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Abstract

Motivation: Heterogeneous diseases such as Alzheimer’s disease (AD) manifest a variety of phenotypes among populations.
Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown
potential promise in improving diagnosis, yet establishing quantitative diagnostic criteria for ancillary tests remains
challenging. Results: We have developed a similarity-based approach that matches individuals to subjects with similar
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conditions. We modeled the disease with a Gaussian process, and tested the method in the Alzheimer’s Disease Big Data
DREAM Challenge. Ranked the highest among submitted methods, our diagnostic model predicted cognitive impairment
scores in an independent dataset test with a correlation score of 0.573. It differentiated AD patients from control subjects
with an area under the receiver operating curve of 0.920. Without knowing longitudinal information about subjects, the
model predicted patients who are vulnerable to conversion from mild-cognitive impairment to AD through the similarity
network. This diagnostic framework can be applied to other diseases with clinical heterogeneity, such as Parkinson’s

disease.
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Alzheimer’s disease (AD) is a heterogeneous, chronic, progres-
sive disorder that leads to memory loss, cognitive impairment,
psychiatric symptoms, and difficulties in daily activities [1, 2].
The disease affects more than 5.5 million people in the United
States [3], and it is among the top 15 conditions with the greatest
increase in global disease burden in the last decade [4, 5]. Cur-
rently, there is no cure for AD, but some treatments can provide
symptomatic relief [6, 7]. Early diagnosis and treatment of the
disease often offer cost benefits [1]. Unfortunately, it does not
have a definitive marker test [8], and behavioral diagnosis is dif-
ficult in the early stage of the disease, limiting the potential for
early treatment [9]. Sensitive and accurate diagnosis of the dis-
ease is greatly needed, preferably without requiring longitudinal
data.

To improve dementia diagnosis, researchers have evaluated
various ancillary diagnostic tests. Cerebrospinal fluid protein
markers such as amyloid g (Ag) and tau-protein (total r-protein
[T-7] and phosphorylated z-protein [P-7]) have shown utility in
AD diagnosis [10], and there are studies looking at other small
molecule markers as well [11]. Previous reports have shown that
estimates of tissue damage or loss from structural magnetic res-
onance imaging (MRI) are predictive of AD [12-16]. Other tech-
niques such as positron emission tomography imaging of beta-
amyloid plaques and tau aggregates have shown benefits as well
[17-19]. The International Working Group and the United States
National Institute on Aging-Alzheimer’s Association Working
Group proposed a series of diagnostic criteria for AD to better
define clinical phenotypes and integrate biomarkers into the di-
agnostic process [20-25]. However, because of the disease hetero-
geneity, inexact nature of imaging tests, and cohort differences,
quantitative standardization of these ancillary tests needs more
calibration [26-30]. Although a biomarker classification scheme
was proposed [31], behavior tests still play an important role in
the diagnostic process [32].

Recent development in machine learning provides opportu-
nities to deal with the problem from a different aspect. Suc-
cessful applications of deep convolutional neural network in
imaging segmentation enabled accurate and automatic brain
segmentation using machine learning pipelines. Tools such as
DeepNAT demonstrated accurate neuroanatomy segmentation
[33, 34]. Researchers also have developed end-to-end diagnosis
pipelines for AD diagnosis [35, 36]. However, one common cri-
tique is that these models are often hard to interpret [37]. Yet,
the high performance of these machine learning methods is en-
lightening, and an approach that could combine the predictive
power and the interpretability would be exciting.

In this study, we propose a quantitative approach to address
the issue of heterogeneity in the diagnostic process. Instead of
modeling markers explicitly, we explored similarity-based diag-

nostic modeling on patient data. Each incoming subject is com-
pared to known individuals in the medical record database using
a kernel function, and the Gaussian process method gives a diag-
nosis according to the similarity of medical conditions. Based on
this idea, we developed a proof-of-concept AD diagnostic model
that uses a combination of demographic, genetic, and MRI data,
but without behavioral test features. To evaluate the method,
our model was benchmarked on the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset using cross-validation tests.
It was also tested in the Alzheimer’s Disease Big Data DREAM
Challenge on independent patient datasets and ranked highest
among submitted methods [38, 39]. To further explore the poten-
tial of the similarity-based modeling, we enhanced the model on
predicting AD progression among patients in the mild cognitive
impairment (MCI) group and extended the approach to the diag-
nosis of Parkinson’s disease.

See Supplementary Information for details [40-47].

To address the problem of clinical heterogeneity, we developed
a pipeline to match incoming subjects against known cases in
the database and make a diagnosis that is more similar to those
forindividuals with similar conditions. This strategy was formu-
lated as a Gaussian process. A Gaussian process model utilizes a
kernel function to measure the similarity of the known individ-
uals in the databases [48], weights all cases proportionally to the
inverse of their similarity to the incoming subjects, and reports
a weighted mean of all known diagnoses. Thus, the diagnostic
prediction is biased toward the diagnoses of subjects with simi-
lar conditions. Various test results can be incorporated into the
kernel function. Instead of asking for thresholds or value ranges
for these tests, the model learns the distribution of these test re-
sults implicitly. The importance of different tests can also be ad-
justed quantitatively. With a fitting kernel function, a Gaussian
process model is able to circumvent the clinical heterogeneity
issue and make diagnosis accurately.

As numerous reports have revealed a high degree of het-
erogeneity in AD progression and clinical observations [29, 49,
50], we applied our approach to the diagnosis of AD as a proof
of concept. An overview of our complete diagnostic model is
shown in Fig. 1. For every subject, we collected demographic
information, genetic data, and an MRI scan. MRI scans were
preprocessed using FreeSurfer [43], ANT [44], and MindBoggle
[45]. These programs labeled anatomic structures in the brain
through image registration and performed surface- and voxel-
based morphometric analyses, as well as output statistics about
sizes, surface areas, and cortical thickness of these anatomical
structures. We chose a limited set of features from these data
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Figure 1: An overview of the AD diagnostic model. AD: Alzheimer’s disease; CN: cognitive normal; MCI: mild cognitive impairment.

in our kernel function, including education levels, Apolipopro-
tein E (APOE)allelic information, hippocampal volumes, amyg-
dala volumes, and inferior lateral ventricle volumes. We also
averaged the surface areas and volumes of multiple structures
and incorporated them into the kernel function. Hippocampal
volumes were chosen because they are the most correlated fea-
tures and have been described repeatedly in the literature. The
remaining features were chosen based on forward feature selec-
tion through cross-validation tests. We then used the Gaussian
process regression model to predict the cognitive impairment in
terms of Mini-mental state examination (MMSE) scores and to
classify subjects into the cognitive normal, MCI, and AD groups.

Formulating population similarity as a Gaussian process
brought us a valuable tool to investigate disease heterogeneity.
By mapping known individuals in the training dataset into a hy-
perspace, we investigated the correlation between the kernel-
transformed feature similarity and the cognition similarity at
the individual level. We also explored the extensibility of the
similarity modeling approach. By incorporating subject-level
similarity network analysis, we enhanced the model to identify
MCI patients who were at high risk of MCI-to-AD conversion. To
further validate the performance of our approach on heteroge-
neous neurological diseases in general, we also evaluated our
algorithm on Parkinson’s disease data.

Accurate prediction of cognitive impairment and
diagnoses using similarity modeling

AD was chosen as a case study because of its reportedly high
degree of heterogeneity at various levels. As a benchmark test,
we first evaluated our approach on AD diagnosis and developed
a model for estimating the severity of cognitive impairment and
making a diagnosis using only baseline measurements with-
out longitudinal information. We compared three major esti-
mation strategies: linear modeling, decision tree modeling, and

our similarity-based modeling. Linear models are well studied in
many statistical models. They make strong assumptions about
the linearity of factors. In this case, we tested linear regression
models with different regularization schemes. Decision trees are
similar to how humans make decisions; they iteratively divide
the samples based on highly discriminative factors, such as age
groups or hippocampal volume ranges, and make predictions
for subgroups. We tested random forest, gradient boosting re-
gression tree, and XGBoost regressor methods, which are widely
used and have performed well in many machine learning stud-
ies. Similarity-based modeling corresponds to kernel methods
in machine learning, where sample similarity is calculated using
a devised distance function, and predictions are made accord-
ingly. We tested support vector regressor (SVR) and Gaussian
process regression model. All models were evaluated in a five-
time five-fold cross-validation test. In a cross-validation test, the
dataset was split into five parts. In each round, one part was
withheld, and the models were trained with the remaining four
parts. The performance of the models was then evaluated ac-
cording to how well the models predicted on the withheld pa-
tient data. The test was repeated to reduce the variance of error
estimation [47].

To show the performance of these three classes of diagnostic
modeling, we benchmarked their performance in terms of cog-
nition estimation and diagnosis accuracy on the ADNI1 dataset
(Fig. 2). We evaluated the accuracy of cognitive impairment in
terms of Pearson correlation coefficient and Lin concordance
correlation coefficient. The two metrics focus on different as-
pects. A high Pearson correlation coefficient suggests that the
prediction can be well aligned with the observed values lin-
early, while a high Lin concordance correlation coefficient in-
dicates the similarity between the intragroup distributions of
two datasets [51]. In our tests, similarity-guided methods out-
performed other methods by a large margin in both metrics.
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Figure 2: Violin plots of performance of different models estimated by cross-validation. (A) Performance of MMSE regression evaluated in terms of Pearson product-
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The Gaussian process method marginally outperformed the SVR
model and became the best prediction model.

We also evaluated the diagnosis accuracy of all models. We
tested making a diagnosis based on the cognitive impairment
predictions and evaluated the performance in terms of the area
under curve (AUC) of normal against AD/MCI classification. The
Gaussian process method again outperformed other methods.
We then further optimized the parameters of the model (Sup-
plementary Fig. S1). The final model was also tested on a hid-
den dataset from AddNeuroMed in the DREAM Challenge and
predicted the cognition scores with a Pearson correlation coeffi-
cient of 0.573. Its performance on an independent multisectional
study was consistently good in comparison to its performance in
the cross-validation tests. We then moved on to study individual
similarity estimation, subtype identification, and extensibility of
the optimized similarity model.

Working with heterogeneous data from a multisectional study
poses a challenge to data modeling. We addressed the hetero-
geneity issue by matching prediction targets to subjects with
similar conditions using a kernel function and thus avoided
specifying explicit thresholds or ranges for biomarkers across
different cohorts. Since the similarity model is the core of our
strategy, we assessed the effectiveness of our similarity model
on the ADNI1 dataset. We performed principal component anal-
ysis (PCA) over two different similarity matrices, one calculated
from a dot-product similarity (which is equivalent to linear re-
gression model) and the other from our custom kernel. With
the custom kernel, PCA showed a strong correlation between AD
progression and transformed MRI features (Fig. 3C). It also clus-
tered samples according to risk factors such as APOE &4 allelic
count (Fig. 3D). Such a pattern was not clearly observed from the
dot-product similarity model (Fig. 3A and 3B). Visualization of
the spatial distribution of samples before and after kernel trans-
formation suggested that the kernel might extract a strong sig-
nal and estimate individual similarity well.

To validate our hypothesis from the above analysis, we then
compared the results of the similarity functions to the similar-
ity of cognition of individuals. For each sample, we calculated
its feature-wise similarity to all other samples using both dot-
product and custom kernel functions and then computed dis-
similarity correlation scores (DCSs). DCSs quantify the correla-

tion between cognitive impairment differences and the recipro-
cals of their similarity (Supplementary Fig. S2). An effective sim-
ilarity measurement is expected to have a high DCS, showing
that feature-wise dissimilarity correlates with diagnostic dis-
similarity. The kernel transformation was significantly better
than random permutation (1-sided t test P < 0.001) and signif-
icantly improved DCS over the linear similarity model (1-sided t
test P < 0.001). Both visualization and quantitative analysis sug-
gested that the kernel methods gave good estimation on cog-
nition similarity between individuals with various clinical fea-
tures.

Beyond estimating the cognitive impairment and predicting AD
diagnoses, our model can be extended to other scenarios. For
example, an important aspect in AD study is identifying MCI
patients who might soon convert to AD. Here, we extended our
diagnostic model to a progression prediction model with only
baseline measurements by incorporating network analysis. To
investigate the specificity of our approach in regards to the vul-
nerable subgroup, we first looked into the predictions of our
diagnostic model. (See Supplementary Table S2 for the confu-
sion matrix of our prediction evaluation.) While our approach
achieved a high AUC in diagnosing MCI/AD subjects against nor-
mal subjects, 110 of 296 MCI patients were misclassified as AD
patients. In this case, our diagnostic model made predictions
based on patient similarity and considered these patients to
be more similar to AD patients than other MCI patients. Thus,
we compared this result to the longitudinal data present in the
ADNI database. Of 110 MCI subjects who were predicted as AD
patients, 75 (68%) eventually converted to AD in the later follow-
up examinations during four years. The AD predictions were
significantly biased toward patients who later converted to AD
(Fisher exact test P < 0.001).

The uneven distribution (of misclassification cases), provided
that our algorithm predicts diagnosis based on patient similar-
ity, suggests the correlation between the similarity of these MCI
patients to AD and normal subjects and the disease progression
of these MCI patients. More specifically, MCI patients whose con-
ditions resemble those of AD patients might face higher risks
of AD conversion, while other MCI patients might be less likely
to develop AD. To test the hypothesis, we analyzed the patient
similarity network. We built a network that connects subjects
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Figure 3: PCA over the dot-product similarity matrix (A and B) and the custom kernel similarity matrix (C and D). PCA on kernel matrix revealed patterns of different

disease progressions in the transformed feature space.

in the training dataset with edges. The weights of the edges
are the similarity between connecting subjects calculated by the
kernel function in our algorithm. Under our hypothesis, highly
weighted edges would associate MCI patients who converted
later to AD more closely than normal subjects in the network.
To analyze the connective patterns of highly weighted edges,
we first trimmed the network by filtering out the lowest 97.5%
weighted edges and then applied the Girvan-Newman commu-
nity clustering algorithm (as implemented in clusterMaker2, a
Cytoscape plugin). We chose the threshold by comparing the
modularity of the final clustering results against that of trimmed
and clustered random networks; the threshold level of 97.5%
achieved the most significant difference. The Girvan-Newman
clustering algorithm decomposed the trimmed network into 10
clusters (Fig. 4). We dropped the smallest four clusters out of the
analysis, each of which has fewer than 10 subjects. Among the
remaining clusters, clusters 1, 3, and 6 contained more normal
subjects than AD patients, while clusters 2, 4, and 5 contained
more AD patients. Based on the clustering results, we directly
predict that those MCI patients in clusters 1, 3, and 6 have low
risks of disease progression and that those in the other clusters
have high risks. A Fisher exact test on these subjects confirmed
the discriminative power (p = 0.0001). Despite not including any
longitudinal data, our model successfully captured the proper-
ties of the subpopulation that is vulnerable to MCI-to-AD conver-
sion. It demonstrated the effectiveness of the similarity function
we adopted in the prediction model.

The idea of using subjects with similar conditions to guide di-
agnosis is not specific to AD, and the model we proposed in this
study can be applied to other diseases as well. To demonstrate
its extensibility, we built a Gaussian process diagnosis model for
Parkinson’s disease. The model was trained on the Parkinson’s

Progression Markers Initiative dataset [46]. The MRIimages were
processed using FreeSurfer to extract numeric features such as
surface areas and volumes. We included ages and genders as
features, together with areas and volumes of brain anatomic
structures estimated by FreeSurfer. We performed repeated 5-
fold cross validation on 302 subjects in the dataset. The Gaus-
sian process model achieved an AUC of ~0.88 (Fig. 5, Supple-
mentary Fig. S3). Thus, for heterogeneous neurological diseases
other than AD, the similarity-based diagnostic strategy can give
accurate diagnostic predictions as well.

In this study, we show that similarity-based diagnostic mod-
eling is an effective approach to deal with heterogeneous dis-
eases and nonlinear clinical data. The modeling focuses on sub-
jects with similar conditions and uses their diagnoses to guide
our decisions. We tested the method in AD and achieved very
good performance in estimating the severity of cognitive im-
pairment indicated by MMSE scores and predicting diagnoses.
Specifically for MCI patients, the model even captured the differ-
ences between those who would later convert to AD and those
who would not. We also tested the method in Parkinson’s dis-
ease to show the generality of the modeling approach.

The idea of similarity modeling applied here to disease di-
agnosis echoes recent studies on population modeling. Various
social network studies have demonstrated that local similarity
predicts various characteristics of individuals [52-54]. Adapting
this idea from social network settings, previous studies found
that the similarity approach can be used to estimate disease
risks [55-57]. Here, we focused on individual diseases where het-
erogeneity hinders accurate diagnosis. Previously we showed
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that a Gaussian process is effective in handling medical datasets of limited samples [58, 59], and recent reports indicate that it can
also be extended to larger-scale studies [60].
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While the idea of similarity modeling has been applied to
many topics, our method still needed to solve four major chal-
lenges specific to diagnostic modeling: it must deal with hetero-
geneous nonlinear data, remain interpretable in medical con-
texts, provide insights into disease progression, and be effec-
tive on different cohorts, new assays, and even other diseases.
A method that achieves these goals would bridge the gap be-
tween conventional diagnostic models and advanced machine
learning models in terms of predictive power, interpretability,
perceptiveness, and flexibility. We paid close attention to these
four focuses throughout the study:

First, our similarity approach is a nonparametric approach
that does not assume the underlying distributions of risk fac-
tors [61]. Commonly adopted methods often assume indepen-
dence and a linear relationship between features for simplic-
ity and work adequately for some cases. Yet, for diseases that
manifest heterogeneous phenotypes, such an assumption can
be incorrect, and a more complicated model may be necessary
[62]. This is particularly true when dealing with multi-cohort
datasets, where batch effects can further obscure the relation-
ship between observed measurements and clinical outcomes
[63]. In comparison to many commonly used regression meth-
ods, our nonparametric approach is more flexible in dealing with
nonlinear data. The kernel function brings more accurate mod-
eling and stronger predictive power.

Second, our approach is a well-studied statistical model that,
unlike many other advanced machine learning models, can be
easily interpreted. Many advanced machine learning models
have been developed for diagnosis of AD [64], especially vari-
ous deep neural network models [64, 65-67]. While most of these
models show great performance in diagnostic classification, in-
terpreting deep learning models remains a hard problem [68].
Uninterpretable models in medical applications can be unde-
sirable in some cases [37, 69]. A Gaussian process, on the other
hand, is a well-studied statistical model and takes an intuitive
approach. The prediction process can be performed with little
human intervention, and yet physicians can still read the esti-
mated confidence interval from Gaussian process regression to
judge how confident the diagnosis is. The similarity of individ-
ual subjects reported from the model also provides the reason
behind the prediction. A bonus point to our approach is that it is
possible to combine the interpretability of Gaussian process and
the power of deep neural network together through techniques
such as ensemble model and stack generalization [70].

Third, our method identifies subjects who manifest differ-
ent disease progression rates through the pattern of the similar-
ity network. Most excitingly, we found that our model accom-

plished this when fed only baseline information and lacked any
longitudinal information of training subjects. Previous research
showed that MCI patients who would later convert to AD show
traits that are similar to those of AD patients in their baseline
measurements [71, 72]. It allows our model to capture features
to predict disease progression. The network provides a different
view of the subjects and can be a powerful tool for researchers to
investigate the heterogeneity of disease progression at a popula-
tion level [57, 73]. Diagnosis of other similar diseases that show
heterogeneity in disease progression could benefit from the ap-
plication of our network analysis approach.

Finally, our method can be easily transferred to different co-
horts, assays, and diseases. In the Alzheimer’s Disease Big Data
DREAM Challenge, our model has been tested on AddNeuroMed,
an independent multi-cohort AD study focusing on European
subjects [42] and achieved consistently high performance [38].
The feature input to our method allows incorporation of imag-
ing data, genotype information, biochemical marker assays, and
many other tests. Recent studies on AD risk factors can be incor-
porated into the similarity function [11, 74, 75]. Here, we have
shown its application to the diagnosis of Parkinson’s disease,
and previously we developed Gaussian process models for other
diseases [58]. The model demonstrates extensibility and flexibil-
ity in dealing with different datasets without compromising its
state-of-the-art predictive power in diagnostic prediction.

While our approach dealt with the four challenges listed
above, there is still room for improvement. While our AD model
achieved promising results, it was developed under rather harsh
settings (required by the challenge for competition fairness). The
DREAM Challenge chose MMSE as one of the prediction targets
of the competition, yet studies have shown MMSE is not an in-
dicator specific enough for AD [76, 77]; for the challenge, no
other disease-specific indicators were available. In addition, the
MRI images were automatically processed by programs with-
out manual intervention, and recent studies suggest the accu-
racy of this auto-labeling pipeline can be further improved [78,
79], which would boost the performance. Fortunately, these lim-
itations can be avoided or solved in real-world applications, in
which case our method would achieve even better results. Fur-
ther applications to different cohorts, clinical tests, and diseases
will be of interest. On the computational side, kernel matrix cal-
culation requires comparing all pairs of samples. The time and
memory complexity grows quadratically when the number of
samples increases. Researchers have found approximation of
kernel calculations for large datasets, but their effects on pre-
diction accuracy of our model needs further investigation.



We presented a novel computational approach that estimates
the cognitive impairment of AD patients. The method calcu-
lates the similarity between subjects using structural MRI data
and other clinical measurements from multisectional studies
and predicts cognitive impairment with biases toward patients
with high similarity. The method, fed with ADNI1 data, demon-
strated its state-of-the-art predictive power on disease diagno-
sis. The idea of relating incoming subjects to known cases of
similar conditions allows more specialized diagnosis. Without
any information about disease progression, unsupervised sim-
ilarity network analysis predicted patients at high risk of MCI-
to-AD conversion. The effectiveness of this similarity-based ap-
proach was validated on an independent cohort and tested on
Parkinson’s disease, another common, heterogeneous neurolog-
ical disease. The promising performance of our model suggests
that not only can it be an alternative approach to establishing
quantitative diagnostic criteria, it also represents an attractive
tool for researchers to study disease progression.

The original competition code, together with demonstration
data, are available at https://www.synapse.org/#!Synapse:syn2
527678/wiki/69937. Additional code is available at https://github
.com/GuanLab/2014_AD_Sup. Data are also available in the Giga-
Science GigaDB repository [80].

Figure S1: Violin plots of performance of different models esti-
mated by cross-validation. Performance of MMSE regression is
evaluated in terms of Pearson product-moment correlation co-
efficient (A and D) and Lin’s concordance correlation coefficient
(B and E). Performance of diagnostic predictions is evaluated in
terms of AUC (C and F). The average scores are labelled corre-
spondingly. The models chosen for the final submissions are
marked with red body. A, B, & C. The performance of different
noise parameters a in GPR. D, E, & F. The performance of differ-
ent preprocessors for MRI data (tested with GPR regressors).
Figure S2: Kernel density estimation of the distribution of dis-
similarity correlation score (DCS) of both linear and kernel sim-
ilarity models (the higher DCS the better).

Figure 3: Receiver operating characteristic curve of 5-fold cross
validation on Parkinson’s disease dataset.

Table S1: The confusion matrix of the Gaussian process diagnos-
tic model’s prediction on ADNI training dataset

Table S2: A summary of the ADNI training dataset provided by
the competition.

Table S3: A summary of the AddNeuroMed testing datasets pro-
vided by the competition.

AD: Alzheimer’s Disease; ADNI: Alzheimer’'s Disease Neu-
roimaging Initiative; APOE: Apolipoprotein E; AUC: area under
curve; DCS: dissimilarity correlation scores; MCI: mild-cognitive-
impairment; MMSE: Mini-mental state examination MRI: Mag-
netic resonance imaging; PCA: principal component analysis;
SVR: support vector regressor.
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