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Abstract 

Background:  Zero-inflated models are generally aimed to addressing the problem that arises from having two differ-
ent sources that generate the zero values observed in a distribution. In practice, this is due to the fact that the popula-
tion studied actually consists of two subpopulations: one in which the value zero is by default (structural zero) and the 
other is circumstantial (sample zero).

Methods:  This work proposes a new methodology to fit zero inflated Bernoulli data from a Bayesian approach, able 
to distinguish between two potential sources of zeros (structural and non-structural).

Results:  The proposed methodology performance has been evaluated through a comprehensive simulation study, 
and it has been compiled as an R package freely available to the community. Its usage is illustrated by means of a real 
example from the field of occupational health as the phenomenon of sickness presenteeism, in which it is reason-
able to think that some individuals will never be at risk of suffering it because they have not been sick in the period 
of study (structural zeros). Without separating structural and non-structural zeros one would be studying jointly the 
general health status and the presenteeism itself, and therefore obtaining potentially biased estimates as the phe-
nomenon is being implicitly underestimated by diluting it into the general health status.

Conclusions:  The proposed methodology is able to distinguish two different sources of zeros (structural and non-
structural) from dichotomous data with or without covariates in a Bayesian framework, and has been made available 
to any interested researcher in the form of the bayesZIB R package (https://​cran.r-​proje​ct.​org/​packa​ge=​bayes​ZIB).
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Background
In general, zero-inflated models are aimed to address-
ing the problem that arises from having two different 
sources that generate the zero values observed in a dis-
tribution. In practice, this is due to the fact that the popu-
lation studied actually consists of two subpopulations: 
one in which the value zero is by default (structural zero) 

and the other is circumstantial (sample zero). An exam-
ple could be the study of sickness presenteeism (SP), 
i.e. attending work while sick [1]. If it is not previously 
restricted, the population is made up, among others, of 
workers who are zero because they have never been sick 
(structural zeros) and workers who, having been sick, did 
not attend their work place (sample zeros). Note that the 
difference is important: roughly the first zero informs us 
exclusively about the status of health, the second about 
the exercise of the right to take a sick leave.

The most commonly used zero-inflated models are 
those that are related to count- ing variables, where it is 
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assumed that the zero value has a dichotomous source 
that determines whether or not the subject is at risk of 
suffering the event of interest and another source, only 
for the individuals at risk, that corresponds to the num- 
ber of episodes (counts) that have been experienced by 
each individual at risk. In this context, the most com-
mon available models would be the well known Zero- 
Inflated Poisson (ZIP) and Negative Binomial (ZINB). 
A good introduction to the mathematical properties of 
these models can be found in [2], and they have been 
used in many fields such as quality control ([3]), epi-
demiology ([4]) or medicine ([5]) among many others. 
Some guidelines on how to proceed when dealing with 
count outcomes potentially overdispersed or zero-
inflated have been published recently ([6, 7]), based on 
classical procedures like Vuong’s test ([8]) to check for 
overdis- persion ([9]) and zero-inflation ([10]), although 
these guides cannot be applied to the case studied here 
due to the dichotomous nature of the outcome. In gen-
eral, zero-inflated models can be expressed as

where g is the structural zero probability and f (0) 
is the zero probability of an appropriate distribution 
(Poisson, negative binomial or Bernoulli as in our case).

In practice, zero-inflated models with both dichoto-
mous sources (a mixture of two Bernoulli random vari-
ables, one with probability of success ω and the other 
with probability of success p) have received far less 
attention. This is due, in large part, to the fact that the 
resulting distribution is once again a Bernoulli with 
probability.

of success ω · p, so that the proportion of structural 
zeros (1 −  ω) and sample zeros (1 −  p) are indistin-
guishable from the point of view of frequentist statis-
tics. However, from the Bayesian perspective and using 
known reasonable information about these propor-
tions, it is possible to distinguish the two sources of 
zeros and estimate ω and p.

Some authors have recently suggested, in other areas 
such as the classification or identification of images, 
the usage of Bernoulli-mixture models, based on 
numerical algorithms such as Expectation-Maximiza-
tion (EM) to estimate the parameters [11, 12], given 
the complexity of the likelihood functions involved. 
In these cases, however, the inclusion of covariates or 
adjustment variables is virtually impossible. Also in 
other areas there are some recent developments in a 
similar line, such as [13].

In this article we illustrate the use of Zero Inflated 
Bernoulli (ZIB) models by means of a real dataset on 

(1)
P(Y = 0) = g +

(

1− g
)

· f (0)

P
(

Y = j
)

=
(

1− g
)

· f (j), j > 0

SP, and the results obtained are compared with those 
of adjusted logistic regressions on the total population 
or only in those individuals at risk. In the literature, the 
SP registry is carried out in a self-reported way, asking 
about the episodes in the last year and later, recorded 
in a dichotomized way (no SP: 0 episodes; yes SP: 1 or 
more episodes). The justification for this dichotomiza-
tion is fundamentally based on two aspects: one, the 
possible memory bias; second, the excessive influence 
of workers who report a very high number of episodes.

Methods
Let Y be the variable that indicates occurrence of the 
phenomenon under study. The proposed model has a 
probability function defined by

where ω is the probability of exposure and p is the 
probability of occurrence of the phenomenon of interest 
among exposed individuals, as shown in Fig. 1. Accord-
ing to this scheme, the proportion of structural zeros will 
be 1 − ω and the proportion of non-structural zeros will 
be ω · (1 − p).

To overcome the impossibility of models without covar-
iates based on the frequen- tist approach to differentiate 
between structural and non-structural zeros, in this work 
a model within the Bayesian framework is proposed. In 
this context, we as- sume that the prior distribution of 
the parameter of the first Bernoulli ω is uniform between 
0 and 0.5 while the prior distribution of the probability 
of success in the second Bernoulli p is uniform between 

(2)
P (Y = 0) = (1 − �) + � ⋅ (1 − p)

P (Y = 1) = � ⋅ p,

Fig. 1  Model schema. Only variable Y is observed
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0.5 and 1. In this way, the proposed model will be able 
to distinguish the two sources of zeros. Obviously, these 
hypotheses can be modified based on prior knowledge 
of the parameters that govern the phenomenon under 
investigation by making simple changes to the posterior 
distributions defined in Eq. (6) and recalculating the mar-
ginals shown in Eq. (5). This distinction is not necessary 
if covariates are included in the model since the covari-
ates allow the origin of the zeros to be distinguished. To 
ensure that the estimates are kept within the appropriate 
parameter space, the logit link, commonly used in logistic 
regression, has been used.

where X1,. .., Xk are the covariates that have a hypotetical 
impact over the zero inflated part and Z1,. .., Zm are the 
covariates that might have an influence over the non zero 
inflated part. The parameters θi, i = 0,. .., k and βj, j = 0,. .., 
m are assumed to follow a normal distribution with mean 
0 and variance σ2 and σ 2

θ  and σ 2
β respectively, modeled as 

hyperparameters.
The models proposed to analyse the data described in 

the following section and in the simulation study have 
been written in the programming language Stan, within 
the R environment [14] and are freely available from the 
authors as a package called bayesZIB [15]. To the best 
of our knowledge, this is the only package available in 
R able to fit zero-inflated Bernoulli regression models. 
The use of the package is very similar to other packages 
that implement zero-inflated models, such as pscl [16], 
to facilitate the interpretation of the results, while more 
advanced users could easily adapt the code to their spe-
cific requirements. If necessary, appropriate priors for the 
parameters ω and p can be defined in the function bayes-
ZIB using the argument priors (only uniforms with differ-
ent parameters are implemented so far in the package).

No covariates
In the particular case in which the interest is in estimat-
ing the proportion of struc- tural (1-ω) and sample (1-p) 
zeros without accounting for the effect of any covariate, 
the posterior distributions of ω and p can be obtained 
analytically assuming some a priori knowledge of their 
distributions. As mentioned before, one could set ω to 
be uniform distributed on [0, 0.5] and p to be uniform 
distributed on [0.5, 1]. Be- cause the observations are 
Bernoulli(p · ω) distributed, the likelihood function can 
be written as

(3)
logit(ω) = log

(

ω
1−ω

)

= θ0 + θ1X1 + · · · + θkXk

logit(p) = log
(

p
1−p

)

= β0 + β1Z1 + . . . βmZm,

(4)L ∼ (p · ω)m · (1− p · ω)n−m,

where m is the frequency of occurrence of the phenome-
non of interest and n is the total number of observations. 
From here, the joint posterior could be obtained as

From here the posterior marginal distributions of the 
two parameters can be obtained as

where F is the beta distribution function with parameters 
m + 1 and n −  m + 1, implemented in the R function 
pbeta.

The methods used to analyse the real data example in 
the following sections are in accordance with relevant 
guidelines and regulations, in particular with the Inter- 
national Labour Organization criteria, also used to define 
the target population in the European Working Condi-
tions Survey [17] or the EU Labour Force Survey [18]. 
Participation in the considered study was voluntary and 
confidential, and informed consent was obtained from 
all subjects in order to be included. The data were anal- 
ysed anonymously and all procedures were approved by 
the Ethics Committee on Animal and Human Experi-
mentation of the Autonomous University of Barcelona 
(CEEAH/3445).

Results
This section presents the results of the analyses using the 
proposed methodology over a real data set and they are 
compared to the most common alternatives. The perfor-
mance of the method is also studied by means of a com-
prehensive simulation study, with and without covariates.

Real data
In the database used to exemplify the use of the pro-
posed methodology, we have a total of n = 1564 workers. 
Among these, it is known that 946 (around 61%) were not 
at risk of being presenteeist because they were not ill on 
any day during the study period. These observations cor-
respond to the concept of structural zeros (1 − ω = 0.61), 
and an estimate of their proportion can be obtained by 
using zero inflated models, even taking into account the 
values of the variables used as explanations in the regres-
sion model. The proportion of presenteeists among those 
exposed is p = 0.70. Globally, a total of m = 430 workers 

(5)
f (p,ω) ∼ (p ·̟)m · (1− p · ω)n−m

·

U[0,1/2](ω) · U[1/2,1](p)

(6)

f (ω) ∼ ωm
∫ 1
1/2p

m
· (1− p · ω)n−mdp ∼

1
ω
·
∫ ω

ω/2t
m
· (1− t)n−mdt ∼

F(ω,m+1,n−m+1)−F( ω2 ,m+1,n−m+1)
ω

f (p) ∼ pm
∫ 1/2
o ωm

· (1− p · ω)n−mdω ∼

1
p ·

∫ p/2
o tm · (1− t)n−mdt ∼

F( p2 ,m+1,n−m+1)
p
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experienced the event of interest. In the following sub-
sections CI is used as an abbreviation of the confidence 
interval for frequentist analyses, and CrI is used for cred-
ibility interval when referring to the proposed Bayesian 
model.

Including the whole population
Taking all the population into consideration (n = 1564), i. 
e., including individuals at risk and not at risk (those who 
were not at risk during the study period), we fit a Bayes-
ian zero inflated Bernoulli model, where the proportion 
of structural zeros 1 −  ω is greater than 0.5 (prior uni-
form for ω at [0, 0.5]) and the proportion of sample zeros 
1 − p is less than 0.5 (prior uniform for p at [0.5, 1]). This 
information is extracted from [19]. In this case, without 
using covariates, the model allows estimating the values 
of ωˆ = 0.37 (95% CrI: 0.27–0.49) and pˆ = 0.74 (95% CrI: 
0.55–0.99). Here ωˆ and pˆ indicate the median of the 
marginal posterior of ω and p respectively. The a priori 
and a posteriori marginal distributions of both param-
eters are shown in Fig.  2. The different shapes between 
marginal priors and posteriors show that the models 
learn from the data.

On the other hand, analysing these data as is traditional 
in the literature, using a logistic regression model without 
taking into account that there are subjects who have not 
been at risk, the proportion obtained from presentists 
is 0.27 (95% CI: 0.25–0.30), a value with a controversial 

interpretation since it is significantly underestimating 
the proportion of presenters if the subjects who have not 
been at risk of being present are excluded, since it is ulti-
mately an estimate of ωˆ · pˆ, being impossible to identify 
the two parameters.

Additionally, the proposed model allows incorporat-
ing covariates in both pro- cesses. To illustrate how it 
works, we will consider here the self-perceived general 
state of health (categorized as good or bad) and the 
feeling of being replaceable, which is an item included 
in the vulnerability dimension of the Employment Pre- 
cariousness Scale [20], with categories “Always”, “Some-
times” and “Never”. The hypothesis is that the general 
state of health would be related to the risk of be- ing 
present (zero inflated part of the model) and the feel-
ing of being replaceable would be related to presenting 
the phenomenon once a worker is exposed (non zero 
inflated part in the model), so the model is including 
one covariate in each part (k = m = 1). The model was 
fitted using 5 Markov chains, 5000 iterations in each 
chain (half used for warmup and half for inference), a 
target average acceptance probability of 0.999 and a 
maximum allowed treedepth of 25. Notice that these 
technical values might need to be changed depending 
on the analysed data. As can be seen in the next sec-
tion, the results of the model shown in Table  1 largely 
co- incide with the standard logistic analyses reported 
in Table  2, particularly in the direction and impact of 

Fig. 2  Prior (left column) and posterior (right column) distributions for ω and p 
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associations. All R codes used in this paper are available 
as Supplementary Material.

Similarly to other regression models, the effect of never 
having the feeling of being replaceable over the odds of 
attending work when sick for someone who is at risk 
compared to workers who always have that sensation can 
be quantified by e− 1.04 = 0.35.

Excluding healthy population
If the information about which subjects are actually 
exposed to the phenomenon of interest is available (an 
ideal but unusual situation in practice), unexposed sub-
jects could be excluded and a logistic regression model 
could be adjusted to the exposed individuals. Using the 
same explanatory variables described in the previous sec-
tion, the corresponding coefficients and their 95% confi-
dence intervals are described in Table 2.

Simulation study
In order to check the performance of the proposed meth-
odology, 100 random samples were generated for each 
considered sample size (n  = 500, 1500), and combina-
tion of parameters. The zero inflated part was build upon 
the logistic regression model logit(P (X = 1)) = θ0 + θ1 · 
x1 + θ2 · x2, where x1 and x2 are two independent covari-
ates, each following a standard normal distribution. The 
non zero inflated part was build upon the logistic regres-
sion model logit(P (Y = 1 | X = 1)) = β0 + β1 · x3 + β2 · 
x4, where x3 and x4 are two independent covariates, each 
with a standard normal distribution. To cover different 

effect magnitudes, the following values for each param-
eter were considered:

•	 β0 = 0.5, 1, 2
•	 β1 = 2, 3, 4
•	 β2 = 3
•	 θ0 = − 0.5, − 1, − 2
•	 θ1 = − 2, − 3, − 4
•	 θ2 = − 3

It is important to notice that this is an extreme situa-
tion, in which we consider that all the mass probability of 
the parameter distributions is concentrated in one point, 
the “true” value of the parameter.

For each random sample, the posterior marginal distri-
butions of the parameters have been summarised by their 
median and percentiles 2.5 and 97.5%.

Tables  3 and 4 show, for each combination of param-
eters, the average estimates and upper and lower limits of 
the 95% credibility intervals. As no relevant differ- ences 
were observed regarding sample sizes, Tables  3 and 4 
shows only the results corresponding to n = 1500. The 
results corresponding to n  = 500 are available as Sup-
plementary Material. It can be seen that in all cases the 
original parameters used to generate the simulations can 
be properly recovered by the fitted models.

The R code used for the simulation is available as Sup-
plementary Material. An additional simulation was con-
ducted to evaluate the performance of the proposed 
methodology when there are no covariates involved, the 
details and results of this simulation can also be find in 
the Supplementary Material (Appendix A, Table S2).

Discussion
The proposed methodology is able to distinguish two 
different sources of zeros (structural and non-struc-
tural) from dichotomous data in a Bayesian framework 
by assuming priors with different parameters on pro-
portion of structural and non- structural zeros. Fur-
thermore, since it is freely available as an R package, it is 
easily usable for any researcher who needs to adjust this 
type of data and easily modifiable for more advanced 
users who need to adapt the model to their context, for 
example with different choices of the prior distributions 
of ω and p.

The approach used to analyse the SP is an important 
topic. Some studies include all working population to 
estimate SP, whilst other exclude “healthy” workers. As 
result, different conclusions in terms of prevalence and 
associated factors are obtained [21]. SP is an outcome 
resulting from mixing two phenomena, i.e. health status 
and exercise of rights. Health status plays a role regard-
ing the fact of being exposed; and, among the exposed, 

Table 1  Bayesian analysis on whole population. CrI stands for 
credible interval

Covariate Coefficient. (95% CrI)

Struct Intercept −0.40 (− 0.83, 0.22)

Bad 1.43 (0.83, 2.58)

Non-struct. Intercept 1.03 (0.16, 2.32)

Sometimes 0.03 (−0.73, 1.37)

Never −0.68 (− 1.38, − 0.15)

Table 2  Logistic regression on all population and only on 
exposed individuals. CI stands for confidence interval

Population Covariate Coefficient. (95% CI)

Whole population Intercept 1.07 (− 1.19, − 0.95)

Bad 1.05 (0.68, 1.42)

Only exposed Intercept 1.16 (0.79, 1.53)

Sometimes −0.02 (− 0.60, 0.56)

Never − 0.54 (− 0.97, − 0.11)
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Table 3  Simulation study results including covariates (I)

β0 β1 θ0 θ1 β0 (95% CrI) β1 (95% CrI) β2 (95% CrI) θ0 (95% CrI) θ1 (95% CrI) θ2 (95% CrI)

−2 0.5 (0.2, 0.9) 2 (1.6, 2.5) 3 (2.5, 3.7) −0.5 (− 0.8, − 0.2) − 2 (− 2.5, − 1.7) − 3.1 (− 3.6, − 2.6)

−0.5 − 3 0.5 (0.2, 0.9) 2 (1.6, 2.5) 3 (2.5, 3.7) −0.5 (− 0.8, − 0.2) − 3 (− 3.6, − 2.5) − 3 (− 3.6, − 2.5)

− 4 0.5 (0.2, 0.8) 2 (1.6, 2.5) 3 (2.5, 3.6) − 0.5 (− 0.8, − 0.2) − 3.9 (− 4.7, − 3.3) − 2.9 (− 3.5, − 2.4)

− 2 0.5 (0.2, 0.9) 2 (1.6, 2.5) 3 (2.4, 3.7) − 1 (− 1.3, − 0.7) − 2 (− 2.5, − 1.7) −3.1 (− 3.6, − 2.6)

2 − 1 − 3 0.5 (0.2, 0.9) 2 (1.6, 2.5) 3 (2.4, 3.7) −1 (− 1.3, − 0.7) −3 (− 3.6, − 2.5) −3 (− 3.6, − 2.5)

−4 0.5 (0.2, 0.9) 2 (1.6, 2.5) 3.1 (2.5, 3.7) −1 (− 1.3, − 0.7) −3.8 (− 4.6, − 3.2) − 2.9 (− 3.5, − 2.4)

− 2 0.5 (0.1, 1) 2 (1.5, 2.6) 3 (2.3, 3.8) − 2 (− 2.4, − 1.7) −2 (− 2.5, − 1.6) −3.1 (− 3.6, − 2.6)

−2 − 3 0.5 (0.1, 0.9) 2 (1.5, 2.6) 3 (2.4, 3.8) −2 (− 2.3, − 1.6) − 3 (− 3.6, − 2.4) − 3 (− 3.6, − 2.5)

−4 0.5 (0.2, 0.9) 2 (1.5, 2.5) 3 (2.4, 3.7) −1.9 (− 2.3, − 1.6) − 3.9 (− 4.7, − 3.3) − 2.9 (− 3.5, − 2.4)

− 2 0.5 (0.2, 0.9) 3 (2.4, 3.7) 3 (2.4, 3.7) −0.5 (− 0.8, − 0.2) − 2 (− 2.4, − 1.7) − 3 (− 3.6, − 2.6)

−0.5 − 3 0.5 (0.2, 0.9) 3 (2.5, 3.7) 3 (2.4, 3.6) −0.5 (− 0.8, − 0.2) − 3 (− 3.6, − 2.5) − 3 (− 3.6, − 2.5)

−4 0.5 (0.2, 0.8) 3 (2.5, 3.6) 3 (2.4, 3.6) − 0.5 (− 0.8, − 0.2) − 3.9 (− 4.7, − 3.3) − 2.9 (− 3.5, − 2.4)

− 2 0.5 (0.1, 0.9) 2.9 (2.3, 3.7) 2.9 (2.3, 3.7) −1 (− 1.2, − 0.7) − 2 (− 2.4, − 1.6) − 3 (− 3.5, − 2.5)

0.5 3 −1 − 3 0.5 (0.2, 0.9) 2.9 (2.4, 3.6) 3 (2.4, 3.6) −1 (− 1.3, − 0.7) − 3 (− 3.6, − 2.5) − 3 (− 3.6, − 2.5)

−4 0.5 (0.2, 0.8) 3 (2.4, 3.6) 3 (2.4, 3.6) −1 (− 1.3, − 0.7) −3.9 (− 4.7, − 3.3) − 2.9 (− 3.5, − 2.4)

− 2 0.4 (0, 0.9) 2.9 (2.2, 3.7) 2.9 (2.2, 3.7) −2 (− 2.4, − 1.7) −2 (− 2.4, − 1.6) − 3 (− 3.6, − 2.5)

−2 −3 0.5 (0.1, 1) 3 (2.3, 3.8) 3 (2.3, 3.8) −2 (− 2.4, − 1.6) − 3 (− 3.6, − 2.5) − 3 (− 3.6, − 2.5)

− 4 0.5 (0.1, 0.9) 3 (2.4, 3.7) 3 (2.4, 3.7) −2 (− 2.4, − 1.6) − 3.9 (− 4.7, − 3.3) −2.9 (− 3.5, − 2.4)

− 2 0.4 (0.1, 0.8) 3.9 (3.2, 4.8) 2.9 (2.4, 3.6) −0.5 (− 0.7, − 0.2) − 2 (− 2.4, − 1.6) − 3 (− 3.5, − 2.5)

−0.5 − 3 0.5 (0.1, 0.8) 3.9 (3.2, 4.7) 2.9 (2.3, 3.6) −0.5 (− 0.8, − 0.2) − 3 (− 3.5, − 2.5) − 3 (− 3.5, − 2.5)

−4 0.5 (0.2, 0.9) 4 (3.2, 4.8) 3 (2.4, 3.6) − 0.5 (− 0.8, − 0.2) − 3.9 (− 4.6, − 3.3) −2.9 (− 3.5, − 2.4)

− 2 0.5 (0.1, 0.9) 3.8 (3.1, 4.8) 2.9 (2.3, 3.6) −1 (− 1.3, − 0.7) − 2 (− 2.4, − 1.6) − 3 (− 3.5, − 2.5)

4 −1 − 3 0.5 (0.1, 0.9) 3.9 (3.1, 4.8) 2.9 (2.3, 3.6) −1 (− 1.3, − 0.7) −3 (− 3.5, − 2.5) −3 (− 3.5, − 2.5)

−4 0.5 (0.1, 0.9) 3.9 (3.2, 4.8) 2.9 (2.4, 3.6) − 1 (− 1.3, − 0.7) − 4 (− 4.7, − 3.3) − 3 (− 3.6, − 2.5)

−2 0.4 (0, 0.9) 3.8 (2.9, 4.9) 2.9 (2.2, 3.7) −2 (− 2.4, − 1.7) −2 (− 2.5, − 1.7) −3 (− 3.6, − 2.5)

−2 − 3 0.5 (0.1, 0.9) 3.9 (3.1, 5) 2.9 (2.3, 3.7) −2 (− 2.4, − 1.6) − 3 (− 3.6, − 2.5) − 3 (− 3.6, − 2.5)

−4 0.5 (0.1, 0.9) 3.9 (3.1, 4.8) 2.9 (2.3, 3.7) −2 (− 2.4, − 1.6) − 3.9 (− 4.7, − 3.3) −2.9 (− 3.5, − 2.4)

− 2 1 (0.7, 1.5) 2 (1.6, 2.5) 3 (2.5, 3.7) −0.5 (− 0.8, − 0.3) −2 (− 2.4, − 1.7) − 3 (− 3.6, − 2.6)

−0.5 − 3 1 (0.7, 1.4) 2 (1.6, 2.4) 3 (2.5, 3.6) −0.5 (− 0.7, − 0.2) − 3 (− 3.6, − 2.5) − 3 (− 3.5, − 2.5)

−4 1 (0.7, 1.4) 2 (1.6, 2.5) 3 (2.5, 3.6) − 0.5 (− 0.8, − 0.2) − 3.9 (− 4.6, − 3.3) −2.9 (− 3.5, − 2.4)

− 2 1 (0.6, 1.4) 2 (1.5, 2.5) 3 (2.4, 3.7) −1 (− 1.2, − 0.7) −2 (− 2.4, − 1.7) − 3 (− 3.6, − 2.6)

2 −1 − 3 1 (0.6, 1.4) 2 (1.6, 2.5) 3 (2.4, 3.6) −1 (− 1.3, − 0.7) − 3 (− 3.6, − 2.5) − 3 (− 3.6, − 2.5)

−4 1 (0.7, 1.4) 2 (1.6, 2.5) 3 (2.5, 3.7) −1 (− 1.3, − 0.7) − 3.9 (− 4.6, − 3.3) − 2.9 (− 3.5, − 2.4)

− 2 1 (0.5, 1.6) 2 (1.4, 2.6) 3 (2.3, 3.8) −2 (− 2.3, − 1.7) −2 (− 2.4, − 1.6) − 3 (− 3.6, − 2.5)

−2 − 3 1 (0.6, 1.5) 2 (1.5, 2.6) 3 (2.4, 3.8) −2 (− 2.4, − 1.7) − 3 (− 3.5, − 2.5) − 3 (− 3.6, − 2.5)

− 4 1 (0.6, 1.5) 2 (1.5, 2.5) 3 (2.4, 3.7) −1.9 (− 2.3, − 1.6) − 3.9 (− 4.6, − 3.3) − 2.9 (− 3.5, − 2.4)

− 2 1 (0.6, 1.4) 2.9 (2.4, 3.6) 2.9 (2.3, 3.6) −0.5 (− 0.7, − 0.2) −2 (− 2.4, − 1.7) −3.1 (− 3.6, − 2.6)

−0.5 − 3 1 (0.6, 1.4) 3 (2.4, 3.6) 3 (2.4, 3.6) −0.5 (− 0.8, − 0.2) − 3 (− 3.5, − 2.5) −3 (− 3.5, − 2.5)

− 4 1 (0.7, 1.4) 3 (2.5, 3.6) 3 (2.4, 3.6) − 0.5 (− 0.8, − 0.2) − 4 (− 4.7, − 3.4) − 3 (− 3.6, − 2.5)

− 2 0.9 (0.5, 1.4) 2.9 (2.3, 3.6) 3 (2.4, 3.7) −1 (− 1.2, − 0.7) − 2 (− 2.4, − 1.7) − 3 (− 3.6, − 2.6)

1 3 −1 −3 1 (0.6, 1.4) 3 (2.4, 3.7) 3 (2.4, 3.7) −1 (− 1.3, − 0.7) − 3 (− 3.6, − 2.5) − 3 (− 3.5, − 2.5)

− 4 1 (0.6, 1.4) 3 (2.4, 3.6) 3 (2.4, 3.6) −1 (− 1.3, − 0.7) −3.9 (− 4.6, − 3.3) − 2.9 (− 3.5, − 2.4)

−2 1 (0.5, 1.6) 3 (2.3, 3.9) 2.9 (2.3, 3.8) −2 (− 2.4, − 1.7) −2 (− 2.4, − 1.7) − 3 (− 3.6, − 2.6)

−2 −3 0.9 (0.5, 1.5) 2.9 (2.3, 3.7) 2.9 (2.3, 3.7) −2 (− 2.3, − 1.6) − 3 (− 3.6, − 2.5) − 3 (− 3.6, − 2.5)

− 4 0.9 (0.5, 1.4) 2.9 (2.3, 3.7) 2.9 (2.3, 3.7) −1.9 (− 2.3, − 1.6) −3.9 (− 4.7, − 3.3) − 2.9 (− 3.5, − 2.4)

− 2 0.9 (0.6, 1.4) 3.9 (3.1, 4.7) 2.9 (2.3, 3.6) −0.5 (− 0.7, − 0.3) − 2 (− 2.4, − 1.7) −3 (− 3.5, − 2.6)

−0.5 − 3 1 (0.6, 1.4) 3.9 (3.2, 4.8) 2.9 (2.4, 3.6) −0.5 (− 0.8, − 0.2) − 3 (− 3.6, − 2.5) −3 (− 3.6, − 2.6)

−4 0.9 (0.6, 1.3) 3.9 (3.2, 4.7) 2.9 (2.4, 3.6) − 0.5 (− 0.7, − 0.2) − 4 (− 4.7, − 3.4) − 3 (− 3.5, − 2.5)

− 2 0.9 (0.5, 1.4) 3.9 (3.1, 4.8) 2.8 (2.2, 3.6) −1 (− 1.3, − 0.7) − 2 (− 2.4, − 1.7) −3 (− 3.6, − 2.6)
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the lack of the exercise of the right to take a sick leave 
determines SP. Using the proposed ZIB approach one 
could describe, in a single analysis, both phenomena: 
first, which factors are associated to the exposure to 
presenteeism (to be “sick”, factors related to health sta-
tus), and after that, which factors increase the probabil-
ity of being presenteeist among the exposed workers.

The simulation study shows that, even with relatively 
small sample sizes the model is capable of producing 

reasonable estimates for the parameters involved in 
both the zero inflated and non zero inflated processes. 
As expected, the credibility intervals length diminishes 
with sample size while their coverage grows.

Conclusions
The proposed method is a reliable alternative for the 
analysis of zero inflated di- chotomous outcomes, as 
shown by the simulation study, and can be very useful 

Table 3  (continued)

β0 β1 θ0 θ1 β0 (95% CrI) β1 (95% CrI) β2 (95% CrI) θ0 (95% CrI) θ1 (95% CrI) θ2 (95% CrI)

4 −1 −3 1 (0.6, 1.4) 3.9 (3.2, 4.8) 2.9 (2.4, 3.7) −1 (− 1.2, − 0.7) − 3 (− 3.6, − 2.5) − 3 (− 3.6, − 2.5)

−4 1 (0.6, 1.4) 3.9 (3.2, 4.7) 2.9 (2.3, 3.6) −0.9 (− 1.2, − 0.7) −4 (− 4.7, − 3.3) −3 (− 3.5, − 2.5)

− 2 0.9 (0.4, 1.5) 3.8 (2.9, 4.9) 2.9 (2.2, 3.7) −2 (− 2.3, − 1.7) −2 (− 2.4, − 1.7) − 3 (− 3.5, − 2.5)

−2 −3 1 (0.5, 1.5) 3.9 (3, 4.9) 2.9 (2.2, 3.7) −2 (− 2.4, − 1.7) −3 (− 3.5, − 2.5) −3 (− 3.6, − 2.5)

−4 0.9 (0.5, 1.4) 3.9 (3.1, 4.9) 2.9 (2.3, 3.7) −1.9 (− 2.3, − 1.6) − 3.9 (− 4.6, − 3.3) − 3 (− 3.5, − 2.5)

Table 4  Simulation study results including covariates (II)

β0 β1 θ0 θ1 β0 (95% CrI) β1 (95% CrI) β2 (95% CrI) θ0 (95% CrI) θ1 (95% CrI) θ2 (95% CrI)

−2 1.9 (1.5, 2.5) 2 (1.5, 2.5) 3 (2.4, 3.7) −0.5 (− 0.7, − 0.2) −2 (− 2.4, − 1.7) −3.1 (− 3.6, − 2.6)

−0.5 −3 2 (1.6, 2.6) 2 (1.6, 2.5) 3 (2.4, 3.6) −0.5 (− 0.8, − 0.3) −3 (− 3.6, − 2.6) −3 (− 3.5, − 2.6)

−4 2 (1.6, 2.5) 2 (1.6, 2.5) 3 (2.4, 3.6) − 0.5 (− 0.8, − 0.2) −3.9 (− 4.6, − 3.4) −3 (− 3.5, − 2.5)

−2 1.9 (1.4, 2.5) 1.9 (1.5, 2.5) 2.9 (2.3, 3.6) −1 (− 1.2, − 0.8) − 2 (− 2.4, − 1.7) − 3.1 (− 3.6, − 2.6)

2 −1 −3 2 (1.5, 2.6) 1.9 (1.5, 2.5) 2.9 (2.4, 3.6) −1 (− 1.2, − 0.7) − 3 (− 3.5, − 2.6) −3 (− 3.5, − 2.5)

−4 2 (1.6, 2.6) 2 (1.6, 2.5) 3 (2.4, 3.7) −1 (− 1.3, − 0.7) − 4 (− 4.7, − 3.4) − 3 (− 3.5, − 2.5)

−2 1.9 (1.3, 2.7) 2 (1.5, 2.7) 2.9 (2.2, 3.8) −2 (− 2.3, − 1.7) −2 (− 2.4, − 1.7) −3 (− 3.5, − 2.6)

−2 −3 2 (1.4, 2.7) 2 (1.5, 2.6) 2.9 (2.3, 3.8) −2 (− 2.3, − 1.7) −3 (− 3.5, − 2.5) −3 (− 3.5, − 2.5)

− 4 1.9 (1.4, 2.6) 1.9 (1.5, 2.5) 2.9 (2.3, 3.7) −2 (− 2.3, − 1.7) −4 (− 4.7, − 3.4) − 3 (− 3.5, − 2.5)

−2 2 (1.5, 2.6) 3 (2.4, 3.7) 3 (2.4, 3.7) −0.5 (− 0.7, − 0.2) −2 (− 2.4, − 1.7) −3 (− 3.5, − 2.6)

−0.5 −3 2 (1.5, 2.5) 3 (2.4, 3.6) 2.9 (2.4, 3.6) −0.5 (− 0.7, − 0.3) −3 (− 3.5, − 2.6) −3 (− 3.5, − 2.5)

−4 1.9 (1.5, 2.5) 3 (2.4, 3.6) 2.9 (2.4, 3.6) −0.5 (− 0.7, − 0.2) −3.9 (− 4.6, − 3.4) − 2.9 (− 3.5, − 2.5)

−2 1.9 (1.4, 2.6) 2.9 (2.3, 3.7) 2.9 (2.3, 3.7) −1 (− 1.3, − 0.8) − 2 (− 2.4, − 1.7) −3 (− 3.5, − 2.6)

2 3 −1 −3 1.9 (1.4, 2.5) 2.9 (2.3, 3.6) 2.9 (2.3, 3.6) −1 (− 1.3, − 0.7) −3 (− 3.5, − 2.5) −3 (− 3.5, − 2.6)

− 4 1.9 (1.5, 2.5) 2.9 (2.3, 3.6) 2.9 (2.4, 3.6) −1 (− 1.3, − 0.7) −4 (− 4.7, − 3.4) − 3 (− 3.6, − 2.5)

−2 1.9 (1.3, 2.6) 2.9 (2.2, 3.7) 2.9 (2.2, 3.8) −2 (− 2.3, − 1.7) −2 (− 2.4, − 1.7) −3 (− 3.5, − 2.6)

−2 − 3 1.9 (1.3, 2.6) 2.9 (2.3, 3.7) 2.9 (2.2, 3.7) −2 (− 2.3, − 1.7) −3 (− 3.5, − 2.6) −3 (− 3.5, − 2.5)

− 4 2 (1.4, 2.6) 2.9 (2.3, 3.7) 2.9 (2.3, 3.7) −1.9 (− 2.3, − 1.6) − 3.9 (− 4.5, − 3.3) −2.9 (− 3.4, − 2.5)

− 2 1.9 (1.4, 2.5) 3.8 (3.1, 4.7) 2.9 (2.3, 3.6) −0.5 (− 0.7, − 0.3) −2 (− 2.4, − 1.7) −3.1 (− 3.5, − 2.6)

−0.5 −3 1.9 (1.4, 2.5) 3.8 (3.1, 4.7) 2.9 (2.3, 3.6) −0.5 (− 0.7, − 0.2) −3 (− 3.6, − 2.6) −3 (− 3.6, − 2.6)

−4 1.9 (1.4, 2.4) 3.8 (3.1, 4.7) 2.9 (2.3, 3.6) −0.5 (− 0.7, − 0.2) −4 (− 4.7, − 3.4) −3 (− 3.5, − 2.5)

−2 1.9 (1.4, 2.6) 3.8 (3, 4.8) 2.9 (2.3, 3.7) −1 (− 1.2, − 0.8) − 2 (− 2.4, − 1.7) − 3 (− 3.5, − 2.6)

4 −1 −3 1.9 (1.4, 2.5) 3.9 (3.1, 4.8) 2.9 (2.3, 3.6) −1 (− 1.3, − 0.7) − 3 (− 3.5, − 2.6) −3 (− 3.5, − 2.6)

− 4 2 (1.5, 2.5) 3.9 (3.2, 4.8) 2.9 (2.3, 3.6) − 1 (− 1.2, − 0.7) −3.9 (− 4.6, − 3.4) −3 (− 3.5, − 2.5)

−2 1.8 (1.2, 2.6) 3.8 (2.9, 4.9) 2.8 (2.1, 3.7) −2 (− 2.3, − 1.7) −2 (− 2.4, − 1.7) −3 (− 3.5, − 2.6)

−2 − 3 1.8 (1.3, 2.5) 3.7 (2.9, 4.7) 2.8 (2.1, 3.6) −2 (− 2.3, − 1.7) − 3.1 (− 3.6, − 2.6) −3 (− 3.6, − 2.6)

−4 1.9 (1.4, 2.6) 3.8 (3, 4.8) 2.9 (2.2, 3.7) −1.9 (− 2.3, − 1.6) − 3.9 (− 4.6, − 3.3) −2.9 (− 3.5, − 2.5)
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in  situations when there are two potential and indistin-
guishable sources of zeros. If there are covariates to be 
included in the model, the method is able to use them in 
order to identify the subpopulation at risk, and the Bayes-
ian strategy assures that the two sources of zeros may be 
detected even when there are no covariates by utilizing 
different priors for the probability of success of each Ber-
noulli variable. The proposed model has been compiled 
in the form of the bayesZIB R package [15], so it is pub-
licly available for any researcher facing this issue.
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