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Abstract: Advances in research have boosted therapy development for congenital disorders of
glycosylation (CDG), a group of rare genetic disorders affecting protein and lipid glycosylation and
glycosylphosphatidylinositol anchor biosynthesis. The (re)use of known drugs for novel medical
purposes, known as drug repositioning, is growing for both common and rare disorders. The latest
innovation concerns the rational search for repositioned molecules which also benefits from artificial
intelligence (AI). Compared to traditional methods, drug repositioning accelerates the overall drug
discovery process while saving costs. This is particularly valuable for rare diseases. AI tools have
proven their worth in diagnosis, in disease classification and characterization, and ultimately in
therapy discovery in rare diseases. The availability of biomarkers and reliable disease models is
critical for research and development of new drugs, especially for rare and heterogeneous diseases
such as CDG. This work reviews the literature related to repositioned drugs for CDG, discovered by
serendipity or through a systemic approach. Recent advances in biomarkers and disease models are
also outlined as well as stakeholders’ views on AI for therapy discovery in CDG.

Keywords: congenital disorders of glycosylation; drug repositioning; AI in drug discovery; orphan
drugs; disease models; biomarkers

1. Introduction

Drug repositioning (also called drug repurposing, reprofiling, or re-tasking) involves
the use of approved or investigational drugs for a different application than the original
one. This drug development strategy is based on the potential of each compound to interact
with distinct targets. Thus, a certain drug can be reused on the same target that is involved
in another disease, or on a different target from the primary one. Even the off-target effect
of a pharmaceutical product can be harnessed for another indication [1,2].
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The standard drug development process can take up to 15 years. Drug repositioning
can accelerate this time-consuming process by approximately five years. The drug repo-
sitioning strategy decreases the risk and increases the success rate, which on average is
approximately 2% in the standard development process. It also reduces the price of drug
development and production from approximately $12 billion for the cost of the traditional
strategy to $1.6 billion for the repositioning strategy, which is crucial in the rare disease
scenario [3].

Many rare diseases (RDs), affecting a small percentage of the population, are multi-
system and life threatening. A common definition is still lacking: a disease is considered
rare in the United States with a prevalence of less than 0.08%, in Japan less than 0.04% and
in Europe less than 0.05% [4,5]. More than 10,000 diseases are recognized as rare which,
although individually rare, affect about 400 million people worldwide [6]. Despite global
efforts [7,8], it is estimated that less than 5% of RDs have an approved therapy, mainly due
to the low number of people affected, the heterogeneity of the disease presentation, and the
lack of scientific data supporting a pharmaceutical strategy [9].

Drug repositioning mostly arises from accidental observations or informed insights
from previous studies. Although it has become popular in recent years, it is still restricted
to therapeutic areas making greater economic profits, such as cancer and other more
prevalent diseases [2]. A rational design of repurposed molecules could help to extend
drug repositioning to a variety of diseases [10]. In addition, continuous computational
advances offer many opportunities for a systematic search for repurposed therapeutics.
For example, many compounds can be virtually tested simultaneously, investigating new
potential targets and their associated pathways [9].

The development of therapies for RDs may greatly benefit from allying drug reposi-
tioning with artificial intelligence (AI) technology [11]. AI is an ever-growing field and its
application in biomedicine has been expanding in recent years [12]. It enhances drug devel-
opment, making it more efficient and less costly [13]. Some recent reviews on AI applied to
RD drug discovery give insights in current medical applications, types of algorithms and
input data as well as which diseases are being studied [11,14]. The increase in the available
information derived from new technologies in the biomolecular and pharmaceutical fields,
such as high throughput screenings (HTS) and omics, have prompted the role for AI in drug
discovery. Machine learning (ML) is a subtype of AI which allows the building of software
algorithms capable of learning from massive datasets [15], such as the ones used for drug
virtual screening. Based on the input supplied, ML algorithms can make predictions on new
datasets by the implicit learning from the initial training dataset used for its construction.

Drug repositioning is not a new strategy but its application in drug discovery in
conjunction with AI and computational tools is far from being a well-established, standard
practice [16]. Some recent examples of drug repositioning efforts for RDs, employing AI
and more specifically ML, are mentioned below.

Zhu, L. et al., used a hybrid computational drug repositioning approach, employing
both transcriptomics and molecular docking methods, to successfully identify potential
drug candidates for the rare Noonan and LEOPARD syndromes [17]. Ekins, S. et al.,
performed a HTS of approved drugs to identify potential ion channel inhibitors to treat
Pitt Hopkins syndrome. Validated Bayesian ML models were used to predict the activity
of these compounds based on their structure (structure-activity relationship models) [18].
To identify possible drugs for Huntington’s disease, Battista, T. et al., performed a virtual
screening to predict the interaction ability of FDA-approved drugs with the sigma-1 receptor
protein (σ1R), followed by molecular docking analysis of top candidates and evaluation in
patient-derived fibroblast cell lines [19]. Selected drugs proved able to directly bind σ1R
in vitro and yield a positive therapeutic response. Lee, Y. et al., developed the URSAHD
(Unveiling RNA Sample Annotation for Human Diseases) that uses ML techniques to
identify molecular and mechanistic features in diseases. This method has been successfully
used to predict effective chemotherapeutics such as cisplatin used against refractory anemia
with excess blasts (RAEB), and iron chelators such as resveratrol for sideroblastic anemia
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(SA) [20]. Similar drugs have previously demonstrated therapeutic efficacy for RAEB and
SA in clinical studies, validating this approach [21,22].

Computational approaches have been employed not only to identify repositioning
candidates, but also to systematically identify relevant drug targets for complex and
multisystem diseases. Therefore, mapping key biological targets and cellular pathways,
with a special focus on these diseases allowed to define this biological activity space [23,24].

Congenital disorders of glycosylation (CDG) are a group of rare genetic disorders
caused by defects in the synthesis and attachment of glycans to proteins and lipids, and
the synthesis of glycosylphosphatidylinositol (GPI) anchors. The mutated genes and
proteins involved in some types of CDG are shown in Table 1. CDG are typically multi-
systemic diseases with neurological manifestations observed in most patients [25]. More
than 160 CDG types have been reported which are associated with approximately 210
phenotypes [26]. PMM2-CDG, the most common CDG, has a prevalence higher than
1/20,000 [27]. CDG may be broadly classified into four categories: (I) N-glycosylation
defects; (II) O-glycosylation defects; (III) GPI-anchor biosynthesis and lipid glycosylation
defects; and (IV) multiple and other glycosylation pathways defects [28].

Table 1. Overview of mutated genes and respective proteins involved in some CDG. The gene
identification number (ID) is taken from the Gene database of NCBI.

Gene (Gene ID) Protein Disorder

ALG2 (85365) alpha-1,3/1,6-mannosyltransferase ALG2-CDG
ALG13 (79868) UDP-N-acetylglucosaminyltransferase (subunit) ALG13-CDG

B4GALT1 (2683) beta-1,4-galactosyltransferase 1 B4GALT1-CDG

CAD (790) carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and
dihydroorotase (enzyme complex) CAD-CDG

COG4 (25839) component of oligomeric golgi complex 4 COG4-CDG
COG5 (10466) component of oligomeric golgi complex 5 COG5-CDG
COG7 (91949) component of oligomeric golgi complex 7 COG7-CDG

DPAGT1 (1798) dolichyl-phosphate N-acetylglucosaminephosphotransferase 1 DPAGT1-CDG
EXT1 (2131) exostosin glycosyltransferase 1 EXT1-CDG
EXT2 (2132) exostosin glycosyltransferase 2 EXT2-CDG
FUT8 (2530) fucosyltransferase 8 FUT8-CDG

GMPPB (29925) GDP-mannose pyrophosphorylase B GMPPB-CDG
GNE (10020) glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase GNE-CDG

MAGT1 (84061) magnesium transporter 1 MAGT1-CDG
MOGS (7841) mannosyl-oligosaccharide glucosidase MOGS-CDG

MPI (4351) mannose phosphate isomerase MPI-CDG
NANS (54187) N-acetylneuraminate synthase NANS-CDG
PGM1 (5236) phosphoglucomutase 1 PGM1-CDG
PGM3 (5238) phosphoglucomutase 3 PGM3-CDG
PIGA (5277) phosphatidylinositol glycan anchor biosynthesis class A PIGA-CDG

PMM2 (5373) phosphomannomutase 2 PMM2-CDG
SLC35C1 (55343) solute carrier family 35 member C1 SLC35C1-CDG
SLC39A8 (64116) solute carrier family 39 member 8 SLC39A8-CDG
SRD5A3 (79644) steroid 5 alpha-reductase 3 SRD5A3-CDG
ST3GAL3 (6487) ST3 beta-galactoside alpha-2,3-sialyltransferase 3 ST3GAL3-CDG
ST3GAL4 (6484) ST3 beta-galactoside alpha-2,3-sialyltransferase 4 ST3GAL4-CDG
ST3GAL5 (8869) ST3 beta-galactoside alpha-2,3-sialyltransferase 5 ST3GAL5-CDG

Around 2500 patients have been diagnosed with CDG in Europe [29]. There is still no
cure for CDG although a few CDG types are treatable with nutritional interventions [30].
The development of effective therapies for CDG is complicated by the broad genetic and
clinical heterogeneity of this group of diseases. Not only is there a phenotypic hetero-
geneity between the various types, but also within the same CDG type (e.g., depending
on the genetic variant). Phenotypic variability has been reported in patients carrying the
same genetic variants [31,32], and possible involvement of genetic modifiers has been
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envisaged [33–35]. The last few years have seen significant advancements in CDG therapy
development with a few promising treatments currently under pre-clinical or clinical evalu-
ation. The therapies include substrate or co-factor supplementation, proteostasis inhibitors,
pharmacological chaperones, and antisense and gene therapy [36]. CDG drug development
could be pushed by drug repositioning alone or AI-assisted approaches, as in the case of
other RDs [14]. The identification of biomarkers and disease models is crucial to find a cure
or novel treatments [28]. Therefore, drug repositioning for CDG will greatly benefit from
reliable therapeutic biomarkers and disease models.

In this paper we present the results of a literature search on CDG therapies proposed
after October 2017, with emphasis on drugs being repositioned and undergoing pre-clinical
and/or clinical trials, such as celastrol (pre-clinical), acetazolamide (phase 2) and epalre-
stat (phase 3) for PMM2-CDG and palovarotene (pre-clinical) for EXT1/EXT2-CDG. The
chemical structures of these drugs are shown in Figure 1. We also summarize the latest
biomarkers and disease models for CDG as well as the results of a recent survey addressed
to the CDG community to determine key factors hampering therapy development.
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2. Methods
2.1. Literature Analysis for Drug Repositioning in CDG

The literature was reviewed following the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines. A search on the Medline database using
PubMed as the search engine was conducted using a combination of 71 different keywords,
targeting articles related to CDG, animal models, biomarkers and therapeutic approaches,
particularly drug repositioning, released between October 2017 and March 2022. The
selected keywords are listed in the Supplementary File.

The inclusion/exclusion criteria were the following:

(a) Only English-written manuscripts were included;
(b) Articles reporting biomarkers, in vitro and/or in vivo models, compassionate use or

clinical trials of therapies in CDG related to drug repositioning, were included;
(c) Only articles reporting CDG with therapies related to drug repositioning, under

development (compassionate use, clinical research) or already approved therapies
were included;

(d) Reviews were excluded, although we have included some for contextualization purposes.

For information about clinical trials, both the European and American web pages were
consulted (EU Clinical Trials Register—Update, Home—ClinicalTrials.gov, accessed on
24 March 2022).

ClinicalTrials.gov
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2.2. Stakeholders’ Views on AI for Drug Development in CDG

A lack of awareness and available information are amongst the most common im-
pediments to drug research and development (R&D) in RDs. The “Assessing CDG needs
and solutions for future therapies” survey was launched shortly before the 5th World
Conference on CDG in 2021 to perform a comprehensive assessment of the awareness level
and knowledge of stakeholders in the CDG community (CDG professionals, patients and
laymen) [37]. A section of the questionnaire focused on stakeholder perspectives on drug
profiling and AI for drug R&D. The results were examined and presented in this work.

3. Results
3.1. Literature Analysis

A total of 460 articles were found. The duplicates (138) were excluded and 322 articles
were selected for further analysis. Due to the high number of results, keyword refinement
was applied, leading to the exclusion of articles that were out of the scope of this work.
215 articles were included for title and abstract selection and a total of 42 articles meeting
the inclusion criteria were selected for full paper analysis. The PRISMA flow diagram in
Figure 2 summarises the screening process.
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3.2. Disease Models

Modelling RDs by genetic modification in cellular or animal models is a valuable
tool to efficiently recapitulate disease phenotypes and/or pathophysiological mechanisms
allowing to test a large number of new or repositioned chemical compounds in a short
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period of time. In vitro models (i.e., cell lines such as CHO and HeLa), have been used to
identify the molecular mechanisms involved in CDG, categorize gene variants as disease-
causing and investigate protein functionality. Patient-derived cells, such as fibroblasts,
have also been extensively used to study disease mechanisms and potential therapeutic
strategies [28]. Recently, patient-derived lymphoblastoid B cell lines have been proposed
as a model for studying CDG [39].

Lao et al., developed yeast models of PMM2-CDG that allowed for the analysis of
evolutionarily conserved genotype-phenotype relationships across yeast and PMM2-CDG
patients. In this model, growth is deficient in PMM2 mutants and correlates with the resid-
ual enzymatic activity. These patient avatars were used in a growth-based phenotypic drug
repositioning screen of a library of 2560 approved and experimental drugs, compounds
and natural products [40]. These yeast models are also attractive to identify molecular
mechanisms of genetic compensation in PMM2-CDG. Experimental evolution has recently
revealed compensatory mutations that restore growth and protein glycosylation in PMM2-
CDG yeast. Some mechanisms have already been proposed to explain this correlation.
Most importantly, this work opens the way for new insights for unraveling the molecular
basis of PMM2-CDG [41].

Nevertheless, some limitations can only be overcome by using more complex organ-
isms. To gain full knowledge of the disease pathophysiological mechanisms as well as to
gather pre-clinical research data concerning absorption, distribution, metabolism, excretion
and toxicity (ADME-Tox) parameters, essential for further clinical research, multicellular
model organisms are necessary. Encountered difficulties in CDG models are particularly
related to embryonic and neonatal lethality and a lack of replication of the patients’ disease
phenotype. New techniques such as clustered regularly interspaced short palindromic
Repeats (CRISPR)/Cas9 or conditional knockouts [42] have made in vivo gene engineering
more accessible and efficient. In the past five years, several in vivo models have been
developed for CDG, allowing the identification of pathophysiologic mechanisms [43–45]
and the pre-clinical testing of drug repositioning candidates [46,47]. A compilation of both
in vitro and in vivo disease models reported since October 2017 is presented in Table 2. In
addition, we are aware of two novel C. elegans SRD5A3 knockout strains that have been
generated for the screening of repositioned drugs for SRD5A3-CDG [48].

Table 2. Overview of in vitro and in vivo disease models for congenital disorders of glycosylation
(CDG) reported since October 2017 to March 2022. NR: not reported; MO: morpholino oligonucleotide;
KO: knockout; KD: knockdown.

Defect CDG Cell/Organism Model Major Findings/Phenotype Reference

N-linked
glycosylation

ALG2-CDG Oryzias latipes
(medaka)

Alg2+/p.G336

Alg2p.G336/p.G336

Modelling ALG2-CDG
patient phenotypes, in terms of morphology

(facial skeleton and neuronal defects) and
hypo-N-glycosylation

(especially affecting rod photoreceptors)

[49]

ALG13-CDG Mus musculus
(mouse) Alg13 KO

- Increase of the severity of kainic acid
(KA)-induced and
pilocarpine-induced seizures

- Exacerbation of the classical pathological
manifestations of epilepsy in KA-induced
epileptic mice

[44]

DPAGT1-CDG
Xenopus laevis Dpagt1 KO (mRNA)

- Posteriorization of X. laevies embryos
- Significantly altered expression of Wnt

reporter genes, Xnr3 and chrd [45]

Danio rerio (zebrafish) Dpagt1 KO (mRNA) Inhibition of eye formation
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Table 2. Cont.

Defect CDG Cell/Organism Model Major Findings/Phenotype Reference

N-linked
glycosylation

FUT8-CDG Mouse Fut8−/− High mortality rate after birth due to respiratory
defects and severe growth retardation [50]

MAGT1-CDG

Jurkat cell line Magt1−/−

Selective deficiency of
N-glycoproteins and

glycosylation defects in immune-response
proteins such as CD28

[51]

Human embryonic
kidney (HEK) 293T

cell line

Magt1 KO
Magt1/Tusc3 KO

- MAGT1 and paralog protein TUSC3 are
OST subunits and their role in
glycosylation is interchangeable

- MAGT1 and TUSC3 have different
tissue distribution

MOGS-CDG Schizosaccharomyces
pombe (yeast) ∆gls1-S

- Abrogated G3M9 deglucosylation
- Lack of triglucosylated

glycoprotein deglucosylation
- Distortion of cell wall and absence of

underlying ER membranes

[52]

MPI-CDG
TWNT-4 and LX-2 a

human hepatic
stellate cells

Mpi KD (siRNA)
- a Depletion of MPI activity
- a Increased expression of COL1A1,

PDGFRB, and ACTA2.
[53]

PMM2-CDG

Caenorhabditis elegans Pmm2F125L/F125L

- Larval lethality not seen, growth defects or
any observable locomotor defects in
liquid media

- Reduced PMM enzyme activity
- Sensitive to tunicamycin and bortezomib

(induces larval arrest in worms)

[47]

Saccharomyces cerevisiae
(yeast)

Sec53∆
Sec53E146K (E139K)

Sec53V238M (V231M)

Sec53F126L (F119L)

Sec53E100K (E93A)

Sec53R148H (R141H)

Drug repurposing screen revealed three novel
chemical modifiers that subdued growth defects

in SEC53 protein variants
[40]

Zebrafish

Pmm2 KD (MO)
Mmp2 KD (MO)
Mmp9 KD (MO)
Furina KD (MO)

Reducing proconvertase activity restores matrix
metalloproteinase (mmp) activity and improves

N-cadherin processing
[54]

EBV-transformed
lymphoblastoid B

cell lines
(B-LCL) from

13 patients

Carbonic anhydrase 2 is proposed as a cellular
biomarker for CDG [39]

O-linked
glycosylation

B4GALT1-
CDG

Mouse
embryonic stem cells

(mESCs)
B4Galt1 KO Enhanced resistance to

ricin [55]

CRPP-CDG Mouse FKRPP448L/P448L
- Early onset of dystrophic pathology
- Undetectable levels of F-α-DG in cardiac

and skeletal muscles
[56,57]

EXT1/EXT2-
CDG Mouse

Col2a1-Ext1CKO

stochastic KO
- Macroscopic osteochondromas

development in bones by P28
- Abnormal cell clusters in Ranvier grooves

[42]
Fsp1-Ext1CKO

(perichondrium-
targeted

Ext1–conditional KO)

Development of multiple osteochondromas

Ext1f/f Agr-CreER
- Osteochondroma formation 6 to 8 weeks of

tamoxifen injection
- Marked decrease in immunodetectable

pERK1/2 levels
[58]

Ext1f/f Col2-CreER
- Cranial base defects
- Disorganized synchondroses
- Deranged growth plate-like organization
- Osteochondromas development
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Table 2. Cont.

Defect CDG Cell/Organism Model Major Findings/Phenotype Reference

GPI-biosynthesis PIGA-CDG

Human male colon
cancer cell line

(HCT116)
Piga∆ NR [59]

Mouse
a,b In-M-cko
a,c Ex-M-cko

Th-H-cko

- a Impaired long-term fear memory
- a Increased susceptibility to

KA-induced seizures
- b Severe limb-clasping phenotype
- c Changes in hippocampal synapses

[60]

Multiple
and other

glycosylation
pathways

CAD-CDG/
Enzyme
complex
(ATase,
CPSase,

ATCase and
DHOase)

Human U20S cells

CAD KO
(homozygous c.70delG

frameshift
(p.Ala24-Profs*27)

within exon 1 using
CRISPR/Cas9)

No expression of CAD protein [61]

GMPPB-CDG Zebrafish Gmppb KD (MO) Gmppb involvement in neuronal and muscle
development [62]

GNE-CDG
Chinese
hamster

ovary (CHO) cell line
Gne KO

- CMP-sialic acid reduction
- Decreased sialylation of cell surface

glycans
[63]

COG4-CDG RPE1 and HEK293T
cell lines Cog4 KO

- Expression of G516R and R729W rescues
the COG4 KO phenotypes

- COG4 G516R and R729W do not alter
Golgi morphology

- O-glycosylation defect in cells expressing
COG4 G516R and N-glycosylation defect
in cells expressing COG4 R729W mutants

[64]

COG5-8 S. cerevisiae Cog5-8∆
(cog5-8::kanMX6)

- Relocation of individual COG subunits to
mitochondria

- Recruitment of a limited number of other
COG subunits to mitochondria

[65]

COG5-CDG Drosophila melanogaster
P element insertion

mutations in the Cog5
(fws) subunit

Impairment of spermatocyte cytokinesis,
acroblast structure and elongation and

individualization of differentiating spermatids
[66]

COG7-CDG D. melanogaster Cog7z4495/z5797
- Altered N-glycan profile
- Pronounced neuromotor defects
- Reduced lifespan

[67]

NANS-CDG CHO cell line Nans KO CMP-sialic acid reduction [63]

PGM1-CDG Mouse

Pgm2−/− Embryonic lethality

[43]
Pgm2+/−

- Profound decrease of the
tetrasialotransferrin glycoform (type 1),
and relative increase of truncated glycans
(type 2 pattern)

- No increase in mannosylation and
fucosylation

- A glycan-processing defect, but different
from biallelic PGM1 mutant human cells

PGM3-CDG

D. melanogaster DPgm3 KO (RNAi)
- Notches at the adult wing margin
- Severe reduction of sens expression along

the entire dorsoventral boundary

[45]
Xenopus laevis

Pgm3 (mRNA) Posteriorization of
embryos

Pgm3 KO (MO) Anteriorization of
embryos

Zebrafish Pgm3 (mRNA) Inhibition of eye formation

SLC35C1-CDG

mESCs
(haploid state)

Slc35c1−/−

Lack of fucosylated
structures

[55]Mouse
intestinal
organoids

Improved ricin resistance
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Table 2. Cont.

Defect CDG Cell/Organism Model Major Findings/Phenotype Reference

Multiple
and other

glycosylation
pathways

SLC39A8-
CDG Mouse

ZIP8-iKO
(Slc39a8fl/fl

UBC-CreERT2)

- Reduced expression of slc39a8 in liver,
brain, kidney and small intestine

- Reduced levels of Mn in whole blood
and tissues

- Defective protein N-glycosylation
- Hypogalactosylation [68]

ZIP8-LSKO
(Slc39a8fl/fl Alb-Cre, a

liver-specific KO)

- Decreased Slc39a8 mRNA levels in liver
- Decreased Mn levels in liver, kidney, brain

and heart
- Decreased whole blood Mn levels

SRD5A3-CDG Mouse Cerebellar conditional
KO En1-Cre; Srd5a3fl/-

- Motor coordination defects
- Abnormal granule cell development
- Mild N-glycosylation impairment
- Major ER homeostasis alteration

[69]

ST3GAL3-
CDG Mouse

St3gal3 KO Minor hematologic abnormalities
[70]St3gal2/st3gal3

double KO Lack of GD1a and GT1b gangliosides

ST3GAL4-
CDG

KBM7 ST3GAL4 KO-1
and KO-2 cells ST3GAL4−/− - Loss of sialyl Lewis X

- Increased sensitivity to ricin
[55]

ST3GAL5-
CDG HEK 293T

G342S-
C195S a-
G201A a-

E355K-HaloTag-
ST3GAL5

a Complete loss of GM3 synthase activity [71]

3.3. Biomarkers

Transferrin, an abundant serum glycoprotein, is the primary biomarker for CDG screen-
ing and therapy monitoring. Nevertheless, the existence of CDG with normal transferrin
glycosylation, the normalization of glycosylation patterns with age in several CDG patients
and charge-altering transferrin variants, stress the need for complementary biomarkers.
Electrospray ionization mass spectrometry (ESI-MS) has been used to complement trans-
ferrin analysis [72]. N-glycome profiling using matrix-assisted laser desorption ionization
time of flight (MALDI-TOF) MS broadens the scope of this technique by analyzing the
entire N-glycans in a sample. It is increasingly used in CDG diagnosis, particularly when
standard transferrin analysis does not reveal abnormalities [72,73]. Chen et al., described
a new MS-based approach for CDG diagnosis, RapiFluor MS, that paves the way to the
integration of N-glycomics approaches for diagnosis of glycosylation disorders [74]. In a
recent glycomics study, specific glycomarkers for congenital disorders of N-glycosylation
(CDG type I) were identified, which could be potentially used for diagnosis and therapy
recording [75].

There are still few biomarkers available to monitor disease progression or therapy
assessment. Recently, sorbitol has emerged as a biomarker for PMM2-CDG as urinary
sorbitol levels seem to correlate with disease severity in patients. It was also used to
monitor the effect of epalrestat (a repurposed drug in trial for PMM2-CDG) treatment in a
pediatric PMM2-CDG patient [76].

Other improvements concern known therapies. An example is the PGM1-CDG Treat-
ment Monitoring Index (PGM1-TMI), proposed to evaluate the efficacy of D-galactose
supplementation in PGM1-CDG patients. The index allows one to track the glycosyla-
tion profile of transferrin during D-galactose supplementation and dose adjustment if
necessary [77].
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3.4. Drug Repositioning
3.4.1. Celastrol for PMM2-CDG

Celastrol has been studied primarily for its anti-inflammatory properties as a drug for
cancer, inflammatory and autoimmune diseases [78]. This molecule also regulates other
cellular mechanisms (such as proteostasis) [79].

Protein homeostasis, or proteostasis, involves a set of cellular functions that ensures a
functional proteome within the cell. To be functional, proteins need to acquire and maintain
a proper quaternary structure and localization. The proteostasis network, consisting of
molecular chaperones, the autophagy and proteosome systems, not only are responsible to
assist proteins during the folding process as well as act as a quality control mechanism [80].
Proteostasis regulators have been proposed as therapeutics for rare diseases [81,82], in-
cluding conformational diseases, such as PMM2-CDG [83,84]. As such, celastrol, which
modulates the proteostasis network by activating the heat shock response (HSR) (Figure 3),
has been successfully tested in patient-derived fibroblasts carrying several pathogenic
PMM2 variants.
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Celastrol treatment increased PMM2 protein levels and enzymatic activity in the dis-
ease cell models overexpressing genetic variants affecting PMM2 protein folding (namely
D65Y, R162W, T237M) and PMM2 dimerization (F119L). Furthermore, several molecular
chaperones from the HSR family were increased, both at the transcriptional and pro-
teome levels [83,85]. These results represent the proof-of-concept for the use of stabilizing
molecules as therapy for PMM2-CDG [85].

3.4.2. Acetazolamide for PMM2-CDG

Nearly a thousand people have been reported with PMM2-CDG [86]. Most of them
present with cerebellar syndrome and stroke-like episodes (SLE). The AZATAX trial (Eu-
draCT number 2017-000810-44) was conducted to evaluate the efficacy and safety of aceta-
zolamide in the treatment of cerebellar syndrome in PMM2-CDG patients. The rational for
clinical evaluation of acetazolamide was based on the hypothesis that hypoglycosylation
of calcium channels is an underlying pathomechanism of ataxia and SLE in PMM2-CDG
patients [87]. This defect in glycosylation could cause an undesirable increase in calcium, a
known inhibitor of PMM2 [88]. Acetazolamide (Figure 3), a non-competitive inhibitor of
carbonic anhydrase, can act on the transmembrane potential by interfering with pH [89].
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Acetazolamide is an approved drug that is used to treat retinal complications, epilepsy
and other diseases, particularly in children. To date, no interference with other therapies
has been reported [90–92].

In the AZATAX trial, twenty-four PMM2-CDG patients (mean age of 12.3 ± 4.5 years)
were included in the European phase 2 clinical trial. The trial comprised a six-month
first-phase single acetazolamide therapy, followed by a randomized five-week withdrawal
phase. No serious side effects were reported, despite the requirement of dose adjustment
in thirteen patients due to low bicarbonate levels or asthenia. Improvements on the
International Cooperative Ataxia Rating Scale (ICARS), the Nijmegen Pediatric CDG Rating
Scale (NPCRS) and a syllable repetition test (PATA test) were observed in 18 patients (75%)
after 6 weeks of treatment. Despite clinical improvement, no relevant benefit on quality
of life (QoL), apart from the anxiety score, was observed. Improvement of coagulation
factors (prothrombin time, factor X, and antithrombin) was also observed. The drug was
well tolerated in most patients and improved motor and cognitive features of the cerebellar
syndrome [93].

Another clinical trial to assess the effect of acetazolamide on improving ataxia and to
evaluate adverse events related to a longer administration is being conducted (ClinicalTrials.
gov NCT04679389, accessed on 24 March 2022).

3.4.3. Epalrestat for PMM2-CDG

A pilot drug repositioning study using a novel yeast PMM2-CDG model resulted
in the identification of three compounds that restore the growth defect in mutant strains.
One of the compounds is α-cyano-4-hydroxycinnamic acid, a potent aldose reductase
inhibitor [40] which paved the way for the work of Iyer et al. Among 20 drugs, epalrestat
was identified as a potential hit. Epalrestat (Figure 3), also an aldose reductase inhibitor,
was shown to increase PMM2 activity in four PMM2-CDG patient fibroblast lines with
genotypes R141H/F119L, R141H/E139K, R141H/N216I and R141H/F183S [47].

Epalrestat is already used to treat neuropathy as a diabetic complication [94]. The
drug is widely marketed in Asia but has not yet been approved in the US or the EU.

Considering that aldose reductase catalyzes the conversion of glucose to sorbitol, its
inhibition should increase the glucose availability for the synthesis of α-D-glucose-1,6-
bisphosphate, a known PMM2 activator [95]. A single-patient phase 1 clinical trial has been
ongoing since January 2020 to evaluate the tolerability of oral epalrestat monotherapy in a
child with PMM2-CDG. The patient showed improvement of appetite, of body mass index
(BMI) and of serum transferrin isoelectric focusing. There was minimal improvement of
the NPCRS and of the ICARS ataxia score. No adverse events were observed during the
trial period [76]. A phase 3, prospective, single-center clinical trial designed to assess the
safety, tolerability, metabolic improvement and probable benefit of oral epalrestat therapy
in pediatric subjects with PMM2-CDG will be conducted (ClinicalTrials.gov NCT04925960,
accessed on 24 March 2022).

3.4.4. Palovarotene for EXT1/EXT2-CDG

EXT1 and EXT2 are tumor suppressor genes that encode glycosyltransferases involved
in the biosynthesis of heparan sulfate. Genetic variants of these genes cause multiple
exostoses, osteochondromatosis, or EXT1/EXT2-CDG, which are autosomal dominant O-
linked glycosylation disorders characterized by the formation of multiple cartilage-capped
tumors (osteochondromas) [96].

Impaired heparan sulfate biosynthesis causes an increase in bone morphogenetic pro-
tein (BMP) signaling, which most likely leads to the formation of osteochondromas [42,97].
Palovarotene (Figure 4), a retinoic acid receptor and selective agonist for EXT1/EXT2-CDG,
has already shown clinical safety for fibrodysplasia ossificans progressiva and emphy-
sema [98,99]. The rational for testing palovarotene for the treatment of EXT1/EXT2-CDG
is based on its ability to reduce heterotopic ossification in mouse models (likely by the
inhibition of BMP signaling).
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A pre-clinical trial was performed in a Fsp1Cre; Ext1flox/flox mouse model of multiple
osteochondromatosis. Four-week daily treatment with palovarotene, starting at postnatal
day 14, reduced the number of developing osteochondromas by up to 91% in a dose-
dependent manner [42]. It was also shown that the drug restores proper chondrocyte
differentiation in Ext1-deficient progenitor cells in vitro. In addition, insights were pro-
vided concerning the relationship between palovarotene and BMP signaling [46]. These
encouraging results pave the way for the first clinical trial for EXT1/EXT2-CDG.

A randomized, double-blind, placebo-controlled phase 2 clinical trial (ClinicalTrials.
gov NCT03442985, accessed on 24 March 2022) was conducted between 2018 and 2020.
The trial was terminated early to analyze the accumulated data and evaluate the efficacy
and safety of palovarotene in osteochondromatosis. After the evaluation of these results,
Ipsen (the trial sponsor) was granted authorization to initiate a new trial to evaluate the
effect of palovarotene in patients with multiple osteochondromas over 14 years of age
(ClinicalTrials.gov NCT05027802, accessed on 24 March 2022).

3.5. Stakeholders’ Views on AI for Drug Development in CDG

Prior to the 5th World Conference on CDG in 2021, a questionnaire was addressed to
the CDG community to gather stakeholder’s perspectives on therapy development. The
views of both CDG professionals (mainly researchers and, to a lesser extent, clinicians)
and CDG families on the entire drug development process, from drug discovery to drug
approval, were collected.

A particularly relevant outcome for the present work concerns the stakeholder’s
opinion on AI tools. Most questionnaire participants believe in the potential of AI to
accelerate the discovery of new therapies. In particular, professionals believe that AI
potentiates the finding of novel chemical compounds (65.2%). However, only 23.9% of
researchers reported to benefit from AI tools to date. Similarly, most families recognize AI
as a method for disease model development (57.1%). Regardless of the final application,
the majority of surveyed stakeholders believes that the power of AI lies in the ability to
access various data resources simultaneously [37].

4. Discussion

Traditionally, the entire drug development process, from drug discovery to clinical
approval, is a lengthy process spanning a decade or longer [100]. The financing efforts
required for drug development [101] may be even greater for RDs [102], which are typi-
cally underrepresented in therapy development due to a combination of factors such as
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underdiagnosis and underestimation of disease frequency insufficient data on disease pat-
terns, epidemiology, pathophysiology, biomarkers; patient outcomes; and low commercial
incentives from pharmaceutical companies paired with lack of funding [14].

Drug repositioning is presented as an alternative to conventional R&D “from scratch”
approaches, promising to overcome some of its obstacles, particularly for the underrepre-
sented RDs. By redeveloping approved drugs for novel applications and introducing them
in a new pathophysiological setting, it is possible to screen known compounds for their
activity towards a different biochemical target in search for new therapeutic uses [9]. Drug
repositioning allows researchers to potentially bypass assays and clinical trials, mostly
regarding toxicological, pharmacodynamic, and pharmacokinetic concerns (as these have
been previously addressed in the primary clinical studies) [103]. Although drug reposition-
ing is an attractive strategy for drug developers (both scientists and investors), it is not yet
sufficiently supported from the financial and legal perspective. Regulatory incentives and
patent protection are the key points that would support investment in repositioned drug
development [10].

ML technology is a great opportunity for drug development as, by predicting bio-
chemical properties of compounds and target interactions, it is possible to filter molecules
with desired features while discarding others unlikely to be effective from further inves-
tigational efforts. This strategy reduces the weight of in vitro assays, animal testing and
clinical trials [12], which is especially advantageous for RDs where the lack of work models
and patient trials is a limiting factor [104,105]. A noteworthy aspect is that the performance
of ML, and AI in general, intrinsically depends on the quality and completeness of the
datasets used. Thus, the development of increasingly accurate ML technology must be
accompanied by progress in screening methodologies, to efficiently measure relevant in-
formation, such as chemical reactivity, biological activity, pharmacological endpoints and
cell toxicity to enhance AI development in drug discovery [106]. Nowadays, the chemical-
response data obtained from HTS is growing exponentially and contributes to the current
establishment of big data approaches. The development of deep learning neural networks
with the corresponding increase in chemical and biological data has resulted in a paradigm
shift in data mining pertaining to the chemical-biological spaces [107]. Furthermore, some
characteristics of RDs, starting from the various nomenclatures and classifications available,
make it hard to integrate the available information. Recently, it has been highlighted that
drug repositioning for RDs benefits from the creation of a systematic ontology to extract
information from clinical trials and omics data [108].

Even though AI tools are still sporadically employed for CDG drug development, they
have been successfully used for the diagnosis and characterization of these diseases [14].
Few advances in CDG therapy have been made over recent years [36]. By reviewing the
literature, it is noted that four of the drugs advanced to different trial phases are reposi-
tioned drugs. They represent different possibilities for identifying repurposed compounds,
namely through expert awareness on clinical manifestations, as in the case of acetazolamide
(Figure 1A) and palovarotene (Figure 1C), by targeting specific pathophysiological mecha-
nisms, as for celastrol (Figure 1D) or by screening libraries of chemicals, as for epalrestat
(Figure 1B).

Based on previous observations, it was hypothesized that defects in the CaV2.1 channel
are involved in cerebellar syndrome and SLE in PMM2-CDG patients. Acetazolamide could
prevent not only these neurological complications but also ataxia, another major symptom
of the disease [93]. Thus, research and clinical observations have allowed this drug, already
in use for other diseases, to be investigated for PMM2-CDG in two separate clinical trials.
Successful treatment of these symptoms would allow a significant improvement in the QoL
of these patients.

Besides symptom management, an even more intricate issue concerns finding a cure
for the disease. The search for a potential drug amongst approved molecules is favoured if
the pharmacological target is fully explored. It follows that for RDs, particularly lacking
in data, this knowledge-based approach is often not applicable. AI tools hold a great
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potential for accelerating therapy options (e.g., by allowing one to match thousands of
molecules with any pharmacological target, thus playing an increasingly important role in
drug repositioning for RDs, including CDG) [14,109]. Epalrestat is a successful example of
organic intelligence application for drug repositioning in CDG. The drug emerged from the
HTS of repositioned compounds, and thus with a systematic and data-oriented approach.
The promising results in yeast and patient fibroblast models of PMM2-CDG (i.e., increasing
enzyme activity of some variants and restoring disease models’ phenotype) suggest that
epalrestat may be the first drug capable of rescuing PMM2 activity, and not only on some
symptoms of the disease.

Although still in a preliminary experimental stage, another repositioned drug for
PMM2-CDG is being tested. Administration of celastrol, a proteostasis regulator, resulted
in an increase in PMM2 enzyme activity in patient-derived cell lines. The drug is be-
ing examined since this type of molecules has proved effective for several rare diseases
characterized by protein unfolding, such as PMM2-CDG [83].

Once repositioning hits are identified in silico and/or in vitro, their efficacy on the
new target must be verified using disease models. Findings from a pre-clinical study in a
mouse model of EXT1/EXT2-CDG proved the effectiveness of palovarotene in reducing
the development of benign bone tumors, suggesting it could be repurposed to treat this
CDG [46]. As mentioned above, this is a typical drug repositioning strategy: the investiga-
tion arises from insights based on the observation of typical clinical presentations. In this
case, palovarotene is directed at benign bone tumors that characterize EXT1/EXT2-CDG,
and a trial is being conducted in mice modeling this phenotypic feature.

Given the potential of drug repositioning for CDG, it is not surprising that more efforts
in this area are under development. The pharmaceutical company Modelis has developed
an in-house pipeline for drug repositioning. In the first stage, phenotype-based drug
screening of a 4500-compound library is carried out in worm disease models to identify
candidates for further investigation. This pipeline is being used to discover therapeutic
candidates for SRD5A3-CDG. To date, several hits have been identified and are undergoing
validation [110].

Several CDG models are already available and efforts to identify therapeutic biomark-
ers and tractable animal models are ongoing. A recent survey addressed to the CDG
community stakeholders revealed that the accessibility of biobanks and disease models is
limited [37]. Given the fundamental importance of these tools in the drug development
process, especially in the early (pre-clinical) phases, disseminating and sharing existing
disease models is crucial to foster advances in CDG therapies.

5. Conclusions

The present work outlines two areas of opportunity to accelerate drug development
for RDs. Drug development, especially for RDs, is aided by advances in AI and by the
availability of good models. Here we review the progress in these fields since our 2018
publication [28], collecting the latest therapeutic biomarkers and disease models for CDG.
The other aspect is drug repurposing, illustrated by four repositioned drugs undergoing
trials as promising therapies for two CDG types.
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