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Glycan arrays: biological and me
dical applications
Pi-Hui Liang1,2, Chung-Yi Wu2, William A Greenberg1 and
Chi-Huey Wong1,2
Carbohydrates and their conjugates are involved in various

biological events, including viral and bacterial infection, the

immune response, differentiation and development, and the

progression of tumor cell metastasis. Glycan arrays are a new

technology that has enabled the high-sensitivity and rapid

analysis carbohydrate–protein interaction and contribute to

significant advances in glycomics. Glycan arrays use a minute

amount of materials and can be used for high-throughput

profiling and quantitative analysis and provide information for

the development of carbohydrate-based vaccines and new

drug discovery.
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Introduction
Recent advances in the study of functional glycomics in

living organisms have received a great deal of attention

[1��]. Carbohydrates, presented in the form of glyco-

proteins, glycolipids, glycosaminoglycans, or other glyco-

conjugates, have long been known to play important roles

in a variety of biological processes. They participate in

molecular recognition events such as cell adhesion,

migration, and metastasis; host–pathogen interactions

such as bacterial and viral infections; and initiation of

the immune response [2]. Despite the increased aware-

ness of the important function of carbohydrates, the study

of carbohydrate–protein interactions is difficult. This is

largely because of the structure complexity of carbo-

hydrates, and the low affinity of their interactions with

glycan-binding proteins (GBPs) — typically the mono-

meric KD values are in the micromolar to millimolar

range, thus biological responses are often because of

multivalent display and interaction of these glycans [3].
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Carbohydrates are generated cotranslationally/post-trans-

lationally through a nontemplated synthetic process, which

involves over 200 glycosyltransferase genes, whose differ-

ential expression and combined specificities contribute to

the complexity and diversity of carbohydrate structure.

Glycan arrays have become a powerful platform to map

out interactions involving carbohydrates in a high-

throughput manner because they were introduced in

2002 [4�,5�]. In general, the chip-based format unites a

diverse set of novel technologies: generation of carbo-

hydrate libraries (from natural sources or chemical and

enzymatic synthesis); attachment of the saccharides to a

surface (covalent or noncovalent bindings); high-through-

put expression of carbohydrate-binding proteins; analysis

of carbohydrate–protein binding by fluorescence

measurements or mass spectrometry (Figure 1).

Till date, most published glycan array reviews have

emphasized the methods of fabrication [1��,5�,6,7]. These

reviews focus on new applications of glycan arrays in

glycomics and drug discovery over the past few years.

Generation of a glycan library
Based on a limited pool of about nine monosaccharides

found in mammalian glycans, it has been calculated that

�1012 different hexasaccharides are possible [8]. Not all of

these possibilities exist in nature, but the current list of

known N-linked and O-linked glycans found in proteins

contains more than 2000 structures [9]. Therefore, the

construction of the complete array of an entire glycome

on a single chip is a major challenge. The recent devel-

opment of new methods for chemical and enzymatic

synthesis of oligosaccharides will increase the complexity

and utility of carbohydrate arrays [1��,5�]. The discovery of

uncharacterized natural glycans is another challenge, typi-

cally achieved by the extraction from natural sources of

glycoproteins or glycolipids. A novel technology has

recently been developed and used to modify sugar for

detecting specifically glycosylated structures on cells.

Alkynyl sugar analogs were attached to the cellular glycans

through biosynthesis, and the modified glycans were

detected by click chemistry with an azido fluorgenic probe

or biotin handles [10]. Application of proteomic methods to

the metabolically engineered cells has allowed for the

identification of new glycoproteins and glycans (GIDmap)

[11�]. This glycoproteomic method will allow for a com-

plete analysis of a subset of the glycoproteome, and for the

differential comparison between cancer and normal cells

for differences in glycosylation pattern.
www.sciencedirect.com
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Figure 1

General scheme for the glycan array fabrication and detection.
Profiling carbohydrate–lectin interactions
Lectins are carbohydrate-binding proteins, which are

highly specific for their sugar ligands, and are the most

common detection tool for the characterization of glycan

arrays [12–14]. In the landmark studies by researchers at

the Consortium for Functional Glycomics (www.functio-

nalglycomics.org), a comprehensive array of more than

200 glycans on a glass slide was used to analyze the

specific binding of mammalian, plant, viral, and bacterial

lectins [15��]. Recently, Gildersleeve and coworkers used

a glycan array that contained 73 different glycans to do the

high-throughput analysis of 24 lectins [16]. Carbohydrate

specificity profiling of the C-type lectin macrophage

galactose-type lectin (MGL) revealed that the lectin

specifically recognized terminal a-linked and b-linked

GalNAc moieties. This result led to the postulation that

the expression of Tn antigen (GalNAc-a-Thr) by tumors

might modulate the host immune response via the inter-

action of Tn with C-type lectin, such as MGL [17].

Glycosaminoglycans — growth factor and
cytokine interactions
Glycosaminoglycans are complex carbohydrates known to

play a key role in regulating growth factors, virus entry,

and angiogenesis, but their structure–activity relationship

is poorly understood. The first microarrays of heparin-like

glycosaminoglycans have been constructed by Seeberger
www.sciencedirect.com
and coworkers to tackle this problem [18�]. Heparin

oligosaccharides on the arrays were incubated with the

acidic and basic fibroblast growth factors (FGF-1 and

FGF-2) and it was found that FGF-1 not only interacted

with the hexamer and tetramer of heparin oligosacchar-

ides but also with the unusual 2,4-O-sulfated monomer,

which may become important for inhibitor design. The

Hsieh-Wilson group reported the use of a chondroitin

sulfate microarray to probe the specificity of TNF-a [19],

as well as midkine-derived and brain-derived neuro-

trophic factor [20�]. The tetrasulfated tetrasaccharide

CS-E was found to react strongly with these growth

factors within the physiological concentration range. A

brain neuron growth experiment confirmed that the CS-E

motif stimulated neurite outgrowth by about 50% [20�]. It

is anticipated that these microarrays will accelerate the

understanding of glycosaminoglycan–protein interactions

and pinpoint the sulfation patterns responsible for mod-

ulating physiological and disease states. These microar-

rays also provide valuable structure information for the

design of inhibitors or antagonists of these therapeutically

important cytokines and growth factors.

Carbohydrate–antibody interactions
Pathogen-induced antibody recognition

Most pathogens contain specific polysaccharides on their

cell surfaces, which can elicit antibody responses in
Current Opinion in Chemical Biology 2008, 12:86–92
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Figure 2

Glycan-binding specificity profiling for the diagnosis of disease state or antibody validation.
infected humans. Microbial polysaccharide microarrays

can be used for the diagnosis of pathogen infection by

analyzing patient serum samples. Several examples of this

application are described below (Figure 2). In an appli-

cation with relevance to AIDS vaccine development,

glycan arrays were used to dissect the glycan-binding

specificity of the HIV-1 broadly neutralizing antibody

2G12 [21�,22�]. An array of oligomannose structures

was analyzed against 2G12, and a minimal binding

element was identified. Smaller oligomannose structures

(Man4) were found to be as effective as the Man9-

GlcNAc2-high mannose core at binding to 2G12 and

inhibiting complexation with HIV gp120. These results

may lead to the development of potential HIV vaccines

by the synthesis of polyvalent derivatives of these oligo-

mannose core structures. Wang et al. discovered that

rabbit IgG antibodies elicited by Bacillus anthracis spores

specifically recognize a rhamnose tetrasaccharide chain

that decorates the outermost surface of the B. anthracis
exosporium [23]. This tetrasaccharides appear to be a key

biomarker for the detection of B. anthracis spores and may

guide the development of novel anthrax vaccines. The

same group used the glycan arrays to characterize the

carbohydrate-binding activity of SARS-CoV neutralizing

antibodies induced by an inactivated SARS-CoV vaccine

and found potential crossreactivity between the immune

response to an inactivated SARS-CoV vaccine and a host

carbohydrate [24]. Blixt et al. reported an array containing

oligosaccharide antigens specifically expressed by ser-

ogroups Salmonella enterica sv. Paratyphi, Typhimurium,
Current Opinion in Chemical Biology 2008, 12:86–92
and Enteritidis [25]. This microarray was used to detect

the sera from patients with salmonellosis. Disaccharides

(Tyva1-3Man, Abea1-3Man) and trisaccharide (Mana1-

2Rhaa1-2Gal) were found to have high-specificity sero-

logical recognition. By using the same strategy, a poly-

saccharide microarray was prepared by immobilizing

bacterial polysaccharides to detect bacterial infection

by using human or animal serum sample [26,27]. It is

obvious that glycan array applications in this field may

facilitate the identification of key immunogenic carbo-

hydrates expressed by microbial pathogens.

Cancer-induced antibody recognition

Aberrant glycosylation is one of the hallmarks of cancer;

tracking differences in cell surface glycan expression may

therefore be useful for diagnosing cancer, and provide a

solution for specifically targeting drugs to cancerous cells

(Figure 2). The Globo H hexasaccharide cancer marker

and nine structural analogs were arrayed and used to test

monoclonal antibodies raised against Globo H (MBR-1

and VK-9), as well as patient sera [28��]. A commercially

available array of 37 different carbohydrates microarray

was used to profiling of Hodgkin’s lymphoma sera and

showed marked deviation in glycan-binding specificity

compared to normal samples [29]. Another strategy that

used lectin-affinity purification and natural glycoprotein

microarrays to screen different glycosylation patterns

between healthy and different disease stages of the

pancreas was developed [30]. Glycan array profiling is

expected to facilitate the identification of more specific
www.sciencedirect.com
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biomarkers, adding to currently used DNA and protein

biomarker for improved cancer diagnosis and early detec-

tion.

Carbohydrates for passive immunization

The unique glycan structures from pathogens and aber-

rantly glycosylated antigens of cancer cells have guided

the development of carbohydrate-based vaccines.

Specific carbohydrates were conjugated to carrier proteins

or virus particles for passive immunization in animals to

induce antibodies against these carbohydrates. The gly-

can array serves as a rapid and convenient method to

validate the specificity of antibodies generated by these

potential vaccines. Anticarbohydrate antibodies elicited

by the polyvalent display of glycans on a virus scaffold

were detected by glycan array to validate the immuno-

genic scaffold design [31]. Using a glycoprotein array to

assay the anti-Tn antibodies, Gildersleeve and coworkers

evaluated the potential of Tn antigen as a cancer bio-

marker [32�].

Carbohydrate–virus and carbohydrate–
bacterial interactions
Carbohydrates on the cell surface of human cells are used

by viruses and bacteria as initial recognition and attach-

ment sites [33]. The specificity of hemagglutinin (HA)

from avian and human influenza sources, including those

reconstructed from past pandemic strains, was examined

[34��,35,36]. Virus entry into host cells is initialed by HA
Figure 3

Quantitative analysis of protein–carbohydrate interactions to obtain surface

www.sciencedirect.com
binding to cell surface sialic acid-containing glycans,

which vary in structure based on the host species and

anatomical location. Binding of HA variants recovered

from pandemic and circulating strains on a 260-member

glycan array demonstrated differences in the recognition

of carbohydrate linkages (a2,3 or a2,6 sialic acid, charac-

teristic of avian or human virus, respectively), sulfation

and fucosylation. Remarkably, pandemic 1918 HA

switched specificity to human epithelial cells, a change

from a-2,3 to a-2,6 NeuAc-Gal-binding preference with

only two amino acid substitutions. These findings provide

information to assess the host–virus interactions associ-

ated with different influenza strains and to understand

their evolution. Binding of intact influenza virus to a

glycan array surface is also possible [15��].

A microarray displaying monosaccharides was also

explored for binding to Escherichia coli ORN178. It was

found that E. coli adhere specifically to mannose-contain-

ing slides [37]. By using glycoconjugate arrays, the Ruhl

group has demonstrated for the characterization of

unknown adhesion specificities of Helicobacter pylori
and other bacteria [38]. These findings introduce the

possibility of using carbohydrate microarrays as a detec-

tion system for pathogens.

Glycan microarray in drug discovery
High-throughput screening of new inhibitors of carbo-

hydrate-processing enzymes has been performed with
and solution dissociation constants from glycan arrays.

Current Opinion in Chemical Biology 2008, 12:86–92
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glycan arrays. For example, a-(1,3)-fucosyltransferase

(FucT) is an enzyme which mediates the final reaction

in the biosynthesis of SLex by transferring the fucose

from GDP-Fucose (GDP-Fuc) to sialyl lactosamine to

form SLex and is therefore a target for the identification of

inhibitors to block the inflammation cascade. Eighty-five

synthetic compounds were incubated with FucT and

GDP-Fuc on a LacNAc-coated microtiter-type microar-

ray and then detected by peroxidase-coupled T. purpureas
lectin. Four inhibitors with nanomolar Ki were discovered

[39]. The technique was further improved by using a glass

slide glycan array to test several monosaccharides to

inhibit the binding of surface-coated mannose with

Con A [40��]. Recently, an aminoglycoside microarray

platform has been developed for directly monitoring and

studying antibiotic resistance [41,42]. This type of array

will be a useful tool for the discovery of new antibiotics

that evade resistance. Inhibition or disruption of the

biosynthesis of disease-related glycans may be an effec-

tive approach for the treatment of various diseases.

Quantitative carbohydrate–protein interaction
using glycan array
Most reported glycan arrays binding experiments have

been performed at one or two concentrations of proteins

to globally profile carbohydrate–protein interactions.

Although qualitative assessment of binding by this method

is useful, using fluorescence intensities to quantify binding

affinities might be misleading. Values are highly variable

from batch to batch because the spot intensities depend on

immobilization efficiency. Recently, the Wong lab has

developed a quantitative method to assess the binding

affinities between carbohydrates and proteins (Figure 3)

[40��]. A series of protein concentrations were incubated

with repeated subarrays which contained several carbo-

hydrates to get surface dissociations (KD,surf). A similar

strategy was also reported to determine the dissociation

constant of a-LacNAc and b-LacNAc for RCA120 [43]. By

varying the printing concentration of glycans, multivalent

interactions were probed. Higher density printing gener-

ally led to lower observed KD,surf, indicating a multivalency

effect which mimics the multivalent display of glycans on

cell surfaces. Furthermore, solution dissociation constants

(KD) were determined by the competition between carbo-

hydrates or inhibitors in solution-bound and surface-bound

glycans. It is envisioned that this method will be useful for

the quantitative characterization of sugar-binding specifi-

cities of proteins and for the high-throughput discovery of

inhibitors of carbohydrate-binding proteins of therapeutic

interest.

Glycan array for measuring enzyme
specificities
Glycan microarrays can be utilized to rapidly determine

the substrate specificity or activity of carbohydrate-pro-

cessing enzymes. In a model study reported by Shin and

coworkers, a microarray containing GlcNAc and fucose
Current Opinion in Chemical Biology 2008, 12:86–92
was treated with b-1,4-galactosyltransferase (GalT) and

UDP-Gal and then probed with fluorophore-labeled lec-

tins [44�]. Enzymatic conversion of GlcNAc to LacNAc

by GalT was detected by fluorescence lectin. Recently,

the method was extended to profile 20 carbohydrates as

GalT acceptors [43]. Maltose derivatives were covalently

conjugated on the microtiter-type glycan array and gly-

cosylation products were detected by FITC-labeled Con

A. New acceptor substrate specificities of glycosyltrans-

ferase were observed [45]. Owing to the limitation of

lectins as detection tool (low-binding specificities and

weak affinities), a broad spectrum of detection method

was developed to study various recombinant sialyltrans-

ferase specificities. The donor substrate cytidine-50-
monophospho-N-acetylneuraminic acid (CMP-Neu5Ac)

was biotinylated at the 9-position of Neu5Ac. After

screening of a series of sialyltransferase against a +200

member glycans microarray, the sialylation products were

observed with fluorescein-streptavidin to determine

acceptor substrate specificities [46]. Similarly, GDP-

[14C]Fuc was transferred to surface carbohydrates on an

array using plant cell wall glycosyltransferase [47]. Arrays

have proven to be powerful tools for high-throughput

profiling of the substrate specificities of carbohydrate-

processing enzymes.

Conclusions
Glycan arrays are powerful tools for screening the speci-

ficity of GBPs, including profiling of lectins, growth

factors, cytokines, antibodies, and microbial toxins, and

have demonstrated their utility in the identification and

the characterization of glycan–protein interactions. More

detailed quantitative analysis and enzyme characteriz-

ation have also shown that arrays can be used in inhibitor

and drug discovery. Glycan arrays continue to be an

important tool in the evolving field of glycomics, and

new applications will be developed in the future.
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