBATOGCTACT TCGEGATTTTATTGIT
] GTATATCGATGGLTACTTCGLGATTTTAT T
] T
T

TARGC TATATCGA
GT TATATCE

ASATTTACAGTARRCTGE

A :
T TTATTGTTARRAATATAGTTGATTAATTICT ATTTACAGTAAA
GIARACTGIG ATCGATGGCTACTTCGCGAT TTTATTGTTARAAATATAGTIGATTRATITONAR _TRACAGTAAN
: GIMCTCICE CGATLGCTACTTICCLGATTITRT TG AT TG TIGS AT 1A
< GATGG! m ARLC
[FoEieih CEerrenicouea #Tg AT TAE TRARCTGE
GTARACTGTGETA CTACTTCGCGATT I TATTGTTARAGATATAGT TG ATTIRCAE AACTCC
CTACTTCG GATTTTATTGT CATTICTAM RAETEE
TACTTCGT BATTTTATTGT HETEC

5 downens

| Bame T confionce: 34 (Preh. 0.990602, raw -30.0 308 0.0 340) Pesliion 27235 1L9_ 1940536401704

Fig. 2. Contig editor, showing quality values by gray scales and mismatches
to the consensus by base color.

them from being discarded. When the user saves changes to disk the lock
status is used as an indicator of which objects to save.

3 IMPLEMENTATION

Gap5 is primarily written in C (Kernighan. and Ritchie, 1988) for
efficiency and Tcl/Tk (Ousterhout, 1990) for the graphical user
interface. The use of Tcl also means we have an inbuilt scripting
language allowing user-controlled automation of many of Gap5’s
capabilities. Many of the Staden Package libraries used by Gap4
have also been reused for Gap5, making Gap5 a direct descendent
of Gap4. However, many of the algorithms and data structures first
appeared in ‘tg_view’: a prototype text-based editor and viewer. This
was first publicly released in 2007 (unpublished data) as the zgap
package and was initially used as a viewer for MAQ (Li et al., 2008)
alignments.

For visualization, Gap5 shares a lot of common features with
its ancestor Gap4. The contig editor (Fig. 2) displays sequences
along with their per-base quality values as gray scales. Discrepancies
between the sequence and the consensus may be automatically
highlighted by either color or symbol. Sequence names and/or
mapping qualities, if known, are shown in the left panel. To save
vertical space multiple sequences may be packed onto one display
line.

To obtain a broader view of an assembly the sequences may be
shown pictorially using the template display. This draws one line
per sequencing template, with the horizontal size and placement
governed by the location of the forward and reverse sequence
fragments. Colors are used to distinguish templates where the
forward and reverse fragments are in separate contigs, have an
inconsistent (unexpected) orientation or are single-ended sequencing
templates only. We draw either a traditional assembly illustration
with the Y coordinate being used simply to separate overlapping
sequences (Supplementary Material), or a LookSeq (Manske and
Kwiatkowski, 2009) style plot, where the ¥ coordinate is governed
by the insert size. This latter type of plot is particularly effective at
identifying regions where indels have occurred (Fig. 3).

We observe that to draw the template display, we need to know
only sequence start and end coordinates, mapping scores, mate
pairs and a few status flags. The sequence structures constitute
the vast bulk of the database size so it is costly to extract this
information from the sequence structures themselves. However, as
previously described, a contig bin contains references to sequences
and annotations along with their locations. To optimize the template
display, we also store additional information (mapping score, mate

1700

Gap5

Contlg Contlg 0090054

Fig. 3. Template display showing a mapped assembly with a short insert
Ilumina library and a long insert capillary library. The Y-axis here shows
insert size, while the X-axis is the position within the contig. A genomic
insertion is visible at around 5 kb, identified by the jump in average insert size
for the Illumina library. Also visible is the filter subwindow. The template
colors used are red: inconsistent read-pair orientation; blue: single-ended
template; orange: template spanning two contigs; otherwise gray-scale: the
mapping quality of the DNA fragments.

pair record and status flags) in the bin. This dramatically reduces
the amount of disk I/O required to draw the template display. It
also means that if we only desire to view graphical summaries, we
can create an assembly database with no sequence names, DNA or
quality values.

In order to achieve editing capabilities, Gap5 does not use a
flat-file format as objects can and do change size—even base
substitutions may change the size of the sequence we store once
it has been compressed. We reuse the lightweight Gap4 database
engine, although the substantial schema differences mean that the
two programs are incompatible. Tools are provided to migrate from
Gap4 to Gap5 via use of the caftools package and the caf2baf perl
script. (Note though that at the time of writing this article the total
functionality of Gap4 still greatly exceeds the functionality of Gap5.)

The construction of a Gap5 database is achieved using the separate
tg_index tool. This supports reading from ACE, SAM, BAM and
our own local BAF format. It can be a time-consuming operation
on large datasets, converting in the order of 40 000 sequences per
second, although this is only around 70% slower than converting
SAM to BAM using SAMtools. Tg_index is also currently the most
memory hungry part of the package, using 10Gb on a 1.1 billion
read test set. Gap5S may be used to output all or a portion of an
assembly in ACE, SAM, BAM, BAF, CAF, fasta or fastq format.

In order to keep the database compact, by default Gap5 uses the
Zlib (Deutsch and Gailly, 1996) compression layer. This was found
to be a good compromise between space and efficiency. For cases
where space is the primary constraint, Gap5 can use LZMA?2 instead
(implemented using the XZ-utils package: http://tukaani.org/xz).
It was discovered that attempting to individually compress each
sequence separately has a high overhead, so prior to compression
Gap5 collates up to 1024 sequences and annotations together. To
further improve compression ratios, within each of these blocks
we reorder the data by content type. For example, a block
of 1024 sequences will yield 1024 names, 1024 DNA strings

Table 1. Efficiency of opening and viewing an assembly

Program Dataset CPU (s) Memory (MiB) File size

Gap4 A 149 6784 4823620112
Consed A 363 6270 3838652583
EagleView A 385 10044 2461728347
NGSView A 0.2 36 4197720064
MapView? A 3.0 32 558031038
IGV A 5.2 118 186611223
SAMtools A 1.2 34 186611223
Gap5 A 0.2 15 139030256
IGV B 5.0 110 43832012709
SAMtools B 1.1 49 43832012709
Gap5 B 0.4 22 32153736504

4Tested on a 32-bit linux system due to lack of a Mono environment on the main 64-bit
test system.

‘MiB’ is 1 048 576 bytes—a mebibyte. Dataset A is 6.6 million 44 bp reads mapped
to a single 44 Mb contig. Dataset B is 1.1 billion reads (mostly 36 bp) mapped to all
human chromosomes. Program versions: EagleView 2.2, Gap5 1.2.7, SAMtools 0.1.7a,
MapView 3.4.1, Consed 19.0, Gap4 4.11 and IGV 1.4.

and 1024 quality strings. Each type of data is then compressed
independently, ensuring that the Huffman tables used by Zlib are
optimally tuned to each data type. Where applicable, numerical
records such as the sorted position data within bin range arrays are
differentiated to store successive deltas. All numerical values are
stored to variable size depending on the absolute magnitude of the
value. The combined impact of these methods are considerable on
compression ratios and the primary reason for Gap5 databases being
considerably smaller than BAM files.

4 RESULTS

For an initial test, we chose to use the data presented in the MapView
paper: 6.6 million 44 bp reads aligned in a single 44 Mb contig. We
converted this file to a variety of formats taking care to include
the appropriate data (including sequence names, bases and quality)
supported by all formats and no more. We then measured the CPU
time taken to start up the program, open the assembly and view
sequence assembly at the start of the first contig. Table 1 presents
these results as dataset A, along with the programs native file sizes.
See the Supplementary Material for a more complete break down
on the assembly file sizes.

As can be seen, the programs mostly cluster into two groups,
with EagleView, Gap4 and Consed being very demanding on both
memory and CPU. These three also had the largest disk space
requirements. The last four—MapView, IGV, SAMtools and Gap5—
all demonstrate acceptably low resource requirements for both
CPU and memory, while also using substantially less disk space.
NGSView is very CPU and memory efficient, but is inefficient on
disk space usage. Note that the CPU time and memory also includes
the constant overhead of launching the programs, so it may not
accurately reflect the relative positions of the last five programs
when faced with much larger datasets.

To further test scalability we used a 1000 genomes (http://
www.1000genomes.org/) project SAM file containing 1.1 billion
reads from the NA19240 sample. Note that this BAM file contained
only mapped data with the only auxiliary records being the read

1701

http://tukaani.org/xz
http://

J.K.Bonfield and A.Whitwham

Table 2. 1/O efficiency on dataset A

Table 3. 1/O efficiency on data set B

Program Operation I/O calls Bytes r/w (KiB) Program Operation 1/O calls Bytes r/w (KiB)
gap4 Open + view 138928263 3418452 gap5 Open + view 339 774
gap5 Open + view 81 116 samtools Open + view 146 8516
samtools Open + view 9 140

gap5 Move to 100 Mb 76 179
gap4 Move to 20 Mb 312 4 samtools Move to 100 Mb 15 138
gap5 Move to 20 Mb 58 101
samtools Move to 20 Mb 33 221 gap5 Scroll to 101 Mb 645 10373

samtools Scroll to 101 Mb 12192 81560
gap4 Scroll to 21 Mb 310266 6288
gap5 Scroll to 21 Mb 476 4616 gap5 Break contig 2859 805
samtools Scroll to 21 Mb 10850 47050

gap5 Join contig 228 135
gap4 Break contig 31208502 689953
gap5 Break contig 1794 823 gap5 Substitution 145 52
gap4 Join contig 79387624 1653908 gapS Insertion 1047 104
gap5 Join contig 187 2

I/0 operations showing the number of I/O calls (Iseek, read, write, pread, pwrite) for
opening the database and displaying the first contig, moving to position 20 Mb in the
contig, scrolling to 21 Mb in 1kb increments, for breaking the contig in two at 20 Mb
and joining it together again. For a more complete break down of the I/O calls used see
the Supplementary Material.

group as storing this additional information is still experimental in
Gap5. The results for these are listed as dataset B in Table 1. It
is evident from this that the scalability problems have largely been
solved by several tools including Gap5.

As Gap5 uses a simple database rather than a flat file, I/O
efficiency could be a concern. So to test I/O efficiency we compared
Gap5 with Gap4 and SAMtools tview on the 6.6 million read
dataset A. The results in Table 2 demonstrate that the start up cost of
Gap? is low as it does not load the entire index into memory, but a
consequence of using a database means that we require many more
disk seeks than SAMtools. Gap4 in comparison is very I/O intensive
as it loads partial information about every sequence when it opens
the database.

When scrolling along a contig view both Gap4 and Gap5
demonstrate a minimal amount of additional data loaded due to on-
the-fly caching in Gap5 and having preloaded most of the data in
Gap4. It is clear that Gap5’s approach of blocking 1024 sequences
together per database record dramatically reduces the number of I/O
calls. SAMtools demonstrates an apparent lack of data caching in
this test, but was still fast and responsive.

The complexity of editing operations is where Gap5 really stands
out against Gap4. The inability to reposition large numbers of
sequences without individually editing each one causes Gap4 to
generate millions of I/O calls when breaking contigs in two or joining
them together.

To verify the efficiency of Gap5 against a 1 billion read assembly,
we repeated these tests on dataset B. As can be seen in Table 3,
edits still require a relatively small amount of I/O. The speed was
also acceptable: to perform all 10 breaks, joins, substitutions and
insertions took 12s of CPU time. We could not compare editing of
this dataset against Gap4 due to time and memory constraints, but
for viewing purposes we also tested SAMtools. In contrast with the
smaller set, we observe that SAMtools reads far more data when

1/0 operations showing the number of I/O calls (Iseek, read, write, pread, pwrite)
with dataset B. The contig viewed was Chromosome 1. Breaking and joining contig
measurements were averaged over 10 contigs, for Chr4 to Chr13. The substitution and
insertion tests were averaged from single base edits at 10 locations spread over ChrX.

Table 4. Data compression of data set A

File format Compression tool File size

sam - 885524410
bam (bgzf) 186486871
sam gzip 179 625250
sam 7zip 144426218
gap5 (zlib) 137783736
gap5 (Izma2) 115331272
sam paq809 86 875700

Compression tools listed in parentheses denote algorithms internal to either SAMtools
or Gap5. All others are external command-line tools.

opening the assembly. This is due to completely loading the BAM
index file into memory. The lack of caching in SAMtools is again
evident during the scrolling test.

To evaluate storage size, we experimented with a variety of
compression algorithms on the sam files exported from Gap5 and
compared these with Gap5’s native format, using both the 1277 (zlib)
and lzma?2 (xz-utils) algorithms. For speed reasons, we only tested
this with the smaller dataset A. Table 4 presents these findings. The
PAQ algorithm (Mahoney, 2005) and variants have won the Hutter
prize for compression multiple times and can be considered as at the
cutting edge for general purpose compression, regardless of the cost
in CPU. While not practical—it took 26 h to compress the sam file—
it is a useful baseline to compare ourselves against. For comparison,
tg_index produced the Gap5 database in 144 s when using 1277 and
502 s using 1zma?2. It is clear that Gap5 has not had to compromise
greatly on storage space in order to achieve both random access and
editability of data.

Tg_index has the ability to ignore certain types of data or to
replace them with blank data, such as producing minimal names,
setting all quality values to zero, or even replacing all base calls

1702

Gap5

Table 5. File size by content type, data set A

Data type File size (%) Bits per seq. Bits per base
bin/range 4.7 7.75 0.18
Seq bases 23.5 38.83 0.88
Seq quality 42.6 70.36 1.60
Seq name 25.6 42.28 0.96
Seq other 3.7 6.08 0.14

File sizes from tg_index -z 16384 -d data_type. ‘Seq other’ here is a general
per-sequence overhead. The ‘bin/range’ type includes everything needed to draw
the Template Display window; sequence positions, mapping quality and read pairings.

with N. From this, an analysis of the storage per type of data is
presented in Table 5.

It is clear that the quality values constitutes the bulk of the file
size, with the DNA sequence taking up less than 1 bit per base call.
This figure is substantially less than the expected 2 bits per base due
to redundancy in the sequence depth (7 x) and so clearly the results
will differ when tested on other datasets.

5 DISCUSSION

We have demonstrated that we can keep and sometimes improve
upon the CPU, memory and I/O efficiency of the next-generation
assembly viewers, while also supporting editing capabilities. This
is a marked improvement over the Gap4 program. However, it is
clear that performance is just one aspect and utility also needs to be
considered. Currently, Gap4 offers a much richer set of tools than
Gap5 and is also available on a broader range of platforms. Over
time, we expect to duplicate the most important Gap4 features in
Gap5 and also plan to port Gap5 to Microsoft Windows.

There are still some performance issues even with Gap5
as intrinsically certain algorithms will not be possible to get
below O(N) complexity, such as plotting an entire chromosome
or identifying all local alignments in an entire genome. Some
algorithms can benefit from precomputation of results at a cost
of increased storage, which so far we have only implemented for
consensus caching. We have outlined ways that the binning tree
can be used to store additional precomputed depth data. This aspect
of Gap5 is still largely unexplored, but we envisage a variety of
additional cached tracks for rapid visualization in the template
display. Further analysis of the I/O patterns reveals that the bulk
of I/O calls while breaking contigs are manipulating the bin tree.
SAMtools and the UCSC Genome Browser both use trees with eight
children per node, rather than the binary tree implemented in Gap5.
Implementing a similar change to Gap5 should further improve I/O
performance.

It is likely that users will want to keep both their standard
alignment format data, such as BAM files, as well as using Gap5
for viewing and possibly editing. The fact that Gap5 is efficient
in space helps, but it is clear that this is an additional cost over
and above the storage requirements for the input data. One possible
solution to this is to observe that indexing just the sequence positions
(tg_index -d blank) is only an extra 5% on top of the BAM format.
It may be possible to get Gap5 to extract names, sequences and

qualities from BAM while still retaining the positional index for
use in the template display. The next logical step is to implement a
copy-on-write scheme where only edited sequences get added to the
Gap5 database. This will bring the additional overheads of editing
to an acceptable level.

ACKNOWLEDGEMENTS

Many thanks to Rodger Staden and his past team at the Medical
Research Council Laboratory of Molecular Biology, whose work
greatly simplified the development of Gap5. We acknowledge
Robert Davies and the other members of his group at the Wellcome
Trust Sanger Institute for numerous discussions during this work, Li
Heng for providing the code for reading maq and sam file formats
and the 1000 Genomes project for providing us with data.

Funding: Wellcome Trust (grant number 077200/Z/05/Z); the
Medical Research Council.

Conflict of Interest: none declared.

REFERENCES

Arner,E. et al. (2010) NGSView: an extensible open source editor for next-generation
sequencing data. Bioinformatics, 26, 125-126.

Bao,H. et al. (2009) MapView: visualization of short reads alignment on a desktop
computer. Bioinformatics, 25, 1554-1555.

Bentley,D.R. ez al. (2008) Accurate whole human genome sequencing using reversible
terminator chemistry. Nature, 456, 53-59.

Bonfield,J.K. et al. (1995) A new DNA sequence assembly program. Nucleic Acids Res.,
23, 4992-4999.

Chain,P.S.G. et al. (2009) Genome project standards in a new era of sequencing. Science,
326, 236-237.

Dear,S. et al. (1998) Sequence assembly with CAFTOOLS. Genome Res., 8, 260-267.

Deutsch,P. and Gailly,J.L. (1996) Zlib compressed data format specification version 3.3.
RFC 1950. Available at http://www.ietf.org/rfc/rfc1950.txt (last accessed date June
2,2010).

Gordon,D. et al. (1998) Consed: a graphical tool for sequence finishing. Genome Res.,
8, 195-202.

Guttman,A. (1984) R-Trees: a dynamic index structure for spatial searching.
In Yormark,B. (ed.) SIGMOD’84, Proceedings of Annual Meeting, Boston,
Massachusetts, June 18-21, 1984. ACM Press, pp. 47-57.

Huang,W. and Marth,G. (2008) EagleView: a genome assembly viewer for next-
generation sequencing technologies. Genome Res., 18, 1538—1543.

Kent,W. J. et al. (2002) The human genome browser at UCSC. Genome Res., 12,
996-1006.

Kernighan,B.W. and Ritchie,D.M. (1988) The C Programming Language. Prentice Hall,
Upper Saddle River, New Jersey.

Li,H. et al. (2008) Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Res., 18, 1851-1858.

Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics,
16, 2078-2079.

Mahoney,M.V. (2005) Adaptive weighing of context models for lossless data
compression. Technical Report CS-2005-16, Florida Institute of Technology.

Manske,M. and Kwiatkowski,D.P. (2009) LookSeq: a browser-based viewer for deep
sequencing data. Genome Res., 19, 2125-2132.

Margulies,M. et al. (2005) Genome sequencing in microfabricated high-density picolitre
reactors. Nature, 437, 376-380.

Milne,I. et al. (2010). Tablet - next generation sequence assembly visualization.
Bioinformatics, 26, 401-402.

Ousterhout,J.K. (1990) Tcl: An embeddable command language. In Proceedings
USENIX Winter Conference, USENIX Association, Berkeley, CA, pp. 133-146.

Pandey, V. et al. (2008) Applied biosystems SOLiD system: ligation-based sequencing.
In Next-Generation Genome Sequencing. Wiley-VCH, Berlin, Germany, pp. 29-41.

Schatz, M. C. et al. (2007) Hawkeye: an interactive visual analytics tool for genome
assemblies. Genome Biol., 8, R34.

1703

http://www.ietf.org/rfc/rfc1950.txt

