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Introduction: Rapid, sensitive, and specific laboratory assays are critical for the diagnosis
and management of central nervous system (CNS) infections. The purpose of this study is
to explore the intellectual landscape of research investigating methods for the detection of
pathogens in patients with CNS infections and to identify the development trends and
research frontier in this field.

Methods: A bibliometric study is conducted by analyzing literature retrieved from theWeb
of Science (WoS) Core Collection Database for the years 2000 to 2021. CiteSpace
software is used for bibliometric analysis and network visualization, including co-citation
analysis of references, co-occurrence analysis of keywords, and cooperation network
analysis of authors, institutions, and countries/regions.

Results: A total of 2,282 publications are eventually screened, with an upward trend in the
number of publications per year. The majority of papers are attributed to the disciplines of
MICROBIOLOGY, INFECTIOUS DISEASES, IMMUNOLOGY, NEUROSCIENCES &
NEUROLOGY, and VIROLOGY. The co-citation analysis of references shows that
recent research has focused on the largest cluster “metagenomic next-generation
sequencing”; the results of the analysis of the highest-cited publications and the
citation burst of publications reveal that there is a strong interest stimulated in
metagenomic next-generation sequencing. The co-occurrence analysis of keywords
indicates that “infection”, “pathogen”, “diagnosis”, “gene”, “virus”, “polymerase chain
reaction”, “cerebrospinal fluid”, “epidemiology”, and “metagenomic next-generation
sequencing” are the main research priorities in the field of pathogen detection for CNS
infections, and the keyword with the highest strength of burst is “metagenomic next-
generation sequencing”. Collaborative network analysis reveals that the USA, the Centers
for Disease Control and Prevention of USA, and XIN WANG and JENNIFER DIEN BARD
are the most influential country, institution, and researchers, respectively.
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Conclusions: Exploring more advanced laboratory assays to improve the diagnostic
accuracy of pathogens is essential for CNS infection research. Metagenomic next-
generation sequencing is emerging as a novel useful unbiased approach for diagnosing
infectious diseases of the CNS.
Keywords: central nervous system infections, pathogen detection, bibliometrics (source: MeSH NLM), CiteSpace,
metagenomic next-generation sequencing (mNGS)
1 INTRODUCTION

Central nervous system (CNS) infections are inflammatory
conditions of the brain and spinal cord caused by a variety of
pathogenic microorganisms, including meningitis, encephalitis,
myelitis, and abscesses. CNS infectious diseases are the main
cause of morbidity and mortality worldwide (Tunkel et al., 2008;
Venkatesan et al., 2013). For CNS infections, empiric antimicrobial
therapy is usually suboptimal. Early detection of the causative
organism in severely infected patients is essential to informing
clinical intervention and the use of appropriate target antibiotics
(Gu et al., 2021). Without appropriate treatment, it will progress
rapidly and lead to secondary neurologic emergencies, particularly
stroke, epilepsy, hydrocephalus, and intracranial hypertension
(McEntire et al., 2021). Moreover, it can prolong hospital stays,
increasing medical costs and the risk of death (Kanjilal et al., 2019).
In addition, patients who remain undiagnosed will always require
empiric broad-spectrum antibiotic therapy, which will increase the
risk of adverse side effects and antimicrobial resistance (Llor and
Bjerrum, 2014). Fortunately, infectious diseases are one of the few
critical neurological conditions where complete or near-complete
recovery can be achieved after treatment, as appropriate
antimicrobial therapy can often significantly improve the
prognosis (McEntire et al., 2021). Therefore, timely diagnosis,
accurate differentiation of the underlying causative agent, and
appropriate treatment are vitally important (Kanjilal et al., 2019).

CNS infections can be induced by a considerable number of
infectious agents, mainly viruses and bacteria; cases of fungi and
parasites are much less common (Vetter et al., 2020). To identify
viable pathogens, clinicians must rely on the microbiological
examination of clinical specimens, particularly cerebrospinal fluid
(CSF) (Kanjilal et al., 2019). Non-specific CSF testing methods
include CSF chemistry and cell counting, as well as Gram staining
and culture. Pathogen-specific detection techniques include 1)
pathogen-specific antibody reactions, which provide indirect
evidence of infection; 2) direct detection of a pathogen by
microscopic observation or direct detection of microbial antigens;
and 3) direct detection of pathogen nucleic acids from prespecified
targets by PCR. These tests are known as traditional diagnostic
techniques, and they have their advantages and limitations (Kanjilal
et al., 2019; Vetter et al., 2020). Isolation and culture of
microorganisms indicate the presence of viable microorganisms
but are less sensitive and time-consuming. Both PCR and serology
require the clinician to select the pathogen being interrogated. These
complexities often lead clinicians to utilize a patchwork of tests,
which increases time consumption and financial costs
(Ramachandran and Wilson, 2018; Kanjilal et al., 2019; Bharucha
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et al., 2019; Houlihan et al., 2019). There is therefore an urgent need
to explore a more comprehensive, rapid, and accurate diagnostic
approach to improve the efficiency of diagnosis of CNS infections.

Bibliometrics allows for the recognition of emerging trends
and knowledge structures in the research field through a
quantitative analysis of patterns in the scientific literature
(Chen et al., 2012; Chen et al., 2020; Deng et al., 2020; Zhang
et al., 2020). To provide an accurate, validated, and systematic
overview of developments in pathogen detection technologies for
CNS infections, to explore the latest detection methods and their
effectiveness, and to identify thematic trends, research frontiers,
and leading collaborations among researchers at various
institutions, we conducted this bibliometric study by using
CiteSpace software.
2 MATERIALS AND METHODS

2.1 Source Database
In this study, we retrieved all literature data on pathogen detection
in central nervous system infections indexed in the Web of Science
(WoS) Core Collection. The literature search was performed on
August 12, 2021. The WoS Core Collection database is often used
for bibliometric analysis because it is continuously and dynamically
updated and has a rigorous assessment of publications (Chen et al.,
2012). The WoS-based literature analysis is conducted to obtain
general information on the year of publication, journal,
organization, author, and research area distribution.

2.2 Search Strategy
Concerning data collection, the following retrieval strategy was
developed: “(TS = (“central nervous system infectio*” OR “CNS
infectio*” OR “Brain Abscess*” OR encephalopyosis OR meningitis
OR Encephalitis OR Meningoencephalitis OR Ventriculitis)) AND
(TS = (pathogen* NEAR detect* OR pathogen* NEAR identif* OR
pathogen* NEAR test* OR pathogen* NEAR exam* OR
microorganism NEAR test* OR microorganism NEAR identif*
OR microorganism NEAR detect* OR microorganism NEAR
exam*))”. The language of publication was set to “English”; the
literature category was “Article OR Review”; and the timespan was
selected as January 1, 2000, to August 12, 2021. Using this search
criterion, a total of 2,282 documents were identified, including 1,949
articles and 333 reviews. The “Full Record and Cited References” for
these records were also extracted into the CiteSpace software in
“Plain Text” format. Duplicate records were checked using the
software’s native functions, and no duplicates were found. As a
result, 2,282 documents were used as the final dataset.
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2.3 Software Application
Scientific mapping is one of the main methods for exploring the
field of bibliometrics, and the information visualization software of
CiteSpace is one of the most popular tools for mapping scientific
knowledge (Chen, 2017). The CiteSpace software was developed in
2004 by Professor Chaomei Chen of the Drexel University College
of Computing and Informatics using Java language (Chen, 2004;
Chen, 2006). The software supports several types of bibliometric
studies, including co-citation analysis, co-occurrence analysis, and
collaborative network analysis, ultimately visualizing the structure,
regularity, and distribution of scientific knowledge (Chen and Song,
2019). By running the CiteSpace software, we used cluster analysis
and burst keyword analysis to investigate research trends and
hotspots in the field of CNS infection pathogen detection. We
conducted a collaborative network analysis to study research
collaborations between countries, institutions, and researchers.

2.4 Analysis Parameters
We used keywords and key references to predict research prospects
and research hotspots. The parameters of CiteSpace were set as
follows: time slicing (2000–2021), years per slice (Venkatesan et al.,
2013), term source (all selection), node types (choose one at a time),
links strength (Cosine), selection criteria (top 50 items), and
pruning (pathfinder). The silhouette value implies the
homogeneity of the cluster network and ranges from -1 to 1. The
closer the value is to 1, the more homogeneous the network is.
When the silhouette value is greater than 0.5, the clustering results
are considered reasonable. When the silhouette value is greater than
0.7, the clustering results are considered to be highly reliable (Chen
et al., 2012; Chen et al., 2019). The Q value of the clustering network
indicates the modularity of the network, ranging from 0 to 1. The
higher the value, the better the clustering results obtained by the
network. When the modularity Q value is greater than 0.5, it
indicates that the network clustering structure is significant (Chen
et al., 2019).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
3 RESULTS

3.1 Analysis of Publications and
Citation Counts
The input data for our project were generated by combining the
results of multiple topic search queries on the Web of Science. The
final dataset contains 2,282 bibliographic records of English-
language articles or review types for the period January 1, 2000, to
August 12, 2021. Figure 1 shows the number of annual and
cumulative publications and the sum of times cited by year from
January 1, 2000, to December 31, 2020. Over the past 20-year
period, the trajectory has shown two phases: an initial period (2000–
2010) with a slow pace of development, and a period of growth
(2011–2020). The number of publication outputs increased from 42
in 2000 to 236 in 2020, with an average of 56.3 in the period 2000–
2010 and 153.1 in the period 2011–2020.

3.2 Disciplines and Topics Involved in the
Detection of Pathogens of CNS Infections
Each article indexed byWoS has one or more subject categories. To
reveal the disciplines involved in pathogen detection for CNS
infections, we ran CiteSpace with “category” as the node type.
Supplementary Figure 1 shows the network of such subject
categories after being simplified by Pathfinder network scaling,
which retains the most prominent connections. The top-ranked
category was MICROBIOLOGY, which had the largest circle with
540 citations. In second place is INFECTIOUS DISEASES with 443
citations. The third was IMMUNOLOGY, with citation counts of
283. The fourth- and fi f th-ranked categories were
NEUROSCIENCES & NEUROLOGY and VIROLOGY, with 258
and 244 citations, respectively. Meanwhile, the result showed that
research on the detection of pathogens of CNS infections already
encompasses multidisciplinary knowledge. Interdisciplinary
collaboration between different fields may help to improve
scientific work and maximize the potential.
FIGURE 1 | The number of annual and cumulative published articles, and the sum of annual citations related to pathogen detection for CNS infection research, from
2000 to 2020.
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3.3 The Intellectual Structure of Pathogen
Detection in CNS Infections
Figure 2 shows a cluster visualization of the reference co-
citation network generated by CiteSpace software, based on
publications from 2000 to 2021. The top 50 most cited
publications for each year were used to construct a network
of references cited in that year, and the individual networks
were then synthesized. As a result, the co-citation networks
were eventually divided into clusters of co-cited references, so
that references were closely linked within the same cluster but
loosely linked between different clusters. The clusters are
referred to with labels selected by the log-likelihood ratio
test method. The network has a modularity Q value of 0.9425,
which is considered to be very high and indicates that the
specialties in the scientific mapping are well defined in terms
of co-citation clusters (Chen, 2017). The silhouette value of
0.9753 revealed the high reliability of the clustering results.
The different-colored areas represent the time when the co-
citation links for these areas first appeared. The purple areas
were generated earlier than the blue areas, and the green areas
were generated after the blue areas. Clusters are labeled in red
text. The different nodes in the map represent cited references,
with landmark references labeled in blue. Nodes with red tree
rings are references with citation bursts, i.e., rapid growth in
the number of citations.

Table 1 shows details of the ten largest reference clusters in the
co-citation network, with clusters listed by their size, i.e., the number
of members in each cluster. Clusters with few members tend to be
less representative than larger clusters, as the smaller clusters may be
formed by the citing behavior of a few publications. All clusters in
Table 1 are highly homogeneous and have a high silhouette score,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
with clusters #0 and #8 having a silhouette score of 1. The average
year of publication of a cluster indicates its recentness. For example,
the most recently formed cluster, cluster #0 on metagenomic next-
generation sequencing, has the average year of 2014.

Figure 3 shows the co-citation clusters as a timeline view, which
depicts the clusters along a horizontal timeline and is arranged
vertically in descending order of their size. As the timeline overview
shows, the sustainability of a specialty varies. A specialty may go
through an initial conceptualization stage, a growth in research
capabilities through the flourish of research tools, an expansion
stage when researchers apply their methods to disciplinary areas
beyond the original research problems, and finally a decline stage
(Shneider, 2009). Some clusters have a long duration, while others
have a relatively short duration. Colored curves represent the co-
citation links added by the corresponding-colored year. Nodes of
large size or those with red tree rings are of particular interest
because they either are highly cited or have citation bursts or both.

The following tables list the key players in the four main
clusters #0 (Table 2), #5 (Table 3), #7 (Table 4), and #10
(Table 5) to indicate their key research priorities.
3.3.1 Cluster #0—Metagenomic Next-Generation
Sequencing
Cluster #0 is the largest and most recently formed cluster. It
contains 94 references from 2008 to 2020, with an average
publication year of 2014. The whole period of cluster #0 is filled
with high-impact contributions—large citation tree rings and
periods of citation bursts are indicated in red. We will focus
specifically on cluster #0 to identify emerging trends in the
detection of pathogens in CNS infections.
FIGURE 2 | An overview of a network of co-cited references on pathogen detection in CNS infections.
April 2022 | Volume 12 | Article 856845
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We selected the 10 most cited references and 10 citing articles in
this cluster (Table 2). Themost cited article in this cluster was a case
report by Wilson et al., entitled “Actionable Diagnosis of
Neuroleptospirosis by Next-Generation Sequencing” (Wilson
et al., 2014). The authors reported on a 14-year-old boy with
severe combined immunodeficiency who presented with fever and
headache for 4 months and eventually developed hydrocephalus
and status epilepticus. However, diagnostic workup, including brain
biopsy, during the etiological diagnosis was unrevealing. Finally,
unbiased next-generation sequencing of CSF identified 475
(0.016%) of 3,063,784 sequence reads corresponding to Leptospira
infection. Following targeted antimicrobial treatment, the disease
was effectively controlled. Their work represents an important
milestone. They are the first to apply next-generation sequencing
to the diagnosis of CNS infections in clinical practice. The second
most cited reference is from Naccache et al. (2015), reporting the
diagnosis of neuroinvasive astrovirus-infected encephalitis in a 42-
year-old immunocompromised man by unbiased next-generation
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
sequencing. Wilson et al. (2019) conducted the first multicenter,
prospective study to investigate the usefulness of metagenomic NGS
of CSF for diagnosing inpatient usefulness of infectious meningitis
and encephalitis. In the study, metagenomic NGS of CSF obtained
from patients with meningitis or encephalitis improved the
diagnosis of neurologic infections and provided actionable
information in some cases.

The 10 selected citing articles cited 15%–22% of the 94 co-
cited references in cluster #0. The most recently published one
was written by Li et al. (2021). They conducted a comprehensive
PubMed search of articles published from January 1, 2008, to
June 26, 2020, to retrieve all available next-generation
sequencing studies for the etiology of unexplained CNS
infections in pediatric patients. They concluded that NGS
could be useful in identifying the etiology of unexplained
encephalitis, meningoencephalitis, and meningitis in pediatric
patients, although the diagnostic value of NGS is difficult
to quantify.
TABLE 1 | Summary of the largest 10 clusters.

Cluster ID Size Silhouette Label (LLR) Average year

0 94 1 Metagenomic next-generation sequencing 2014
1 67 0.938 Borrelia miyamotoi 2011
4 57 0.953 Extraintestinal pathogenic Escherichia coli 2004
5 56 0.975 Acute encephalitis 2008
6 55 0.976 Hendra virus 2006
7 54 0.992 Neuronal autoantigens—pathogenesis 2011
8 49 1 Balamuthia mandrillaris 2007
9 42 0.979 Streptococcus suis 2006
10 39 0.947 Hospital-based surveillance 2011
11 37 0.956 T-cell infiltration 2011
April 2022 | Volume 12 |
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3.3.2 Cluster #5—Acute Encephalitis
Encephalitis is a long-standing research hotspot because of its high
mortality and morbidity rates and its complex etiology. This cluster
of literature is concerned with the identification of the etiology,
diagnosis, and management of encephalitis.

This cluster contains numerous nodes with red-ringed citation
bursts. The first and third most cited articles are Venkatesan et al.
(2013) and Tunkel et al. (2008), both of which are practice
guidelines on encephalitis. Venkatesan et al. (2013) is a consensus
document put forward by the International Encephalitis
Consortium, a committee formed in 2010 with members across
the globe. It proposes standardized case definition and diagnostic
guidelines for the assessment of adults and children with suspected
encephalitis. Tunkel et al. (2008) is a clinical practice guideline from
the Infectious Diseases Society of America focused on the diagnosis
and treatment of patients with encephalitis. Granerod et al. (2010)
reported the results of a multicenter, population-based prospective
study aimed at identifying the causes of encephalitis in patients in
England and identifying clinical differences between causes.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Moreover, the authors emphasized the importance of identifying
the cause of encephalitis.

3.3.3 Cluster #7—Neuronal Autoantigens—
Pathogenesis
Over the last decade, an increasing number of cases of non-
infectious, mainly autoimmune, encephalitis have been identified.
This newly identified autoimmune encephalitis may be associated
with antibodies against neuronal cell-surface or synaptic proteins
and can develop with core symptoms similar to infectious
encephalitis with neurological and psychiatric manifestations but
without fever or CSF pleocytosis.

Dalmau et al. (2008) described the clinical features of patients
with anti-NMDA receptor (NMDAR) encephalitis, usually
presenting with acute behavioral changes, psychosis, and
catatonia, and progressing to disorders including seizures,
memory deficits, movement disorders, speech problems, and
autonomic and respiratory disorders. Improvement in symptoms
is associated with a decrease in serum antibody titers. Titulaer
TABLE 2 | Cited references and citing articles of Cluster #0 on metagenomic next-generation sequencing.

Cited references Citing articles

Cites Author (year) journal, volume, page Coverage
%

Author (year) title

60 Wilson et al. (2014) NEW ENGL J MED,
V370, P2408

22 Forbes et al. (2018) Highlighting clinical metagenomics for enhanced diagnostic decision-making: a
step towards wider implementation.

42 Naccache et al. (2015) CLIN INFECT DIS,
V60, P919

22 Ivy et al. (2018) Direct detection and identification of prosthetic joint infection pathogens in synovial
fluid by metagenomic shotgun sequencing.

34 Wilson et al. (2019) NEW ENGL J MED,
V380, P2327

21 Han et al. (2019) Mngs in clinical microbiology laboratories: on the road to maturity.

31 Bolger et al. (2014) BIOINFORMATICS,
V30, P2114

20 Simner et al. (2018) Understanding the promises and hurdles of metagenomic next-generation
sequencing as a diagnostic tool for infectious diseases.

24 Simner et al. (2018) CLIN INFECT DIS,
V66, P778

19 Vu et al. (2016) Novel human astroviruses: novel human diseases?

23 Salzberg et al. (2016) NEUROL-
NEUROIMMUNOL, V3, Pe251

19 Cordey et al. (2016) Astrovirus mlb2, a new gastroenteric virus associated with meningitis and
disseminated infection.

22 Schlaberg et al. (2017) ARCH PATHOL
LAB MED, V141, P776

16 Li et al. (2021) Next-generation sequencing of cerebrospinal fluid for the diagnosis of unexplained
central nervous system infections.

21 Salter et al. (2014) BMC BIOL, V12, P87 16 Simner et al. (2018) Development and optimization of metagenomic next-generation sequencing
methods for cerebrospinal fluid diagnostics.

21 Brown et al. (2018) J INFECTION, V76,
P225

15 Kanjilal et al. (2019) Diagnostic testing in central nervous system infection.

21 Miller et al. (2019) GENOME RES, V29,
P831

15 Saylor et al. (2015) Acute encephalitis in the immunocompromised individual.
TABLE 3 | Cited references and citing articles of cluster #5 on acute encephalitis.

Cited references Citing articles

Cites Author (year) journal, volume, page Coverage
%

Author (year) title

27 Venkatesan et al. (2013), CLIN INFECT DIS, V57,
P1114

14 Kramer et al. (2013) Viral encephalitis in the ICU.

27 Granerod et al. (2010), LANCET INFECT DIS, V10,
P835

10 Yansouni et al. (2013) Rapid diagnostic tests for neurological infections in central Africa.

21 Tunkel et al. (2008), CLIN INFECT DIS, V47, P303 8 Zimmer et al. (2016) Central nervous system infections.
20 Glaser et al. (2006), CLIN INFECT DIS, V43, P1565 7 Saylor et al. (2015) Acute encephalitis in the immunocompromised individual.
13 Mailles and Stahl (2009), CLIN INFECT DIS, V49,

P1838
7 Yao et al. (2009) Detection of human herpesvirus-6 in cerebrospinal fluid of patients with

encephalitis.
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et al. (2013) conducted an observational cohort study to assess the
presentation, symptom profile, immunotherapies used, timing of
improvement, and long-term outcomes in anti-NMDA receptor
(NMDAR) encephalitis. The findings provide evidence that
immunotherapy and tumor resection are useful against
NMDAR encephalitis.

3.3.4 Cluster #10—Hospital-Based Surveillance
Hospital-based meningitis surveillance is an important method for
studying the pathogenesis and molecular epidemiology of
meningitis. It provides evidence for assessing epidemiological
trends, guiding empirical antimicrobial and adjunctive therapy in
hospitals, evaluating available laboratory methods for diagnosis, and
providing evidence for future vaccination strategies.

A review published by Brouwer et al. (2010) describes the
changing epidemiology of bacterial meningitis in the USA,
reviewing global changes in pathogens followed by specific
microbiological data on the impact of the development and
widespread use of conjugate vaccines. They reviewed the available
laboratory tests used to diagnose bacterial meningitis and provided
recommendations for empiric antibiotic therapy. Accurate
identification of pathogens is essential for the treatment of
meningitis. Wu et al. (2013) evaluated the accuracy of real-time
PCR, Gram staining, and culture for the diagnosis of Streptococcus
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
pneumonia, Neisseria meningitides, and Haemophilus influenza
meningitis. They concluded that real-time PCR and Gram staining
were highly accurate in the diagnosis of meningitis caused by S.
pneumonia, N. meningitides, and H. influenza. Also, real-time PCR
and Gram staining were less affected by the presence of antibiotics
and may be useful when antibiotics have been used previously.

3.4 Most Cited Articles
Due to their pioneering contributions, the most cited articles are
often considered landmarks. Supplementary Figure 2 shows the
clustering of highly cited articles, and Table 6 summarizes the top
10 highly cited articles. Cluster #0 has four articles in the top 10
landmark articles. Clusters #10 and #5 each have two articles.
Ranked first by the number of citations is Wilson et al. (2014) in
cluster #0 with 60 citations, followed by Leber et al. (2016) with 55
citations. The third-, fourth-, and sixth-ranked articles were all from
cluster #0, namely, Naccache et al. (2015), Wilson et al. (2019), and
Bolger et al. (2014), indicating that researchers are stimulating
strong interest in metagenomic next-generation sequencing.

3.5 Citation Bursts
Citation bursts have two attributes: the intensity and duration of the
burst. Citation burst detection reveals abrupt changes in terms of
citations over a specified period, thus identifying emerging research
TABLE 4 | Cited references and citing articles of cluster #7 on neuronal autoantigens—pathogenesis.

Cited references Citing articles

Cites Author (Year) Journal, Volume, Page Coverage
%

Author (Year) Title

20 Titulaer et al. (2013) LANCET NEUROL, V12,
P157

28 Lancaster and Dalmau (2012) Neuronal autoantigens-pathogenesis, associated disorders and
antibody testing.

19 Graus et al. (2016) LANCET NEUROL, V15,
P391

25 Iorio and Lennon (2012) Neural antigen-specific autoimmune disorders.

11 Dalmau et al. (2008) LANCET NEUROL, V7,
P1091

16 Wong-Kisiel et al. (2012) Autoimmune encephalopathies and epilepsies in children and
teenagers.

11 Irani et al. (2010) BRAIN, V133, P2734 14 Ramanathan, Sudarshini (2014) Autoimmune encephalitis: recent updates and emerging
challenges.

10 Gable et al. (2012) CLIN INFECT DIS, V54,
P899

10 O’Toole et al. (2013) Paraneoplastic and autoimmune encephalopathies.
TABLE 5 | Cited references and citing articles of cluster #10 on hospital-based surveillance.

Cited references Citing articles

Cites Author (year) journal, volume,
page

Coverage
%

Author (year) title

32 Brouwer et al. (2010) CLIN
MICROBIOL REV, V23, P467

7 Boula et al. (2019) Hospital-based surveillance provides insights into the etiology of pediatric bacterial meningitis
in Yaounde, Cameroon, in the post-vaccine era.

30 Thigpen et al. (2011) NEW
ENGL J MED, V364, P2016

7 Nhantumbo et al. (2015) Frequency of pathogenic paediatric bacterial meningitis in Mozambique: the critical role
of multiplex real-time polymerase chain reaction to estimate the burden of disease.

15 McIntyre et al. (2012) LANCET,
V380, P1703

7 Mbaeyi et al. (2019) Improving case-based meningitis surveillance in 5 countries in the meningitis belt of sub-
Saharan Africa, 2015-2017.

14 Wu et al. (2013) BMC INFECT
DIS, V13, P26

6 Paye et al. (2019) Implementation of case-based surveillance and real-time polymerase chain reaction to monitor
bacterial meningitis pathogens in chad.

10 Wang et al. (2012) J CLIN
MICROBIOL, V50, P702

6 Sanogo et al. (2019) A new sequence type of Neisseria meningitidis serogroup c associated with a 2016
meningitis outbreak in mali.
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trends (Chen et al., 2012). Figure 4 lists the references with the
strongest citation bursts across the dataset for the period 2000–2021.
Of the top 10 references with the strongest citation bursts, the
second-, third-, fifth- to eighth-, and tenth-ranked articles are all
from cluster #0 on metagenomic next-generation sequencing.

The top-ranked item by bursts was Leber et al. (2016) with bursts
of 24.65. Leber et al. evaluated the performance of the FilmArray
Meningitis/Encephalitis Panel compared to culture (bacterial
analytes) and PCR (all other analytes) using 1,560 prospectively
collected CSF specimens. The FilmArray Meningitis/Encephalitis
(ME) Panel is a multiplexed in vitro diagnostic test for the
simultaneous and rapid detection of 14 pathogens (Escherichia
coli K1, Haemophilus influenza, Listeria monocytogenes, Neisseria
meningitides, Streptococcus pneumonia, Streptococcus agalactia,
cytomegalovirus, enterovirus, herpes simplex virus 1 and 2, human
herpesvirus 6, human parechovirus, varicella-zoster virus, and
Cryptococcus neoformans/Cryptococcus gattii) directly from CSF
specimens. In conclusion, they concluded that the FilmArray ME
Panel is a sensitive and specific test that can help diagnose
meningitis/encephalitis. By using this comprehensive and rapid
test, it is expected to improve patient outcomes and
antimicrobial stewardship.
3.6 Keywords Co-Occurrence as
Indicators of Research Hotspots
Keywords provide an accurate picture of what is hot in research
at a given time and can be used to get a clear picture of the state
of research. Figure 5 shows the keywords with high co-
occurrence rates. The larger the character, the more frequently
the keyword appears. “Infection”, “pathogen”, “diagnosis”,
“gene”, “virus”, “polymerase chain reaction”, “cerebrospinal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
fluid”, “epidemiology”, and “metagenomic next-generation
sequencing” are the main research priorities in this field.

3.7 Analysis of Burst Keywords
“Burst keywords” represent words that have been frequently
cited over some time, and identifying burst keywords among all
keywords may help to predict new frontier topics or research
trends in the future. As we can see in Figure 6, the latest burst
keywords are “antimicrobial resistance” (2017–2021),
“anaplasma phagocytophilum” (2017–2021), “metagenomic
next-generation sequencing” (2018–2021), “impact” (2018–
2021), and “coinfection” (2019–2021). Of these five keywords,
“metagenomic next-generation sequencing” had the highest
strength of burst with a value of 5.65, indicating that it is a
research frontier in the field of detection of pathogens of
CNS infections.

3.8 Cooperation Network Among
Countries
In the field of pathogen detection for CNS infections, 91 countries/
regions have published relevant papers. The top 10 countries/
regions by the number of publications are listed in
Supplementary Table 1. In order of number of publications, the
top 5 countries/regions were the USA (n = 769), the People’s
Republic of China (n = 309), England (n = 146), Germany (n =
135), and France (n = 102). The network of cooperation between
countries/regions is shown in Figure 7, with 91 nodes and 302 link
lines. The nodes and the link lines between them represent the
countries/regions and their collaborations, respectively. The larger
the nodes, the more publications there are. The wider the line, the
stronger the relationship. In this network map, the nodes in the
USA, the People’s Republic of China, England, Germany, and
TABLE 6 | Top 10 highest cited publications on pathogen detection for CNS infections.

Citation counts References DOI Cluster ID

60 Wilson et al., 2014, NEW ENGL J MED, V370, P2408 10.1056/NEJMoa1401268 0
55 Leber et al., 2016, J CLIN MICROBIOL, V54, P2251 10.1128/JCM.00730-16 13
42 Naccache et al., 2015, CLIN INFECT DIS, V60, P919 10.1093/cid/ciu912 0
34 Wilson et al., 2019, NEW ENGL J MED, V380, P2327 10.1056/NEJMoa1803396 0
32 Brouwer et al., 2010, CLIN MICROBIOL REV, V23, P467 10.1128/CMR.00070-09 10
31 Bolger et al., 2014, BIOINFORMATICS, V30, P2114 10.1093/bioinformatics/btu170 0
30 Thigpen et al., 2011, NEW ENGL J MED, V364, P2016 10.1056/NEJMoa1005384 10
27 Venkatesan et al., 2013, CLIN INFECT DIS, V57, P1114 10.1093/cid/cit458 5
27 Park et al., 2009, AIDS, V23, P525 10.1097/QAD.0b013e328322ffac 14
27 Granerod et al., 2010, LANCET INFECT DIS, V10, P835 10.1016/S1473-3099(10)70222-X 5
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France are larger and represent more publications. There are many
positive collaborations between different countries/regions.

3.9 Cooperation Network Among
Institutions
From 2000 to 2021, a total of 365 institutions have published in
this field. Supplementary Table 2 illustrates the top ten
institutions by the number of publications, three-fifths of which
are in the United States. The top five institutions contributing
most to the field were the Centers for Disease Control and
Prevention of USA, Oxford University, University of California,
San Francisco, Johns Hopkins University, and the Pasteur
Institute. The generated institutional network map identified 365
nodes and 648 link lines, representing institutions and their
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
collaborative relationships; thus, active collaboration between
different institutions was noted (Figure 8).

3.10 Cooperation Network Among
Researchers
A total of 368 authors have published in the field in the last 20
years. Supplementary Table 3 lists the top 10 authors in order of
the number of publications. XIN WANG and JENNIFER DIEN
BARD have published the most papers (n = 9) and are ranked
first, followed By MICHAEL R WILSON and JACOB
LORENZOMORALES (n = 7). The coauthorship network
diagram is shown in Figure 9 and contains 368 nodes and 540
collaboration lines. The nodes and the link lines between them
represent the authors and their collaborations, respectively.
FIGURE 5 | The network organized by co-occurrence keywords.
FIGURE 6 | Top 15 keywords with burst impact (sorted by the beginning year of burst).
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As the figure shows, an international collaboration between top
researchers was inadequate.
4 DISCUSSION

In central nervous system infections, timely identification of the
pathogen is key to effective treatment, but this remains a
formidable challenge. Current data show that even in centers
with the best resources, up to two-thirds of CNS infection cases
remain undiagnosed (Granerod et al., 2010; McGill et al., 2018).
Because most infectious syndromes have indistinguishable
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
clinical presentations, there is an urgent need for broad-based
multiplex diagnostic tests, which are currently unavailable for the
vast majority of potential pathogens. Some microorganisms are
difficult or impossible to culture, while others take weeks to
culture and speciate (Rea et al., 2019). Accurate molecular tests
by PCR and serological tests that detect pathogen-specific
antibodies offer diagnostic alternatives to culture, but they are
hypothesis-driven and require a priori suspicion of pathogenic
pathogens (Kanjilal et al., 2019). Large multiplex test panels
represent a paradigm shift in medical microbiology and clinical
infectious diseases. The main benefit of these panels is the
potential for more rapid results. However, because of the
potential for contamination and the ability to detect latent or
FIGURE 7 | Visualization map of the scientific collaboration network analysis among countries/regions.
FIGURE 8 | Visualization map of the scientific collaboration network analysis among institutions.
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reactivated viruses, the results of the panels must be scrutinized
and the laboratory must closely monitor the positivity rate
(Hanson, 2016). Therefore, the development of more rapid,
comprehensive, hypothesis-free pathogen detection methods
with high sensitivity and specificity to improve diagnosis is a
priority in neurological infection research.

In this study, we used CiteSpace software to explore trends and
developments in the field of CNS infection pathogen detection
research from 2000 to 2021. Trends in the number of annual
publications and total citations of annual publications in the field
reflect the interest and focus on the field over the years. The
research area covers a wide range of disciplines and topics,
including microbiology, infectious diseases, immunology, and
neuroscience, reflecting the combined efforts of experts and
scholars from various disciplines in the field. Collaborative
network analysis can provide detailed information for assessing
research collaborations and identifying key collaborators. Among
countries/regions and institutions, the United States has an
advantage in this area of research, given that it has published
the most articles in this field and that three-fifths of the top ten
institutions by the number of publications are located in the
United States. Despite the close international scientific
collaboration between scientists in this area of research, we
found from the collaborative authorship network map that
collaboration between top researchers is not sufficient.

Combining reference co-citation analysis and keyword co-
occurrence analysis, this study found that research in the field of
pathogenic diagnosis of CNS infections is focused on exploring new
etiologies (autoimmune and rare microbial pathogens) and more
advanced laboratory diagnostic methods. Based on the analysis of
co-citation clusters, most cited articles, citation bursts, keyword co-
occurrences, and burst keywords, metagenomic next-generation
sequencing has become the most popular research hotspot in
recent years.

Molecular diagnostic techniques have been continuously
improved and developed in recent decades. The advent of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
high-throughput sequencing has made it possible to discover
new microorganisms, rapidly address the causes of infectious
disease outbreaks, and develop metagenomics. Metagenomics
next-generation sequencing (mNGS) was initially limited to
dedicated laboratories because of the high cost of
instrumentation and consumables, as well as the need for
specially trained personnel (Lipkin, 2013). With many
published case reports and clinical study results confirming the
validity of mNGS, and the continued decline in sequencing cost
and time, mNGS is increasingly being used for clinical diagnoses,
providing clinicians with a powerful diagnostic tool that has
greatly improved our ability to detect infectious disease
pathogens in clinical samples (Goldberg et al., 2015; Allcock
et al., 2017).

Metagenomic next-generation sequencing is a comprehensive
and rapid diagnostic tool. It allows unbiased and detailed testing
of the total DNA or RNA content of all currently known
pathogenic microorganisms (Fei et al., 2020). It offers a
powerful advantage in infectious disease diagnosis as it does
not require special probes and targeting primers and facilitates
rapid detection of pathogens, including non-culturable
organisms and novel organisms (Liu et al., 2015; Perlejewski
et al., 2016; Bukowska-Ośko et al., 2017). mNGS also offers a
diagnostic advantage over conventional methods for patients
who have received empirical antimicrobial therapy before sample
collection. The empirical use of antibiotics significantly reduces
the detection rate of conventional methods by approximately
20%, whereas the detection rate of mNGS is unaffected (Zhang
et al., 2020). There is growing evidence that mNGS plays an
essential role in the diagnostic workup of CNS infections.
Potentially treatable pathogens, such as Leptospira, Brucella,
and Balamuthia mandrillaris, and non-treatable pathogens,
such as astroviruses and novel viruses, which were not
clinically suspected, have been identified using this technique
(Wilson et al., 2014; Naccache et al., 2015; Greninger et al., 2015;
Mongkolrattanothai et al., 2017). In 2017, the French
FIGURE 9 | Visualization map of the scientific collaboration network analysis among researchers.
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“Guidelines on the management of infectious encephalitis in
adults” recommended mNGS as level 1 evidence to assist clinical
decision-making in CNS infections (Stahl et al., 2017).

Despite the appeal of mNGS for infectious disease diagnosis,
there are many challenges before the technology becomes
mainstream and part of the standard of clinical care. 1)
Economic costs: given the cost of analysis and the required
informatics infrastructure (e.g., sequencing platforms,
computing resources, data storage), the use of mNGS is
currently still limited to a small number of diagnostic
laboratories (Zanella et al., 2019). 2) Standardization:
standardized operational procedures for NGS diagnostics,
including clinical specimen collection, sequencing parameters,
data analysis algorithms, reference databases, quality control, and
data reporting, need to be further defined (Goldberg et al., 2015). 3)
Technical challenge: there is still a lack of effective methods to
reduce host contamination and improve the sensitivity of mNGS to
clinical CSF samples. Human DNA contamination is a major
challenge for mNGS in detecting pathogens in most clinical
specimens. Elevated white blood cell counts are one of the main
manifestations of infection and a major source of host
contamination. This is because the high background of host DNA
greatly reduces the sequence coverage of pathogens, thereby
reducing the sensitivity of mNGS to detect pathogens (Hasan
et al., 2016). Several attempts have been made to reduce host
DNA contamination. Selective degradation of host DNA in blood
samples with methylation-dependent endonucleases, based on the
different methylation patterns between host DNA and pathogen
genomes, results in an enrichment of pathogen DNA (Auburn et al.,
2011; Oyola et al., 2013). However, this approach does not apply to
all pathogens, as many types of microorganisms also have
methylated CpGs (e.g., fungi). Another approach to selectively
isolate host DNA is to hybridize to pathogen DNA using specific
probes complementary to the pathogen genome and capture it for
amplification and sequencing. Although these targeted enrichment
methods can partially decontaminate the human genome, they are
insufficient to provide comprehensive, unbiased detection of
infections of unknown etiology (Melnikov et al., 2011; Bright
et al., 2012; Smith et al., 2012). 4) Interpret test results with
caution: although one of the advantages of mNGS analysis is the
ability to detect DNA or RNA of many microorganisms directly
from patient samples, a positive test result does not establish that it
is from a live microorganism, whereas a positive culture result
indicates the presence of a live organism. In addition, mNGS has
particular limitations in distinguishing which organisms are
colonized, conditionally pathogenic, or active pathogens
(Goldberg et al., 2015). 5) Higher demands on clinicians:
molecular diagnostics presents challenges in terms of data
interpretation and reporting, and the shift to molecular
diagnostics will require a change in clinician thinking. Upcoming
generations of physicians will need to adapt to the strengths and
limitations of these new tools (Goldberg et al., 2015).

Therefore, we need to take additional efforts to address these
technical challenges and to further reduce the economic costs. At
the same time, we should also recognize that, in addition to
identifying pathogens, treatment is vital. Therefore, the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
identification of virulence genes and sequence variants of
causative pathogens, assessment of antibiotic resistance, and
evaluation of the effectiveness of antibiotic therapy should also be
given high priority (Goldberg et al., 2015). More clinical studies are
needed to explore the capabilities of mNGS in these applications
(Goldberg et al., 2015).

5 CONCLUSION

In conclusion, the analysis and citation-based expansion of the
literature on pathogen detection in CNS infections have outlined the
trajectory of the evolution of collective knowledge over the past two
decades and highlighted areas of active pursuit. The exploration of
more advanced laboratory tests to identify pathogenic pathogens
has always been the core of research priorities in neurological
infections. As a comprehensive, rapid, and unbiased test, mNGS
offers diagnostic advantages over traditional methods, but at the
same time, mNGS still has several technical and economic
limitations that need to be improved upon. The results of our
review and analysis of the hotspots and research trends may
promote the development of this field.

6 LIMITATIONS

There are some limitations to this study that need to be noted and
addressed. Firstly, as our study was based on references searched in
the WoS Core Collection database, this means that we may have
omitted some important studies in other medical databases.
However, because different databases have different methods of
calculating citation frequencies, it is not appropriate to merge data
from different databases, and it is difficult for current bibliometric
software to merge two and more databases. Therefore, previous
studies have usually selected one database as the primary search
database (Zhong et al., 2020; Chen et al., 2020; Wu et al., 2021).
Among these, WoS Core Collection is a commonly used reference
database in bibliometric research. Secondly, our study only analyzed
the English language literature, which may have led to the
incompleteness of the data and the deviation of the research
results. Thirdly, the deadline for the research publications in this
study was August 12, 2021. All data in this work do not fully reflect
the reality of 2021 and could be a reference.
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