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Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating
cortical and limbic areas involved in cognition and emotional regulation. Dysregulation
of serotonergic transmission is associated with emotional and cognitive deficits in
psychiatric patients and animal models. Drugs targeting the 5-HT system are widely
used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-
HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the
development of anxiety, depression and cognitive function linked to mechanisms of
emotional learning and memory. In rodents fear conditioning and passive avoidance
(PA) are associative learning paradigms to study emotional memory. This review
assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular,
neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs
emotional memory through attenuation of neuronal activity, whereas presynaptic 5-
HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention.
Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation
and evidence is provided that 5HT7R can facilitate emotional memory upon reduced
5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in
cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and
phasic 5-HT release can exert different and potentially opposing effects on emotional
memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction.
Consequently, individual differences due to genetic and/or epigenetic mechanisms
play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which
increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic
5-HTR subtypes.

Keywords: emotional learning, fear conditioning, fear memory, 5-HT1A receptor ligands, 5-HT7 receptor ligands,
passive avoidance, serotonin

Abbreviations: 5-HT, 5-hydroxytryptamine; 5-HTR, 5-HT receptor; cAMP, cyclic AMP; CNS, central nervous system; Epac,
exchange proteins directly activated by cAMP; ERK, extracellular signal-related kinase; FC, fear conditioning; HR, heart rate;
MAPK, mitogen-activated protein kinase; PA, passive avoidance; PKA, protein kinase A; SSRI, selective serotonin reuptake
inhibitor.
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Introduction

Serotonin (5-HT) is a biogenic amine acting as a
neurotransmitter and neuromodulator. The distribution of
serotonin-containing neurons in the CNS have been studied in
different species and have been found to be localized exclusively
in the brainstem (Hunt and Lovick, 1982; Takahashi et al., 1986;
Ishimura et al., 1988). The majority of the serotonergic cell
bodies reside in the dorsal and median raphe nuclei but send
axons almost to the entire brain, including cortical, limbic,
midbrain, and hindbrain regions (Charnay and Léger, 2010). As
expected from the wide projection pattern of the 5-HT neurons,
serotonin modulates variable physiological functions, such as
sleep, arousal, feeding, temperature regulation, pain, emotions,
and cognition (Bradley et al., 1986; Barnes and Sharp, 1999;
Ögren et al., 2008; Berger et al., 2009; Artigas, 2015).

The pleiotropic behavioral effects of 5-HT are mediated by a
family of at least 14 5-HTR subtypes (Hoyer et al., 1994). These 5-
HTR subtypes are distributed in a brain- and cell-specific manner
and regulate distinct physiological processes, through different
and sometimes opposing signaling pathways (Hoyer and Martin,
1997; Hoyer et al., 2002).

The 5-HT1AR is one of the best-studied 5-HTR subtypes
due to its implication in anxiety-like behaviors (Heisler et al.,
1998; Parks et al., 1998; Toth, 2003), in depression (Lucki,
1991) as well as in cognitive processes that are impaired in
several psychiatric disorders (review by Ögren et al., 2008;
Millan et al., 2012). Its potential role as a drug target has
been also investigated (Tunnicliff, 1991; Den Boer et al., 2000;
Blier and Ward, 2003). The most common antidepressants, the
SSRIs, act by targeting the 5-HT1AR (Hervas and Artigas, 1998;
Artigas, 2015), supporting the key role of the 5-HT1AR in the
pathophysiology of mood disorders.

The 5-HT7Rs are implicated in depression and anxiety, and
evidence has been provided for their role in learning andmemory
(reviewed by Leopoldo et al., 2011). Interestingly, the 5-HT7R
and 5-HT1AR exert opposing roles in the modulation of fear
learning (Eriksson et al., 2008, 2012), pointing at the importance
of both 5-HTR subtypes and their signaling interaction in the
regulation of emotional learning.

After a brief introduction about the characteristics of 5-HT1A
and 5-HT7R (distribution, signaling, and ligands), this reviewwill
focus on the role of 5-HT1AR, 5-HT7R as well as its interplay
in emotional learning processes. The interaction between the 5-
HT1AR and 5-HT7R signaling will be discussed and results of
studies using different available 5-HT1AR and 5-HT7R ligands
on fear learning tasks are summarized. A considerable extent
of this review will also be dedicated to describe the region-
specific effects of 5-HT1AR and 5-HT7R, via local rather than
systemic administration. Overall, the aim of this review is to
draw general conclusions about the role of both 5-HT1AR
and 5-HT7R in fear learning, which may contribute to our
better understanding of the mechanisms underlying dysregulated
learning and memory in affective disorders. The focus here is
on fear learning because this one-trial learning task allows for
exact timing of pharmacological manipulations to discriminate
between different memory phases.

Characteristics of the 5-HT1A and 5-HT7
Receptors

All the 5-HTR subtypes belong to the G protein-coupled receptor
superfamily, with the exception of the 5-HT3R as ionotropic
receptor (Hoyer et al., 2002). The metabotropic 5-HTR subtypes
consist of seven transmembrane domains and are classified into
four groups based on the type of G proteins to which they are
coupled. The 5-HT1Rs (5-HT1AR, 5-HT1BR, 5-HT1DR, 5-HT1ER,
5-HT1FR) couple to Gαi/Gαo proteins, whereas the 5-HT2Rs
(5-HT2AR, 5-HT2BR, 5-HT2C) couple to Gαq proteins, and the
5-HT4R, 5-HT6R, and 5-HT7R couple to Gαs proteins. For the
5-HT5Rs (5-HT5AR and 5-HT5BR) G-protein coupling is not
established yet (Bockaert et al., 2006).

5-HT1A Receptor Localization
5-HT1AR was the first 5-HTR subtype to be cloned and is
characterized by its high affinity for 5-HT (Nichols and Nichols,
2008). 5-HT1ARs are widely distributed throughout the CNS and
are present in both pre- and postsynaptic sites. Presynaptically,
5-HT1ARs are exclusively located on the cell bodies and dendrites
of 5-HT neurons in the dorsal and median raphe nuclei (Riad
et al., 2000) and function as 5-HT1A autoreceptors which tightly
regulate 5-HT neuronal activity.

Postsynaptically, the highest level of 5-HT1AR is found
in the limbic system based on receptor autoradiography and
mRNA expression. Both techniques showed the distribution of
the 5-HT1AR in the lateral septum, cingulate and entorhinal
cortices, with particularly high expression in the hippocampus
(reviewed by Hannon and Hoyer, 2008). At the cellular level,
the postsynaptic 5-HT1AR is expressed in cortical pyramidal
neurons as well as pyramidal, GABAergic and granular cells
of the hippocampus (Hannon and Hoyer, 2008). At least
in the hippocampal formation, the 5-HT1AR is located on
somata and dendrites of pyramidal and granular neurons,
as well as on the dendritic spines of pyramidal neurons
(Riad et al., 2000). Moreover, 5-HT1AR immunoreactivity has
been demonstrated in different subgroups of neurons in the
septal complex with GABAergic septohippocampal parvalbumin-
containing projection neurons, GABAergic calbindin D-28-
containing neurons as well as cholinergic septohippocampal
neurons (Lüttgen et al., 2005a). This indicates that systemic
administration of 5-HT1AR ligands can modify hippocampal
function through effects on septohippocampal neurons that are
responsible for the theta rhythm which plays an important role
in memory functions (Elvander-Tottie et al., 2009).

5-HT1A Receptor Signaling
Activation of 5-HT1AR leads to neuronal hyperpolarization, an
effect mediated by pertussis-toxin-sensitive Gαi/o proteins. Gαi/o
proteins are negatively coupled with the signaling pathway of
adenylyl cyclase and thereby decrease the cAMP formation (De
Vivo and Maayani, 1986; Weiss et al., 1986). Despite their high
density in the dorsal raphe nucleus, 5-HT1A autoreceptors do
not seem to inhibit AC, but mediate neuronal inhibition through
different signaling pathways (Clarke et al., 1996). Both post- and
presynaptic 5-HT1ARs inhibit neuronal firing via the activation

Frontiers in Pharmacology | www.frontiersin.org 2 August 2015 | Volume 6 | Article 162

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Stiedl et al. 5-HT1A and 5-HT7 receptor interaction

of G protein-coupled inwardly rectifying potassium channels as
well as the inhibition of Ca2+ channels (Sodickson and Bean,
1998; Bockaert et al., 2006). A multitude of other signaling
pathways and effectors has been also linked to the activation of
the 5-HT1AR (reviewed by Raymond et al., 2001; Bockaert et al.,
2006).

5-HT7R Localization
The 5-HT7R was the last 5-HTR subtype to be cloned by using
a targeted screening analysis of mammalian cDNA libraries
and probes from already known receptors (Bard et al., 1993;
Lovenberg et al., 1993; Ruat et al., 1993). Although 5-HT7Rs
demonstrate a high interspecies homology (>90%; To et al.,
1995), they share a low homology with the other 5-HTR subtypes
(<50%; Bard et al., 1993). Northern blot analysis and in situ
hybridization studies demonstrate high expression of 5-HT7R in
the CNS and particularly in the hypothalamus (suprachiasmatic
nucleus), thalamus, hippocampus, and cerebral cortex (Bard
et al., 1993; Lovenberg et al., 1993; Ruat et al., 1993). Like 5-
HT1AR, the 5-HT7R is also localized in the raphe nuclei in both
rodent and human brain, which has raised questions about its
role in the regulation of 5-HT levels (Martin-Cora and Pazos,
2004). At the neuronal level, 5-HT7R is expressed in hippocampal
CA pyramidal neurons with a higher density in CA3 than in
CA1 (Bonaventure et al., 2004) and a differential expression,
with selective localization on the cell bodies in CA1 pyramidal
neurons (Bickmeyer et al., 2002). Little is known, however, about
the expression patterns of 5-HT7R in cortical neurons, where it
is suggested that 5-HT7R may have a role during the developing
stages of cortical circuits (Béïque et al., 2007; Celada et al., 2013).

5-HT7 Receptor Signaling
5-HT7R activation activates adenylyl cyclase signaling and
consequently the conversion of ATP to cAMP through coupling
to Gαs (Bard et al., 1993; Lovenberg et al., 1993; Ruat et al., 1993).
Although cAMP activation is commonly mediated by the PKA,
it has been demonstrated that Epac, a member of the cAMP-
regulated guanine nucleotide exchange family, has a crucial role
in PKA-independent signaling (Lin et al., 2003). For instance, 5-
HT7Rs activate the MAPK/ERK signaling pathway (Errico et al.,
2001; Norum et al., 2003) via the stimulation of the Epac factor
(Lin et al., 2003). Binding of cAMP to Epac leads to the activation
of several other signaling pathways (reviewed by Holz et al.,
2006).

Functional Roles of 5-HT1AR and 5-HT7
Receptors

The expression of 5-HT1AR and 5-HT7R in the limbic system
(Hannon and Hoyer, 2008; Berumen et al., 2012) support
a role in the modulation of functions like mood, memory
processing as well as emotional association with memory.
The 5-HT1AR has been proposed to modulate anxiety based
on studies with 5-HT1AR knockout mice (Heisler et al.,
1998; Parks et al., 1998; Toth, 2003) and the response to
antidepressant drugs (Blier and Ward, 2003; Artigas, 2015).

Several partial 5-HT1AR agonists, e.g., buspirone, have been
used to treat anxiety and depression (Tunnicliff, 1991; Den
Boer et al., 2000), whereas co-administration of pindolol
(β-adrenergic and 5-HT1AR antagonist) with SSRIs enhances
their therapeutic efficacy and shortens their onset of action
(reviewed by Artigas et al., 2001). A considerable body of
literature demonstrates the 5-HT1AR involvement in various
hippocampus-dependent learning and memory tasks (reviewed
by Ögren et al., 2008).

In contrast, the available data on the function of 5-HT7R is
relatively limited, mainly due to the lack of selective agonists
specific for this 5-HTR subtype (Misane andÖgren, 2000;Nichols
and Nichols, 2008; Leopoldo et al., 2011). The physiological role
of 5-HT7R has been closely linked with the regulation of sleep,
circadian rhythm, pain and also mood (reviewed by Leopoldo
et al., 2011). Accumulating data implicates the 5-HT7R in the
action of antidepressant drugs, whereas the results from anxiety
studies are contradictory (Leopoldo et al., 2011). Interestingly,
studies using 5-HT7R knockout mice revealed the crucial role of
this receptor in hippocampus-dependent memory (Roberts et al.,
2004; Sarkisyan and Hedlund, 2009).

5-HT1A and 5-HT7 Receptor Ligands

General Receptor Ligand Principles
Agents that act as receptor ligandsmay be agonists or antagonists.
Agonists initiate physiological changes by activating downstream
signaling pathways, whereas antagonists bind to receptors
without producing any effect (Rang et al., 2015). Ligands can be
divided in three categories based on their function:

(1) Full agonists produce a maximal response equivalent to the
endogenous agonist (here 5-HT). These agonists have high
efficacy (i.e., the ability to initiate changes which leads to
effects) for the binding receptor.

(2) Partial agonists are not capable of producing the maximal
functional response even when they occupy the entire
receptor population. These agonists present intermediate
efficacy. Respectively, we could refer to partial antagonists
that bind to the active site (competitive antagonism) but do
not completely abolish the receptor-mediated effects.

(3) Mixed profile ligands that (appear to) act both as agonists and
as antagonist in distinct receptor populations. More likely,
they have different agonist profiles at different receptor sites
(e.g., pre-versus postsynaptic 5-HT1AR) and therefore appear
to exert antagonist function in the presence of a full agonist,
while acting as weak (partial) agonist thereby lowering the
efficacy of the full agonist.

The function of any ligand used to study the role of 5-
HT1AR and 5-HT7R is essential for the correct interpretation
of the behavioral outcome. It is also important to mention that
the intrinsic efficacy of a ligand is equally depended on the
characteristics of response system; in our case the different brain
populations of 5-HT1AR and 5-HT7R and their downstream
signaling pathways. Agonists acting on the same receptor can
produce different effects depending on their physicochemical
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properties, brain distribution, full or partial agonism as well as
the number of coupled receptors in a brain area. The specificity
of the compounds used is another very important characteristic
that should be always taken into consideration and is referred
to the ligand’s specific binding to the targeted receptor. Ligands
with low specificity cannot be used to clarify the functional role
of 5-HT1AR and 5-HT7R, since the produced effects can be also
mediated via the binding to other proteins than the receptor of
interest.

The physicochemical properties of compounds play an
essential role for the drug uptake and diffusion with lipophilicity,
solubility and molecular mass being among the most important
properties (Waterhouse, 2003). The lipophilic nature of ligands
is particularly important when they are administered locally.
Increasing lipophilicity leads to enhanced blood–brain barrier
diffusion, prevents the drug restriction in the area of interest and
consequently produces wider effects, despite local application.
This is evident from dorsohippocampal infusion of the blood–
brain barrier penetrating drug 8-OH-DPAT, a full 5-HT1AR
agonist, which impairs tone-dependent memory (Stiedl et al.,
2000a), whereas this does not occur when the NMDARantagonist
APV (Stiedl et al., 2000b) and the GABAAR agonist muscimol
are locally applied (Misane et al., 2013). The latter study is one

of the few demonstrating the selective drug action in the dorsal
hippocampus based on fluorescently labeled muscimol as bodipy
conjugate. Besides the solubility of compounds and the applied
dose, it is thus of high importance to consider other physico-
chemical properties, such as half-life in vivo, to avoid misleading
conclusions due to their wider spread (e.g., diffusion or potential
active transport) in brain outside the target sites. The molecular
weight of compounds can also provide valuable information
about the diffusion capacity.

5-HT1A Receptor Agonists
The prototypic 5-HT1AR agonist 8-OH-DPAT was the first full
agonist developed (Arvidsson et al., 1981; Gozlan et al., 1983)
and is still the most widely used to study the functional role of
5-HT1AR in behavioral manipulations (Barnes and Sharp, 1999).
Despite its high selectivity for the 5-HT1AR, 8-OH-DPAT also
acts as a 5-HT7R agonist (Bickmeyer et al., 2002; Eriksson et al.,
2008) and observed effects can be the result of an interplay
between the two receptor subtypes (see below).

Additionally, several full and partial agonists have been
synthesized (see Table 1), but only a few of them have been used
in fear learning studies, such as the buspirone and tandospirone.
Buspirone belongs to the arylpiperazine (partial) agonists (Hjorth

TABLE 1 | Selected overview on available 5-HT1A receptor agonists and ligands with mixed profile (reported function as presynaptic agonist and
postsynaptic antagonist).

Function Compound Receptor Specificity MW Solvent BBB penetr. Behavior Reference

Full/partial Alnespirone
(S-20499)

5-HT1A >> D2 >> 5-
HT1B,2 >> α,β >> D1 >> H1

(pre-synaptic)

479 W n.a. A Griebel et al. (1992)

Partial Buspirone 5-HT1A = D2 >> α1,α2 385.5 W n.a. A, L Hjorth and Carlsson (1982),
Quartermain et al. (1993)

Full F-13640 5-HT1A >> n.a. 393.1 w Yes N Deseure et al. (2002), Heusler et al.
(2010); GtP

Partial F-13714 5-HT 1A >> 5-HT 1B−F,2−7 n.a. w n.a. PPI Assié et al. (2006)

Full F-15599 5-HT1A (post-
synaptic) >> 5-HT1B−F,2−7

394.1 n.a. Yes FST Maurel et al. (2007), Newman-Tancredi
et al. (2009); GtP

Full Flesinoxan 5-HT1A >> α1

(antagonist) >> D2

415.5 W Yes A Ahlenius et al. (1991), Hadrava et al.
(1995)

Partial Ipsapirone (TVX Q
7821)

5-HT1A >> α1 (antagonist) 401.5 w Yes A Traber et al. (1984)

Partial/full LY-228729 5-HT1A >> 5-HT1B n.a. w n.a. L, FST Swanson and Catlow (1992)

n.a. NDO-008 5-HT1A >> n.a. n.a. w n.a. L Misane et al. (1998)

Full 8-OH-DPAT 5-HT

1A >> 5-HT7 >> 5-HT4 >> D2

328.3 w Yes A, L Arvidsson et al. (1981), Hadrava et al.
(1995)

Full/Partial Osemozotan
(MKC-242)

5-HT1A >> α1 379.8 w n.a. A Matsuda et al. (1995), Sakaue et al.
(2003)

Partial PRX-00023 5-HT 1A >> 5-HT 1B>α1>α2 n.a. w n.a. A Becker et al. (2006)

Full Repinotan (BAY x
3702)

5-HT 1A >> 5-
HT7 >> α1>α2>5-HT4

400.5 HC1 Yes L De Vry et al. (1998), Schwarz et al.
(2005)

Partial Tandospirone
(SM-3997)

5-HT1A >> D2 383.5 w n.a. A, L Shimizu et al. (1987)

Mixed profile S-15535 n.a. 432.5 w Yes A, L Millan et al. (1993), Carli et al. (1999)

Mixed profile MDL-73005 n.a. w n.a. L Hajós-Korcsok et al. (1999), Bertrand
et al. (2001)

A, anxiety; BBB, blood–brain barrier; D: FST; forced swim test; GtP, guide to pharmacology, see http://guidetopharmacology.org/; HCl, soluble in acidified aqueous
solution; L, learning and memory tests; N, nociception; n.a., not available; penetr., penetrance; PPI, pre-pulse inhibition; W, soluble in water and/or saline.
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and Carlsson, 1982) and acts also as antagonist with high
specificity for the dopamine D2 receptor (Witkin and Barrett,
1986). Tandospirone (SM-3997) is a 5-HT1AR partial agonist
and was initially studied for its anxiolytic properties in rats and
mice (Shimizu et al., 1987). Similar to buspirone, tandospirone
also exhibits dopamine antagonist action with a potency that is
considerably lower than the one for the 5-HT1AR (Shimizu et al.,
1987). An overview of currently available 5-HT1AR agonists is
provided in Table 1.

5-HT1A Receptor Antagonists
WAY-100635 and NAD-299 are the most commonly used
selective antagonists in the study of the 5-HT1AR. Both ligands
have high potencies and penetrate easily into the brain (Fletcher
et al., 1996; Johansson et al., 1997; Stenfors et al., 1998). However,
NAD-299 was found to have higher selectivity for the 5-HT1AR
than WAY-100635 (Fletcher et al., 1996; Johansson et al., 1997).

The last years novel compounds have been used to assess the
role of 5-HT1AR in emotional learning, such as the potent and
selective 5-HT1AR antagonists SRA-333 (lecozotan; Skirzewski
et al., 2010), MC18 fumarate and VP08/34 fumarate (Siracusa
et al., 2008; Pittalà et al., 2015).

The agents that were initially used as 5-HT1AR antagonist
were 2-methoxyphenylpiperazine derivatives with structural
similarity to buspirone, such as BMY-7378 and NAN-190 (Greuel
and Glaser, 1992). However, these ligands were characterized as
partial 5-HT1AR antagonist with antagonist properties only at
the postsynaptic HT1AR and lower affinity for the α-adrenergic
receptors (Greuel and Glaser, 1992).

Finally, S-15535 is reported to act as a postsynaptic 5-HT1AR
antagonist while also behaving as an agonist on presynaptic
5-HT1A autoreceptors, and therefore, it is characterized as a
mixed profile ligand (Millan et al., 1993; Carli et al., 1999).
However, a more recent study indicates predominantly weaker
agonist activity of S-15535 at postsynaptic 5-HT1ARs (Youn et al.,
2009). An overview of currently available 5-HT1AR antagonists is
provided in Table 2.

5-HT7 Receptor Agonists
The lack of selective and potent 5-HT7R agonists (Misane and
Ögren, 2000; Leopoldo, 2004; Leopoldo et al., 2011) is one of the
major limitations to study the role of 5-HT7R in learning and
memory. Currently, only a few selective 5-HT7R agonists exist
and even less has been used in learning and memory studies.
AS-19 and LP-44 are highly selective but low efficacy (partial)
HT7R agonists whose functional role in fear learning was recently
assessed (Eriksson et al., 2012). LP-211 is a novel highly selective
5-HT7R agonists (Leopoldo et al., 2008) but it has so far only
been tested in an autoshaping Pavlovian/instrumental learning
task (Meneses et al., 2015). An overview of currently available
5-HT7R agonists is provided in Table 3.

5-HT7 Receptor Antagonists
SB-258719 is the first selective 5-HT7R antagonist described
(Forbes et al., 1998) but has not yet been used to investigate the
role of 5-HT7R in the modulation of emotional learning. Both
SB-656104-A and SB-269970 possess high potency and selectivity

for 5-HT7R (Lovell et al., 2000; Thomas et al., 2002, 2003). These
are the most commonly used 5-HT7R antagonists in behavior
studies. An overview of currently available 5-HT7R antagonists
is provided in Table 3.

Behavioral Tasks for the Assessment of
Emotional Learning and Memory

The experimental studies on emotional learning and memory
in animals are based originally on psychological analysis
of conflict behavior involving approach and avoidance of
conditioned stimuli. Traditionally, the assays used to investigate
animal behavior are based on the association of pleasant (i.e.,
motivationally related reward like food) or aversive stimuli
(i.e., conditions related to negative feelings like pain and
danger) to environmental cues involving classical (Pavlovian) or
instrumental conditioning (Ögren and Stiedl, 2015).

The FC and the PA tasks are the most commonly used
associative learning paradigms based on contextual fear learning.
This type of learning is dependent on the operation of neuronal
circuits in the limbic system, such as hippocampus and amygdala
(Cahill and McGaugh, 1998; LeDoux, 2000) as demonstrated
by us in mice (e.g., Stiedl et al., 2000a,b; Baarendse et al.,
2008). Unlike FC, PA also includes instrumental learning. In
the step-through PA test, the animal needs to suppress its
innate preference for the dark compartment (where it previously
received a foot shock) and remain in the bright compartment. In
the step-down PA paradigm, however, the retention is examined
in the dark compartment, where the animal received the foot
shock (unconditioned stimulus) after stepping down from an
elevated platform. The PA test procedure can be modified to
examine any facilitating effect of the treatment on PA retention
(Madjid et al., 2006). More specific information on the PA
task is provided elsewhere (Ögren and Stiedl, 2015). A refined
version of this task may provide for better translational aspects
to assess pathological fear states such as post-traumatic-like
responses based on deliberate choice of mice (Hager et al.,
2014).

The single-trial learning design of FC and PA, which is
sufficient to establish long-term and remote memory, allows
the exact timing of the drug treatment in relation to training
and retention test. Thereby, unlike multi-session tasks, one-
trial tasks provide a unique advantage to study learning
mechanisms as well as drug effects (here 5-HT1AR and
5-HT7R ligands) on the different phases of learning and
memory, i.e., the acquisition phase that consists of encoding
and early consolidation, consolidation, the recall (retrieval
and expression) phase as well as the extinction phase and
reconsolidation.

Effects of 5-HT1A Receptor Ligands in
Emotional Learning and Memory

An overview of the behavioral effects of various 5-HT1AR ligands
is provided in Table 4.
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TABLE 2 | Selected overview on available 5-HT1A receptor antagonists.

Function Compound Receptor specificity MW Solvent BBB
penetr.

Behavior Reference

Partial BMY-7378 5-HT1A >> α1 >> α2 (partial agonist
function) >> 5-HT7 >> 5-HT 1D

385.9 W + A, L Greuel and Glaser (1992),
Grasby et al. (1992)

Partial LY-426965 HT1A >> 5-HT1B (partial agonist
function)

471.1 W n.a. A Rasmussen et al. (2000); http://
sis.nlm.nih.gov/

MC18 fumarate 5-HT1A >> n.a 515.7 W n.a. L Pittalà et al. (2015)

MP3022

NAD-299
(Robalzotan

5-HT1A >> α1 >> 5-HT2A, α2, β,
D1 and D2

5-HT1A >> α1,α2, β

351.5 354.9 n.a.

W

n.a.

+

n.a.

A, L

Filip and Przegaliñski (1996)
Johansson et al. (1997), Madjid
et al. (2006); http://chem.sis.
nlm.nih.gov/

Partial NAN-190 HT1A >> α1 (partial agonist function
reported) >> 5-HTR, D

393.5 W n.a. A, L Raghupathi et al. (1991), Greuel
and Glaser (1992)

p-MPPI 5-HT1A >> α1 542.4 W + A Kung et al. (1994), Allen et al.
(1997); http://pubchem.ncbi.
nlm.nih.gov/

p-MPPF 5-HT1A >> α1 507.4 n.a. + n.a. Kung et al. (1996), Passchier
et al. (2000); http://pubchem.

ncbi.nlm.nih.gov/

SB-649915 n.a., combined function as 5-HT1A/B

autoreceptor antagonist and SSRI
n.a. MC n.a. A Starr et al. (2007)

Spiperone 5-HT1A >> 5-HT2A/c >> D2

antagonist and αlb antagonist
n.a. MC n.a. A Starr et al. (2007)

SRA-333
(Lecozotan)

5-HT1A >> α1 >> D2 >> D3 >> D4

(α and D agonist)
n.a. W n.a. A, L Schechter et al. (2005)

(S)-UH-301 5-HT1A >> D2, D3 (agonist) 301.8 W Yes A, L Moreau et al. (1992), Jackson
et al. (1994)

VP-08/34 fumarate 5-HT1A >> n.a 513.6 W Yes L Pittalà et al. (2015)

WAY-100635 5-HT1A >> α1 >> D2 >> D3 >> D4 538.6 W Yes A, L Fletcher et al. (1996), Pike et al.
(1996)

WAY-405 5-HT1A >> α n.a. MC Yes A, L Minabe et al. (2003),
Villalobos-Molina et al. (2005)

WAY-101405 5-HT1A >> n.a n.a. W Yes L Hirst et al. (2008)

A, anxiety; BBB, blood–brain barrier; D: FST, forced swim test; L, learning and memory tests; MC, methylcellulose; n.a., not available; penetr., penetrance; PPI, pre-pulse
inhibition; S*, 2-hydroxypropyl-β-cyclodextrin; W, soluble in water and/or saline.

Systemic 5-HT1A Receptor Ligand Effects
Despite the differences among the 5-HT1AR ligands in their
chemical and pharmacological features (e.g., receptor selectivity
and partial or full agonist properties; see Tables 1 and 2), there is
strong evidence for the impairing effect of postsynaptic 5-HT1AR
activation on fear memory. Systemic, pretraining administration
of the full 5-HT1AR agonist 8-OH-DPAT shows a biphasic effect
on PA performance, with the low dose range (0.01, 0.03 mg/kg)
facilitating and the high dose range (0.1–1 mg/kg) impairing PA
retention 24 h after training in both rats (Misane and Ögren,
2000; Lüttgen et al., 2005b) and mice (Madjid et al., 2006). The
impairing dose of 8-OH-DPAT (0.2 and 0.3 mg/kg) also induces
signs of the serotonin syndrome (Carli et al., 1992; Lüttgen
et al., 2005b) linking the postsynaptic 5-HT1AR to the learning
deficits. In line with these results, FC studies demonstrated that
pretraining systemic injections of high doses (0.1–0.5 mg/kg)
of 8-OH-DPAT impair fear learning (Stiedl et al., 2000a; Youn
et al., 2009). Pretreatment with the selective 5-HT1AR antagonist

WAY-100635 (0.03–1 mg/kg) blocked the impairment in freezing
(FC) and transfer latency (PA), confirming and extending the
detrimental role of the postsynaptic 5-HT1AR activation on
memory acquisition.

The observed memory deficit was already present in short-
term memory tests performed 1 h after training for FC retention
(Stiedl et al., 2000a) and 5 min after PA training (Misane and
Ögren, 2000). Thus, postsynaptic 5-HT1AR activation specifically
impairs memory encoding of the aversive experience and
not memory consolidation. In agreement to that observation,
immediate 8-OH-DPAT post-training administration did not
alter PA or FC retention (Misane and Ögren, 2000; Madjid et al.,
2006).

Local 5-HT1A Receptor Ligand Effects
Intracranial administration of 5-HT1AR agonists and/or
antagonists was used to further elucidate the distinct function
of pre- versus postsynaptic 5-HT1ARs in fear learning. Pre-
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TABLE 3 | Selected overview on available 5-HT7 receptor agonists and antagonists.

Function Compound Receptor specificity MW Solvent BBB
penetr.

Behavior Reference

Agonists

Partial AS-19 5-HT7 >> n.a. 283.41 PG n.a. L, N Brenchat et al. (2009), Eriksson
et al. (2012)

Full E-55888 n.a. 257.4 W n.a. N Brenchat et al. (2009);
http://pubchem.ncbi.nlm.nih.gov/

n.a. LP-211 5-HT7 >> D2 > 5-HT1A 466.6 DMSO Yes L Leopoldo et al. (2008), Meneses
et al. (2015); http://pubchem.ncbi.
nlm.nih.gov/

Partial LP-44 5-HT7 >> 5-HT1A (agonist function)
>> 5-HT2A

488.1 PG Yes L, REM
Sleep

Monti et al. (2008), Eriksson et al.
(2012); http://pubchem.ncbi.nlm.

nih.gov/

Partial MSD-5a 5-HT7 >> 5-HT1A >> 5-HT2A >> D2 n.a. W n.a. N Thomson et al. (2004), Brenchat
et al. (2009)

Antagonists

DR4004 5-HT7 >> 5-HT2 > D2 > HT1A > HT6 > HT4 382.5 T80 A, L n.a. Kikuchi et al. (1999);
http://pubchem.ncbi.nlm.nih.gov/

SB-258719 5-HT7 >> 5-HT1D >> D2,
D3 >> 5- >> 5-HT1B,5-HT2B >> HT1A

338.5 W n.a. N Forbes et al. (1998), Brenchat et al.
(2009); http://pubchem.ncbi.nlm.

nih.gov/

SB-269970∗ 5-HT7 >> 5-HT5A >> D2 > 5-HT1B > HT1D 352.5 T80 Yes A, FST, L Lovell et al. (2000), Thomas et al.
(2002), Wesolowska et al. (2006),
Eriksson et al. (2012); http://
pubchem.ncbi.nlm.nih.gov

SB-656104-A 5-HT7 >> 5-HT1D > 5-HT2A >HT2B>D2

>5-HT5A

n.a MC Yes L, REM
Sleep

Thomas et al. (2003), Horisawa
et al. (2011)

SB-258741∗∗ 5-HT7 >> 5-HT1A > D3 > HT1B,
D2 > 5-HT1D

350.5 W n.a. SZ Lovell et al. (2000), Pouzet et al.
(2002); http://pubchem.ncbi.nlm.

nih.gov/

A, anxiety; BBB, blood–brain barrier; DMSO, dimethyl sulfoxide; FST, forced swim test; L, learning and memory tests; MC, methylcellulose; n.a., not available; penetr.,
penetrance; PG, propylene glycol; PPI, pre-pulse inhibition; SZ, schizophrenia assays; T80: Tween 80; W: soluble in water and/or saline; *behaves as quasi-full inverse
agonist (Mahé et al., 2004); **behaves as partial inverse agonist (Mahé et al., 2004).

but not post-training intra-hippocampal infusion of 8-
OH-DPAT impairs contextual FC (Stiedl et al., 2000a),
pointing at the important role of the postsynaptic 5-
HT1AR in acquisition processes as observed after systemic
administration.

Effects of 5-HT1A Receptor Agonists and
Antagonists on Memory Recall

Systemic 5-HT1A Receptor Ligand Effects
Unlike the unambiguous implication of the postsynaptic 5-
HT1AR in memory acquisition, its role in fear retrieval and
expression is less clear. The systemic 5-HT1AR agonist NDO-
008 (0.5 mg/kg) administered before the retention test to
rats impairs slightly PA performance (Misane et al., 1998).
In contrast, systemic administration of buspirone at the dose
of 1 and 3 mg/kg had no effect on fear expression in
mice (Quartermain et al., 1993). These different effects may
partly depend on the readouts and the side effects elicited by
higher 5-HT1AR dosages, such as the hypolocomotion induced
together with the serotonin syndrome (Stiedl et al., 2000a). The
hypolocomotion confounds the interpretation of fear expression

results in mice when based on freezing. Moreover, it also
possible that differences exists between rats and mice, although
our own data shows high similarity of results in these two
species.

Therefore, a recent study tried to clarify the role of the
5-HT1AR in fear recall, by assessing the effect of 8-OH-
DPAT on fear-conditioned HR responses (reviewed by Stiedl
et al., 2009) upon training and 24 h after training, in mice
(Youn et al., 2013). Systemic pretest administration reduced
the conditioned maximum HR as a consequence of the
significantly reduced baseline HR before the presentation of
the conditioned stimulus (tone). However, the tone-induced
HR increase was preserved during the retention of auditory
fear in mice with similar magnitude as compared to that in
controls. Additionally, 8-OH-DPAT reduced the unconditioned
tachycardia elicited by novelty exposure as a consequence of
altered HR dynamics indicating autonomic dysregulation with
enhanced parasympathetic function through postsynaptic 5-
HT1AR activation (Youn et al., 2013). Thus, the claims of
anxiolytic actions of pretest injection of 5-HT1AR agonists as
initially reported in human studies and partly in animal models
cannot be supported unambiguously at least in learned fear
experiments.
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TABLE 4 | Overview of the behavioral effects of 5-HT1A receptor agonists, ligands with mixed profile and antagonists in fear learning tasks.

Compound Species:
Strain

Time of
injection

Dose
(mg/kg)

Admin.
route

Behavior assay and behavioral
consequences

Reference

Agonists

Buspirone M: Swiss-W. 30 min pretr. 1 s.c. FC: reduced freezing in 24-h delay Quartermain et al. (1993)

NDO-008 R: Sprague-D. 15 min pretr. 0.25–1.0 s.c. PA: impaired PA retention at 24-h
test

Misane et al. (1998)

8-OH-DPAT M: C57BL/6J 15 min pretr. 0.05 and 1 s.c. FC: impaired freezing at 1-h and
24-h test

Stiedl et al. (2000a)

0 min post-tr. 0.05 and 1 s.c. FC: no effect Stiedl et al. (2000a)

15 min pretr. 2 × 2.5 μg i.h. FC: impaired freezing at 24-h test Stiedl et al. (2000a)

M: C57BL/6J 15 min pretr. 0.3 s.c. PA: impaired PA retention at 24-h
test

Eriksson et al. (2012)

Tandospirone M: Swiss-W. 30 min pretr. 2 and 5 s.c. FC: reduced freezing at 24-h test Quartermain et al. (1993)

M: Swiss-W. 30 min pretr. 2 and 5 s.c. FC: no effect at 1-h test Quartermain et al. (1993)

M: Swiss-W. 30 min pretest 2 and 5 s.c. FC: no effect Quartermain et al. (1993)

M: Swiss W. 30 min pretr. 2.5 and 5 s.c. PA: DD PA retention impairment Mendelson et al. (1993)

Mixed profile

MDL-73005 R: Long-E. 15 min pretr. 2 i.p MWM: no effect alone but
prevented the memory impairment
induced by scopolamine
(0.25 mg/kg)

Bertrand et al. (2001)

S15535 M: C57BL/6J 20 min pretr. 0.01–05 s.c. FC: impairment at higher dose
(>2 mg/kg)

Youn et al. (2009)

Antagonists

BMY-7378 M: Swiss-W. 30 min pretr. 0–5 s.c. PA: no effect Mendelson et al. (1993)

MC18 M: C57BL/6J 15 min pretr. 0.1–1 s.c. PA: U-shaped PA retention
facilitation (maximum at 0.3 mg/kg)

Pittalà et al. (2015)

NAD-299 M: C57BL/6J 20 min pretr. 0.3 and 1 s.c. FC: increased freezing at 24-h test Youn et al. (2009)

M: C57BL/6J 15 min pretr. 0.1–3 s.c. PA: DD PA retention facilitation at
24-h test

Madjid et al. (2006)

M: NMRI 15 min pretr. 0.1–3 s.c. PA: U-shaped PA retention
facilitation (maximum at 1 mg/kg)

Madjid et al. (2006)

SRA-333 R: Sprague-D. 30 min pretr. 0.3–2 s.c. PA: DD PA retention facilitation Skirzewski et al. (2010)

(S)-UH-301 R: Sprague-D. 30 min pretr. 0–3 s.c. PA: no effect Jackson et al. (1994)

VP-08/34 M: C57BL/6J 15 min pretr. 0.3 and 1 s.c. PA: no effect Pittalà et al. (2015)

WAY-100635 R: Sprague-D. 30 min pretr. 0.003–0.3 s.c. PA: attenuated the PA retention
deficit by PC A (0.03–0.1 mg/kg)

Misane and Ögren (2000)

R: Wistar 30 min pretr. 1 i.p. PA: reversed MK-801-induced
memory impairment

Horisawa et al. (2011)

R: Wistar 0 min post-tr. 0.01 i.v. PA: reversed MK-801-induced
memory impairment

Horisawa et al. (2011)

R: Sprague-D. 120 min pretr. 3 po. FC: Reversed scopolamine-induced
memory deficits

Hirst et al. (2008)

A, anxiety tests; DD, dose-dependent, FC, fear conditioning; i.h., intrahippocampal; i.p., intraperitoneal, i.v., intravenous; M, mice; n.a., not available; PA, passive
avoidance; post-tr., post-training; p.o., per os; pretr, before training; R, rats; s.c., subcutaneous.

Local 5-HT1A Receptor Ligand Effects
Local administration approaches tried to distinguish the role
of the post- versus the presynaptic 5-HT1AR in the different
aspects of fear expression. Bilateral microinjections of a
selective 5-HT1AR agonist flesinoxan decreased the expression
of conditioned contextual freezing when injected into the
hippocampus or amygdala but not in the medial prefrontal cortex
(Li et al., 2006), as well as the fear-potentiated startle responses
when infused into the central amygdala (Groenink et al., 2000).

The role of 5-HT1A autoreceptors in fear expression was also
studied by pretest infusion of 8-OH-DPAT into the median raphe

nuclei. This resulted in impaired contextual freezing responses
(Borelli et al., 2005; Almada et al., 2009), but not fear-potentiated
startle (Groenink et al., 2000; Almada et al., 2009) suggesting
the existence of raphe-dependent serotonergic regulation that
appears to modulate the freezing response to the aversive context.
In contrast, hippocampal 8-OH-DPAT impaired the expression
of both contextual freezing and fear-potentiated startle (Almada
et al., 2009). However, 8-OH-DPATmediates hyperlocomotion in
rats (but hypolocomotion in mice) leading to a similar problem
of potentially confounded interpretation of freezing performance
during the drug state as mentioned before for mice.
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Effects of 5-HT1A Receptor Agonists and
Antagonists on Memory Extinction

In contrast to the well-studied implication of 5-HT1ARs
on memory acquisition and recall, there is only one study
with 5-HT1AR ligands on fear extinction. The systemic 5-
HT1AR agonist buspirone abolishes the fear extinction in
mice (Quartermain et al., 1993). Similarly, the systemic 5-
HT1AR antagonist WAY-100635 before a second sampling trial
impaired the extinction of object recognition memory in rats
(Pitsikas et al., 2003). Further studies are needed to determine
the precise role of 5-HT1ARs in memory extinction and/or
reconsolidation in emotional learning tasks. Furthermore, local
rather than systemic approaches are necessary to identify the
neurocircuitry involved in these processes. The roles of other
5-HTRs in fear learning and the consequences of altered 5-HT
neurotransmission on fear extinction are reviewed by Homberg
(2012).

Effects of 5-HT7 Receptor Agonists and
Antagonists on Emotional Learning

Systemic 5-HT7 Receptor Ligand Effects
The paucity of studies 5-HT7R functions on emotional learning
is mainly due to the lack of selective ligands, especially agonists
(Misane and Ögren, 2000; Leopoldo, 2004; Leopoldo et al., 2011;
see Table 5 and text above). Recent data from an autoshaping task
showing that the 5-HT7R agonist, LP-211, when administered
systematically after the training session, reversed scolopamine-
induced amnesia, in rats (Meneses et al., 2015). The same group
also shows a facilitating effect on memory formation by the 5-
HT7R agonist AS-19 administered after an autoshaping training
session (Perez-García and Meneses, 2005). The enhancing effect
of 5-HT7Rs on memory consolidation was blocked by pre-
injection of the 5-HT7R antagonist SB-269970 (Perez-García
and Meneses, 2005; Meneses et al., 2015) indicating the specific
involvement of the 5-HT7R.

Eriksson et al. (2008) investigated the role of 5-HT7R on
emotional learning in mice using a step-through PA paradigm.
Pretraining systemic administration of the 5-HT7R antagonist
SB-269970 enhanced the impairing effect of low doses of 8-
OH-DPAT (Eriksson et al., 2008). This result supports the
notion that 5-HT7R activation has a beneficial modulatory
role in learning opposing the function of 5-HT1AR activation.
Accordingly, pretraining 5-HT7R activation by the combined use
of the 5-HT1AR antagonist NAD-299 with the 5-HT1AR and
5-HT7R agonist 8-OH-DPAT facilitated PA retention (Eriksson
et al., 2012). This PA facilitation by NAD-299 together with
8-OH-DPAT was again blocked by the 5-HT7R antagonist SB-
269970 indicating a procognitive effect of 5-HT7R activation
by this drug combination. However, the 5-HT7R agonists LP-
44 and AS-19 failed to mediate this PA facilitation, despite
dose-dependent tests. Despite their high in vitro potency
to stimulate intracellular signaling cascades (Eriksson et al.,
2012), the 5-HT7R agonists LP-44 and AS-19 have moderate

agonist efficacy in vivo. This finding is in agreement with
previous pharmacological characterization (Monti et al., 2008;
Bosker et al., 2009; Brenchat et al., 2009) in vivo and may
explain why the facilitatory effect of NAD-299 with 8-OH-
DPAT could not be mimicked by the putative agonists LP-44
and AS-19.

Local 5-HT7 Receptor Ligand Effects
To further address the role of 5-HT7Rs on emotional learning,
Eriksson et al. (2012) performed hippocampal infusions with
the 5-HT7R agonist AS-19 in mice. Since they failed to find
clear facilitatory effects, as observed after systemic treatment,
they concluded that “5-HT7Rs appear to facilitate memory
processes in a broader cortico-limbic network and not the
hippocampus alone.” The failure of the SB-269970 to enhance
emotional memory, upon hippocampal infusions, may be the
consequence of the low dose that can be locally infused due to
the relatively poor solubility of SB-269970. However, systemic
administration of this 5-HT7R antagonist fully blocked the
PA facilitation observed after 5-HT1AR blockade. Hence, the
hippocampus-dependent involvement of the 5-HT7Rs needs to
be re-investigated with selective highly potent 5-HT7R agonists,
because also the low potency of AS-19 (Eriksson et al., 2012) may
have contributed to the lack of effects by dorsohippocampal 5-
HT7R agonist application on PA. Finally, although the role of
5-HT7R in memory consolidation has been suggested, there are
currently insufficient data supporting this view.More work is also
required to clarify the role of 5-HT7R in memory extinction and
reconsolidation, which are both essentially unexplored.

The Interplay of the 5-HT1A and 5-HT7 for
Emotional Learning

The interaction of the two 5-HTR subtypes in emotional
learning has been studied by using 8-OH-DPAT, which exerts
agonistic effects for both 5-HT1ARs and 5-HT7Rs. To dissect
the function of these 5-HTRs, pre-treatment with selective
5-HT1AR antagonists is used to exclusively activate 5-HT7R.
Eriksson et al. (2008) were the first to suggest the functional
interplay between the two 5-HTRs on the behavioral level as
the activation of 5-HT7R counteracted the 5-HT1AR-mediated
impairments in PA performance. The interaction between the
two 5-HTRs and their functional antagonism was then extended
by experiments in mice, demonstrating that 5-HT7R activation
and concomitant 5-HT1AR blockade leads to PA facilitation
(Eriksson et al., 2012). The facilitatory effect on emotional
memory by the 5-HT1A antagonist NAD-299 was related to
stimulation of 5-HT7Rs under conditions with reduced 5-HT1AR
transmission. These findings suggest that the states of 5-HT1ARs
and 5-HT7Rs play a critical role for 5-HT effects on emotional
memory. Consequently, the elevation of endogenous 5-HT via
SSRIs will most likely result in differential cognitive/emotional
effects depending on genetic and/or epigenetic regulation and
occupancy of these two 5-HTRs in health and disease. This
condition will affect the expression of the 5-HT1AR and change
the relative balance between 5-HTR subtypes, which together will
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TABLE 5 | Overview of the behavioral effects of 5-HT7 receptor agonists and antagonists in learning tasks (not restricted to fear learning).

Compound Species:
Strain

Time of
injection

Dose (mg/kg) Admin. route Behavior assay and behavioral
consequences

References

Agonists

AS-19 M: C57BL/6J 15 min pretr. 3–10 i.p. DD activity reduction
PA: no effect in retention latencies,
24 h after training

Eriksson et al.
(2012)

R: Wistar 0 min post-tr. 0.5–10.0 s.c P/I-A: Enhanced memory
consolidation, 24 h after training

Perez-García
and Meneses
(2005)

LP-211 R: Wistar 0 min post-tr. 0.1–10.0 i.p. P/I-A: only 0.5 mg/kg had a
possitive effect on memory
consolidation, when tested 24 h
after training

Meneses et al.
(2015)

LP-44 M: C57BL/6J 15 min pretr. 1–10 i.p. PA: DD activity reduction but no
effect on PA retention latencies
tested 24 h after training

Eriksson et al.
(2012)

NAD-299 + 8-OH-
DPAT

M: C57BL/6J 30 min
+15 min pretr.

0.3 + 1 s.c. PA: facilitates retention latencies
24 h after training serving as
5-HT7R activation

Eriksson et al.
(2012)

Antagonists

DR4004 R: Wistar 0 min post-tr. 0.5–10. i.p. P/I-A: no effect Meneses
(2004)

SB-269970 R: Wistar 0 min post-tr. 1–20 i.p. P/I-A: no effect Meneses
(2004)

M: C57BL/6J 30 min pretr. 20 s.c. PA: reversed the facilitation by
8-OH-DPAT + NAD-299

Eriksson et al.
(2012)

SB-656104-A R: Wistar 60 min pretr. 10 and 30 i.p. PA: reversed MK-801-induced
memory impairment

Horisawa et al.
(2011)

R: Wistar 60 min pretr. 0.3 i.p. PA: Counteracted the effect of
MK-801

Horisawa et al.
(2011)

A, anxiety tests; DD, dose dependent, FC, fear conditioning; i.h., intrahippocampal; i.p., intraperitoneal, i.v., intravenous; M, mice, MSRAP, multiple schedule repeated
acquisition performance; MWM, Morris water maze; n.a., not available; OR, object recognition task; OT, operant task; PA, passive avoidance; P/I-A, Pavlovian/instrumental
autoshaping task; post-tr., post-training; p.o., per os; pretr, before training; R, rats; s.c., subcutaneous.

eventually determine the physiological actions of 5-HT and the
clinical efficacy of SSRI treatment.

Mechanisms Underlying the Functional
Interaction of 5-HT1AR and 5-HT7R

As described above, 5-HT1ARs and 5-HT7Rs mediate opposing
effects regarding the neuronal excitability. 5-HT1AR activation
reduces the activity of adenyl cyclase, whereas 5-HT7R activation
stimulates adenyl cyclase activity and thereby increases
intracellular cAMP thereby increasing neuronal excitability
(Bockaert et al., 2006; Nichols and Nichols, 2008; Berumen et al.,
2012). Accordingly, 5-HT7R stimulation in the hippocampus
was found to activate pyramidal neurons, unlike 5-HT1AR
activation which inhibited pyramidal neurons (Bickmeyer
et al., 2002). Both 5-HTRs are expressed in glutamatergic
hippocampal pyramidal neurons (Bockaert et al., 2006; Nichols
and Nichols, 2008; Berumen et al., 2012). Therefore, it is likely
that 5-HT1AR and 5-HT7R stimulation decreases and increases
glutamate release in the hippocampus, respectively. In line with
these results, 5-HT7R activation enhances the AMPA receptor-
mediated synaptic currents on CA1 pyramidal neurons, whereas

5-HT1AR activation inhibits the AMPA receptor-mediated
transmission between CA3 and CA1 pyramidal neurons in
both pre- and postsynaptic sites (Costa et al., 2012). However,
the 5-HT1AR-mediated inhibitory effect on glutamatergic
neurotransmission was stronger than the 5-HT7R-mediated
facilitatory effect (Costa et al., 2012). One explanation for the
increased effectiveness of 5-HT1AR in controlling the input from
the Schaffer collaterals may stem from the different localization
of the two receptors on the CA1 pyramidal neurons: 5-HT7Rs
are found on the cell bodies (Bickmeyer et al., 2002), whereas the
5-HT1ARs appear to be mainly localized on dendrites (Kia et al.,
1996).

Differences in the expression of the receptors could also play
an essential role in their distinct activation pattern from the
endogenous 5-HT. The progressive reduction of post-synaptic
5-HT7R levels during postnatal development, together with the
maintenance of the expression level of 5-HT1AR (Kobe et al.,
2012; Renner et al., 2012), could increase the ratio of membrane
5-HT1ARs over 5-HT7Rs. Consequently, a model has been
proposed regarding the molecular mechanisms that underlie the
regulation of the 5-HT1ARs and 5-HT7Rs. 5-HT1AR and 5-HT7R
form heterodimers both in vitro and in vivo (Renner et al., 2012).
This heterodimerization plays a functional role by decreasing Gi
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protein coupling of the 5-HT1AR and by reducing the ability
of 5-HT1AR to activate potassium channels, without affecting
the Gs protein coupling of the 5-HT7R. The heterodimerization
additionally contributes to the desensitization of the 5-HT1AR
through facilitated internalization (Renner et al., 2012).

5-HT1AR and 5-HT7R are co-localized in the cell membrane
of hippocampal neurons, where their heterodimerization induces
an inhibitory effect on the 5-HT1AR-mediated activation of
potassium channels in hippocampal neurons (Renner et al.,
2012). As mentioned above the post-synaptic levels of 5-HT7R
are lower compared to the expression levels of post-synaptic
5-HT1AR, whereas this is not the case for the pre-synaptic
5-HT7R (Renner et al., 2012). These regional differences in
the 5-HT7R levels and therefore in the concentration of the
heterodimers, can explain the preferential desensitization of 5-
HT1A autoreceptors by SSRIs and more generally the region-
and cell- specific differences in the signaling pathway mediated
by the 5-HT1AR activation (see Naumenko et al., 2014). In
summary, the above data suggest that the positive or negative
consequences of a drug on emotional memory and cognition
depend on the relative level of 5-HTR expression and, its efficacy
in activating different receptors with their downstream signaling
pathways.

Genetic and Epigenetic Effects on 5-HT
Transmission and Receptor Expression

Genetic and/or epigenetic effects regulate the receptor’s state and
eventually define the physiological actions of endogenous 5-HT.
A characteristic example is the Ala50Val variant of the 5-HT1AR,
located in the transmembrane region 1, that leads to loss of
response to 5-HT and consequently to the interruption of 5-
HT signaling (Del Tredici et al., 2004). Moreover, the human
polymorphism Gly22Ser attenuates the downregulating effect
induced by long-term 8-OH-DPAT stimulation in comparison
to the Val28 variant and wild-type without effect on the ligand
binding capacity (Rotondo et al., 1997). It is suggested that
individuals with the Ser22 variant have higher sensitivity to
SSRIs treatment since its serotonergic effect depends on the
efficiency of 5-HT1AR transmission (Rotondo et al., 1997).
Furthermore, carriers of the short (s) allele of the 5-HT
transporter promotor region possess behavioral abnormalities,
such as increased levels of anxiety and FC as well as stronger
fear potentiated startle (Bauer, 2014) in comparison to long
(l) allele carriers. Accordingly, the therapeutic efficacy of SSRIs
is reduced in patients homozygous for the s-allele when
compared with heterozygous or l-allele carriers (Tomita et al.,
2014).

The epigenetic regulation of 5-HTR subtypes is also implicated
in the differential emotional and cognitive modulation induced
by the serotonergic signaling. It is widely accepted that 5-
HT1AR binding is reduced in the brain of depressed humans
(e.g., Savitz et al., 2009) as well as in stressed rats (e.g., Choi
et al., 2014) as indication of epigenetic modulation. 5-HT1AR
activation in the basolateral amygdala and the prelimbic area of
the prefrontal cortex in low-anxious rats reduced fear potentiated

startle, whereas 5-HT1AR activation in the periaqueductal gray
of high-anxious rats had the opposite effect (Ferreira and Nobre,
2014). These findings highlight how environmental conditions
can contribute to individual differences in 5-HT1AR-mediated
response differences. In line with this, single-housed mice display
a stronger hypothermic effect upon 5-HT1AR activation by 8-
OH-DPAT, which is associated with an increased depressive-
like state, in comparison to their group-housed counterparts
(Kalliokoski et al., 2014). However, the mechanisms underlying
the inter-individual differences in serotonergic signaling and
consequently in cognitive and emotional modulation are not
clear yet.

A linkage disequilibrium study identified two polymorphisms
(rs3808932 and rs12412496) in the human HTR7 suggesting
that it is a schizophrenia susceptibility gene (Ikeda et al.,
2006). However, to the best of our knowledge, there is no
evidence for the effect of 5-HT7R polymorphisms on serotonergic
signaling or the interaction between polymorphisms of 5-HT7
and 5-HT1ARs. Therefore, to elucidate the functional interaction
between 5HT1AR and 5-HT7R, it is of high importance to
understand which polymorphisms influence the expression of
those 5-HTRs and how these changes affect emotional and
cognitive functions. This knowledge could potentially reveal the
polymorphisms that modulate the endophenotypes of different
affective disorders, closely linked with the function of 5-HT1AR
and 5-HT7R, such as anxiety and depression.

Neurochemical Effects in the
Hippocampus

In contrast to the above electrophysiological results, in vivo
microdialysis in awake rats showed that the local blockade
of 5-HT1AR increased extracellular acetylcholine (ACh) levels
(Madjid et al., 2006; Hirst et al., 2008; Kehr et al., 2010) but
failed to show changes in hippocampal glutamate release in
the ventral hippocampus and the prefrontal cortex (Kehr et al.,
2010). The result with ACh is consistent with the pro-cognitive
effect of (postsynaptic) 5-HT1AR blockade in PA (Madjid et al.,
2006). However, the expected glutamate increase may not be
detectable because of the limited capacity of microdialysis to
detect small transmitter changes restricted to the synaptic cleft.
More sensitive techniques are required such as enzyme-based
microelectrode amperometry, which is selective for the detection
of extracellular glutamate with (1) spatial resolution in the μm
level, (2) sub-second temporal resolution and (3) sensitivity in
the μm range of glutamate (Day et al., 2006; Konradsson-Geuken
et al., 2009; Mishra et al., 2015). This novel technology is suited to
provide evidence for the expected enhancement of glutamatergic
transmission in the hippocampus by both 5-HT1AR inhibition
and 5-HT7R activation.

It is clear that the impairing effects of low dose NMDA
receptor antagonists (e.g., MK-801) and cholinergic antagonist
(e.g., scopolamine) can be prevented by serotonergic
manipulations (Ögren et al., 2008). Thus, these two
pharmacological models of cognitive impairment relevant
for Alzheimer’s disease are both alleviated by 5-HT1AR inhibition
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FIGURE 1 | Simplified overview of 5-HT1AR- and 5-HT7R-mediated
modulation of fear learning in pre- and postsynaptic neurons under
conditions of high (A) and low presynaptic 5-HT1AR activation (B),
resulting in low and high postsynaptic 5-HT release, respectively. This in
turn causes increased and decreased acetylcholine (ACh) release in the
hippocampus (and also the medial septum). A similar effect on hippocampal
glutamate (Glu) levels is hypothesized (as shown in the medial septum). When
high postsynaptic 5-HT levels are biased to 5-HT7R activation (C), e.g., by
8-OH-DPAT at the postsynaptic dose of 1 mg/kg in combination with the
5-HT1AR antagonist NAD-299 at 0.3 mg/kg, a pro-cognitive effect in fear

learning is observed. Thus, emotional learning and memory depend on
intrasynaptic 5-HT levels, receptor availability and occupancy, genetic and
epigenetic factors for 5-HTR regulation and its short- and long-term
mechanisms underlying altered synaptic transmission via ACh and glutamate
(Glu) release. Under conditions of higher (postsynaptic) 5-HT release, the
cognitive consequences depend on the availability and occupancy of 5-HT1AR
and 5-HT7Rs with so far unknown conditions that bias toward impaired (B) or
facilitated fear memory (C). The specific functions of GABAergic interneurons in
5-HT1AR and 5-HT7R-mediated fear memory modulation are currently not
understood.

demonstrating a role for both enhanced glutamatergic and
cholinergic transmission for improved cognitive function (e.g.,
Schechter et al., 2005; Madjid et al., 2006). An overview of these
modulatory effects is provided in Figure 1.

Conclusion and Future Perspectives

During the last three decades many studies have indicated
important regulatory functions of 5-HT signaling for emotional
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and cognitive functions. However, the complexity of the
serotonergic signaling due to the existence of at least
14 pre- and postsynaptic 5-HTRs subtypes with multiple
transduction mechanisms makes it exceedingly difficult to
assign unambiguously the physiological and behavioral role
of a single 5-HTR subtype. However, the use of specific
ligands in combination with systemic and intrahippocampal
administration, receptor autoradiography and in vivo
neurochemical measurements are powerful tools in identifying
the action of specific ligands in local networks of the brain
including subareas of the hippocampus. This approach,
combined with in vivo electrophysiology and genetic tools, can
also better define the functional role of 5-HT in the neuronal
circuitry underlying cognitive function.

Overall a number of open questions need to be answered to
further improve our understanding of the role of serotonergic
signaling via the different 5-HTRs in health and disease:

(1) How do 5-HTRs modulate hippocampal and cortical
glutamatergic transmission with a focus on activation and
inhibition of 5-HT1ARs and 5-HT7Rs? This needs to be
determined with newly developed amperometry methods in
in vivo recordings.

(2) What are the roles of 5-HT1ARs and 5-HT7Rs in defined
hippocampal subregions for emotional and cognitive
functions? This requires the development of new ligands with
low lipophilicity for local actions tested in vivo. Alternatively,
is should be possible to shut down the second messenger

coupling of neurons selectively expressing 5-HT1ARs and
5-HT7Rs by Designer Receptors Exclusively Activated by
Designer Drugs (DREADD) technology.

(3) What are the roles of 5-HT1ARs and 5-HT7Rs in different
memory phases? As indicated there are considerable
inconsistencies about the role of 5-HT1ARs and 5-HT7Rs
in the consolidation process. In addition, extinction and
reconsolidation are so far poorly explored.

(4) The regulation of 5-HTR expression has so far focused
on the 5-HT1AR. This needs to be extended to other 5-
HTRs including the 5-HT7R. Besides the use of radio-ligands
in imaging studies, the subcellular immunohistochemical
analyses of 5-HTR protein levels requires the development
of specific antibodies.

(5) Finally, despite the evidence of the beneficial effects of 5-
HT1AR antagonists in preclinical models, the therapeutic
potential to facilitate cholingergic and/or glutamatergic
neurotransmission for improved cognitive function in
human neuropathology (e.g., Alzheimer’s disease) or in aging
is so far not explored.
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