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Abstract: Pyroptosis is a type of programmed cell death (PCD) accompanied by an inflammatory
reaction and the rupture of a membrane. Pyroptosis is divided into a canonical pathway triggered
by caspase-1, and a non-canonical pathway independent of caspase-1. More and more pyroptosis-
related participants, pathways, and regulatory mechanisms have been exploited in recent years.
Pyroptosis plays crucial roles in the initiation, progression, and metastasis of cancer and it affects
the immunotherapeutic outcome by influencing immune cell infiltration as well. Extensive studies
are required to elucidate the molecular mechanisms between pyroptosis and cancer. In this review,
we introduce the discovery history of pyroptosis, delineate the signaling pathways of pyroptosis,
and then make comparisons between pyroptosis and other types of PCD. Finally, we provide an
overview of pyroptosis in different cancer types. With the progression in the field of pyroptosis, new
therapeutic targets and strategies can be explored to combat cancer.
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1. Introduction

Cell death is crucial to maintain in vivo stability during organismal growth and devel-
opment [1]. Cell death can be divided into two types: accidental cell death and programmed
cell death (PCD). Accidental cell death not accurately regulated is caused by harmful phys-
ical, chemical, or mechanical stimuli. On the contrary, PCD is a protective suicide to
promote morphogenesis and eliminate harmful or abnormal cells [2]. Pyroptosis, also
known as cell inflammatory necrosis, is a pro-inflammatory PCD to antagonize infection
and endogenous danger signals [3]. Pyroptosis can be divided into canonical pyroptosis,
dependent on caspase-1, and non-canonical pyroptosis independent of caspase-1 [4]. Many
types of cancer such as non-small cell lung cancer (NSCLC), colorectal cancer (CRC), gastric
cancer (GC), and hepatocellular carcinoma (HCC) are associated with inflammation [5]. In
addition to cancer, the prevalent role of pyroptosis in other diseases, such as neurodegener-
ative diseases, has been explored. It has been reported that Huntington’s and Alzheimer’s
disease are accompanied by pyroptosis [6,7]. More IL-18 and IL-1β were observed in brain
tissues with Huntington’s and Alzheimer’s disease [8,9]. Hence, pyroptosis may contribute
to neurodegenerative diseases. A further study on pyroptosis is beneficial to the treatment
of neurodegenerative diseases as well. At present, the relationship between pyroptosis
and antitumor immunity is unclear, but a number of studies have shown that pyroptosis
mediates tumor regression by promoting immune cell activation [10]. Cancer cell pyrop-
tosis (CCP) stimulates inflammatory responses in the tumor microenvironment, which
effectively motivates antitumor immunity; immune cell pyroptosis (ICP) is responsible for
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the host defense against a pathogen infection [11]. Together, both CCP and ICP affect tumor
development. As a double-edged sword during carcinogenesis, pyroptosis is still open to
discussion. A comprehensive understanding of pyroptosis in the tumor microenvironment
will help to develop new and effective therapeutic strategies for cancer.

2. The Developmental History of Pyroptosis

Pyroptosis was first observed in 1986 by Friedlander, who noticed an abnormal death
phenotype in murine macrophages treated with an anthrax lethal toxin [12]. Caspase-1,
which mediates canonical pyroptosis, was discovered to cleave the IL-1β precursor in
1989 [13,14]. Therefore, caspase-1 is also known as an interleukin-1β-converting enzyme.
In 1992, the phenomenon of pyroptosis was described as chromatin condensation, cell
membrane rupture, endoplasmic reticulum enlargement, and the release of IL-1β as an in-
flammatory response [15]. Gasdermin, the executor of pyroptosis, was first discovered and
named in 2000 [16]. Pyroptosis was regarded as a special form of apoptosis in monocytes
until Brennan and Cookson found that macrophages infected with Salmonella typhimurium
died through an inflammatory death mode different from the traditional form of apop-
tosis [17]. This pro-inflammatory type of PCD was named pyroptosis in 2001, a word
derived from the Greek root, “pyro” [18]. Pyroptosis occurs quickly, destroys the integrity
of the cell membrane, and is accompanied by a severe inflammatory process [19]. However,
this significant discovery did not attract attention at that time and the specific molecular
mechanism of pyroptosis remains unclear. One year later, the term “inflammasome” was
proposed to replace the caspase-activating complex, which activates the inflammatory
caspases [20].

With further exploration, the definition of pyroptosis and related studies also continu-
ously evolve and are updated. In 2009, the Nomenclature Committee on Cell Death (NCCD)
redefined pyroptosis as inflammatory cell death caused by the activation of caspase-1 [21].
It has been gradually realized that in addition to caspase-1, caspase-4/5/11, granzyme A
(GZMA), and granzyme B (GZMB) could also cause pyroptosis. Gasdermin D (GSDMD),
a gasdermin family member, was identified as the substrate of inflammatory caspase-1
through an enzymatic N-terminal enrichment method with mass spectrometry-based pro-
teomics in 2010 [22]. Furthermore, other members of the caspase family and gasdermin
family were also found to participate in pyroptosis. Caspase-4/5/11 was found to induce
pyroptosis independently of caspase-1 by directly identifying the lipopolysaccharide (LPS)
to activate GSDMD in 2014 [23]. One year later, a breakthrough work on pyroptosis demon-
strated that the gasdermin protein family was the direct executor of pyroptosis [24]. This is
another key substrate of inflammatory caspases in addition to IL-1β/IL-18. Subsequently,
in 2016, several studies demonstrated that after cleavage by inflammatory caspases and
the disruption of the self-inhibitory state of GSDMD, GSDMD-N peptides were released
to bind to the membrane lipids, resulting in membrane disruption and pyroptosis [25–27].
Since then, the importance of the gasdermin family during pyroptosis has been gradually
realized. In 2018, the NCCD revised pyroptosis as a type of cell death dependent on the
gasdermin family to punch holes in the membrane mostly activated by an inflammatory
caspase [28]. In recent years, granzymes such as GZMA and GZMB have been discovered
to cause pyroptosis by cleaving gasdermin B (GSDMB) and gasdermin E (GSDME), respec-
tively [29,30]. The cognition and definition of pyroptosis are still evolving. Several crucial
time points for the discovery of pyroptosis are depicted in Figure 1.
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Figure 1. The timeline for the study of pyroptosis. The nodes represent the important events since
the first observation in 1986 to the present day.

3. The Process of Pyroptosis

A pathogen invasion into phagocytic cells can be detected by inflammasomes, which
induce pyroptosis by the release of inflammatory markers such as IL-18 and IL-1β. Phagocytes
are then recruited to kill the cells infected by the pathogen [31]. Pyroptosis is generally divided
into two main categories: the canonical pathway and the non-canonical pathway. Canonical
pyroptosis, the earliest discovered form of pyroptosis, is mediated by caspase-1. Non-canonical
pyroptosis describes the rest of the types other than canonical pyroptosis. Generally speaking,
the process of pyroptosis can be divided into four main phases (Figure 2): (1) the capture of
stimulatory signals; (2) the transmission of stimulatory signals; (3) the activation of pyroptosis
executors; and (4) the execution of pyroptosis.

3.1. The Capture of Stimulatory Signals

Pyroptosis, as an important innate immune response in the body, plays a significant
role in antagonizing infection and endogenous danger-signaling processes [32]. Pattern
recognition receptors (PRRs) mediate the occurrence of innate immunity by recogniz-
ing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) [33]. PAMPs are conserved structures in pathogenic microorganisms,
including nucleic acid, surface glycoprotein, lipoprotein, and membrane components [34].
DAMPs, which are endogenous molecules derived from damaged cells or tissues, can
trigger the immune responses of the body [35,36].

The acquisition of a stimulatory signal depends on the PRRs in the canonical pathway
whereas the recognition of the non-canonical pyroptosis signal is diverse. The capture of
the pyroptosis signal is different among different Gram-negative bacteria. The Yersinia
virulence factor YopJ enters the host cells via the type III secretion system whereas LPS
is transported into the host cells by endocytosis via secreted outer membrane vesicles
(OMVs) for a few other Gram-negative bacteria such as enterohaemorrhagic E. coli [37–41].
The granzyme, a serine protease produced by natural killer cells and cytotoxic T cells, is
delivered by perforin to the target cells [29,42,43]. Moreover, chemotherapy drugs such as
cisplatin can be transported to cells through the passive diffusion of the plasma membrane
and copper transporter protein CTR1 to induce pyroptosis [44–46].
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Figure 2. The molecular mechanisms of pyroptosis. Both canonical and non-canonical pathways can
be divided into four stages: (1) the capture of stimulus signal; (2) the transmission of stimulus signal;
(3) the activation of the pyroptosis executor; and (4) the execution of pyroptosis.

3.2. The Transmission of Stimulatory Signals

Once stimulation is received by the PRRs, the signal will be further transmitted to the
inflammasomes to mediate the canonical pyroptosis pathway (Figure 2). Inflammasome,
a multi-protein complex to activate caspase, is composed of receptor proteins, apoptosis-
associated speck-like protein-containing CARD (ASC), and effector protein pro-caspase-
1 [20,47,48]. Receptor proteins include nod-like receptors, absent in melanoma 2 (AIM2)-like
receptors, and melanoma absent factor 2 [49]. Nucleotide-binding oligomerization domain,
leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) are the most characteristic
inflammasomes in nod-like receptors [50]. After the capture of danger signals through
the PRRs, NLRP3 oligomerizes and interacts with the PYD domain of ASC and then the
adaptor ASC recruits cystine protein pro-caspase-1 to produce active caspase-1, which
triggers a series of subsequent pyrolytic reactions [51]. NIMA-related kinase 7 (Nek7) is
the central regulator of the NLRP3 inflammasome; the loss of Nek7 protected macrophages
from nigericin-induced pyroptosis in mice [52].

For the non-canonical pyroptosis pathway, the transmission of stimulatory signals
is diverse. YopJ inhibits TGFβ-activated kinase-1 (TAK1) to activate caspase-8 as soon as
YopJ enters the cell [53]. LPS activates caspase-11 to transmit the pyroptosis signal [54]. In
addition, GZMA and GZMB from cytotoxic lymphocytes (such as cytotoxic T lymphocytes
and natural killer cells) enter the target cells through perforin to induce pyroptosis [29,30].
Chemotherapeutic drugs stimulate pyroptosis by activating caspase-3 [44].

3.3. The Activation of Pyroptosis Executors

When pyroptosis was officially recognized as a new type of PCD, only caspase-1
was identified to activate IL-1β after an infection and cause cell death. Pyroptosis was
initially defined as “inflammatory cell death caused by activation of caspase-1” in 2009 [21].
Caspases are divided into pro-apoptotic and pro-inflammatory caspases. Pro-apoptotic
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caspases, which are mainly involved in apoptosis, are classified into initiator caspases
(caspase-8, -9, and -10) and executor caspases (caspase-3, -6, and -7) [55]. Initiator caspases
activate the executor caspase to trigger the occurrence of apoptosis. Pro-inflammatory
caspases are composed of caspase-1, -11, and -12 in mice and caspase-1, -4, and -5 in
humans [56]. For example, once caspase-11 was activated by LPS, caspase-11 induced
pyroptosis to protect cells from a lethal infection by the Gram-negative bacteria B. tha-
landensis and B. pseudomallei in mouse macrophages [57,58]. These series of studies on
caspase-11 proposed the existence of non-canonical pyroptosis and also switched the focus
to other inflammatory caspases. The apoptosis mediated by caspase-3 can be converted to
pyroptosis by tumor necrosis factor or chemotherapy drugs [44]. The activated caspase-3
cleaves GSDME at the Asp270 site to release a GSDME-N fragment; GSDME-N destroys
the integrity of the cell membrane by punching holes in the cell membrane and then the
inflammatory factors are discharged outside the cell [59]. YopJ, an effector molecule pro-
duced by Yersinia pestis, activates caspase-8 by inhibiting TAK1–IκB kinase signaling; the
activated caspase-8 then triggers pyroptosis by cleaving GSDMD [41,53]. The findings
above break the concept that caspase-3 and caspase-8 activation are unique to apoptosis
and further expand the understanding of pyroptosis.

In addition to caspases, serine protease granzymes can activate pyroptosis executors,
as well. For example, GZMA cleaved GSDMB molecules at the Lys229/Lys244 site to activate
GSDMB and induce pyroptosis in target cells [29]. Another serine protease, GZMB, directly
cleaved GSDME to induce GSDME-dependent pyroptosis in HeLa cells (Figure 2) [30].
These findings break the view that pyroptosis can only be activated by caspases.

3.4. The Execution of Pyroptosis

The downstream gasdermin protein determines the occurrence of pyroptosis. Gasder-
min originated from Gsdmal in mouse gastrointestinal and skin epithelial cells [16]. There
are six homologs of the human gasdermin (GSDM) family: GSDMA, GSDMB, GSDMC,
GSDMD, GSDME, and DFNB59 [60]. When GSDMs are cleaved by proteases such as
caspase, the autoinhibited conformation formed by GSDMN and GSDMC is broken; the
GSDMN termini then perforate the cell membrane by targeting phosphoinositides and
cardiolipin, resulting in cell swelling and lysis [61,62]. In brief, GSDMs have no effect
on the production and maturation of inflammatory factors, but promote the release of
inflammatory factors.

The mechanism of GSDMs in pyroptosis is being constantly investigated. Although
GSDMA is capable of making holes in the cell membrane, there is currently no evidence
to demonstrate that GSDMA is associated with pyroptosis [63]. GSDMB is associated
with human immune diseases and involved in non-canonical pyroptosis via caspase-4
or GZMA [29,64]. GSDMC was initially detected in the epithelial cells of the upper di-
gestive tract [16]. α-ketoglutarate, a metabolite of the tricarboxylic acid cycle, triggers
pyroptosis by activating GSDMC via caspase-8 [65]. Hypoxia induces PD-L1 to translocate
to the nucleus and bind to phosphorylated STAT3, which switches tumor necrosis factor
α-mediated apoptosis to pyroptosis via GSDMC [66]. GSDMD is the common substrate
of caspase-1 and caspase-4/5/11. In 2015, two research teams found that GSDMD was a
direct target of inflammatory caspase [24,67]. The activated caspase cleaves the junction
region of the N-terminal and C-terminal domains of the GSDMD protein to release the
N-terminal domain, which binds to the membrane phospholipids and then destroys the
cell membrane to induce pyroptosis [61,68]. The endosomal sorting complex required
for transport (ESCRT) is regulated by a Ca2+ influx and repairs the plasma membrane by
contracting the damaged plasma membrane through molecules such as CHMP4B [69–71].
ESCRT reduces pyroptosis by repairing the membrane pores formed by GSDMD [72].
Moreover, Mg2+ blocks the Ca2+ influx by inhibiting the Ca2+ channel P2RX7 and then
restrains LPS–caspase-11–GSDMD-mediated pyroptosis [73]. The above-mentioned nega-
tive regulation of pyroptosis eliminates excessive inflammation caused by pathogens and
maintains immune homeostasis after an infection. GSDME, also named “deafness autoso-
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mal dominant 5”, was initially identified as a dominant gene associated with progressive
hearing loss [74]. Caspase-3 cleaves GSDME to release the N-terminal of GSDME, which
perforates the membrane and leads to pyroptosis [75]. Together, the gasdermin family is
the ultimate executor of pyroptosis. A more comprehensive understanding of GSDMs is
required to explore the underlying regulatory mechanisms of pyroptosis.

4. Three Categories of PCD: Apoptosis, Pyroptosis, and Ferroptosis

PCD removes senescent, redundant, and potentially tumorigenic cells, which is in-
dispensable to maintain the homeostasis of growth and development. PCD is crucial to
the regulation of the host defense against pathogens [76]. Apoptosis is the earliest and
most classical mode of PCD; other types of PCD have been subsequently defined such as
pyroptosis and ferroptosis. The abnormality of PCD is associated with the occurrence and
development of cancer. For example, the downregulation of the tumor suppressor p53
leads to a decrease in apoptosis, resulting in enhanced tumor growth and progression [77].
Resistance to apoptosis and an immunosuppressive tumor microenvironment are two
major causes of a poor response.

Apoptosis removes defective and damaged cells to ensure the health of the organism
under physiological conditions [78]. Apoptosis ubiquitously occurs in the process of tissue
remodeling, biological growth, and development [79]. In Greek, apoptosis means that
petals fall from flowers and leaves fall from trees [80]. Once apoptosis occurs, there are
distinct characteristics in the cell morphology. First, chromatin condensation and nuclear
fragmentation occur. The surface of cell membrane then sprouts and forms apoptotic
bodies, which contain an intact cytoplasm with a complete membrane, organelles, and
nuclear fragments. Eventually, the apoptotic cells are devoured by phagocytes [81]. As
macrophages promptly clear apoptotic cells, the occurrence of apoptosis is not accompanied
by inflammation to minimize the impact on surrounding cells, which is different from
pyroptosis and ferroptosis. Caspase is the key component in the process of apoptosis. For
apoptosis, caspases are functionally subdivided into initiator caspases (caspase-8/9/10)
and effector caspases (caspase-3/6/7) [55]. In pyroptosis, caspase-1 mediates the canonical
pathway; caspase-4/5/11 is involved in the non-canonical pathway [24].

Unlike apoptosis, pyroptosis occurs with strong inflammatory responses and is crucial
in innate immunity against pathogens [82,83]. Both pyroptosis and apoptosis concomi-
tantly occur with chromatin condensation. The cell membrane is intact for apoptosis; on
the contrary, for pyroptosis, there are membrane disruptions, cell volume expansion, sub-
sequent content efflux, and then inflammatory reactions [3,84]. Caspases associated with
pyroptosis are called inflammatory caspases and include caspase-1/4/5/11 [31]. Different
from apoptosis, caspases are not necessary for pyroptosis. Gasdermins are the core compo-
nents of pyroptosis and cleaved gasdermins are major executors of pyroptosis [62]. Both
apoptosis and pyroptosis are involved in the establishment of the cancer microenvironment
to modulate cancer progression and therapeutic responses [85].

Ferroptosis, caused by iron-dependent lipid peroxidation, was first defined by Dixon
et al. in 2012 [86]. Distinct from apoptosis and pyroptosis, ferroptosis occurs without
chromatin condensation and does not require caspase [87]. Mitochondrial atrophy is a
representative morphological feature of ferroptosis [86]. Consistent with pyroptosis, the
nucleus is intact and inflammatory responses occur, along with ferroptosis [88]. Glutathione
peroxidase 4 (GPX4), a key component in the regulation of ferroptosis, maintains metabolic
homeostasis by dissipating lipid peroxides [89,90]. Ferroptosis occurs if the expression
of GPX4 is inhibited [91]. In cancer cells, the metabolic rate, level of reactive oxygen
species, and iron content are higher than those of normal cells [92]. Based on the charac-
teristics above, ferroptosis in cancer cells can suppress tumor growth [93]. Thus, inducing
ferroptosis in cancer cells may be a potential therapeutic approach.

To summarize, a comparison of the three types of PCD are depicted in Table 1. Investi-
gations into the molecular mechanisms of these three types of PCD during carcinogenesis
may be an approach for cancer therapy in the future.
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Table 1. Comparison of the three types of PCD.

Apoptosis Pyroptosis Ferroptosis

Cell death mode PCD PCD PCD

Induced factors Gene regulation under
physiological conditions Pathological stimulus Lipid peroxidation

Chromatin Condensation Condensation Non-condensation

Nucleus Fracture Complete Complete

Inflammatory response No Yes Yes

Morphological characteristic Apoptotic bodies Cell swelling Mitochondrial atrophy

Initiator caspase Caspase-8/9/10 Caspase-1/4/5/11 Independent of caspase

Key component Caspase Gasdermin GPX4

5. Pyroptosis in Cancer Progression and Chemotherapeutic Responses

Pyroptosis, an inflammatory cell death, plays an essential role in immunity as well
as cancer progression [94]. Pyroptosis in different microenvironments may have diverse
effects on carcinogenesis and induce completely opposite outcomes in cancer therapy. Here,
we review the function of pyroptosis in the main cancer types; we summarize the function
of pyroptosis in the main cancer types in Table 2.

5.1. Pyroptosis in NSCLC and Its Chemotherapeutic Responses

Lung cancer is the most common type of cancer worldwide and approximately 85% of
lung cancer is NSCLC [95]. 4-hydroxybenzoic acid induces pyroptosis in A549 cells through
the caspase-1/IL-1β pathway, resulting in NSCLC growth inhibition [96]. Simvastatin, as
a statin with anticancer properties, may be applied in the treatment of NSCLC [97]. The
activation of the NLRP3 inflammasome and caspase-1 by simvastatin stimulates pyroptosis
via the canonical pathway, resulting in the migration inhibition of NSCLC (Figure 3A) [98].
Polyphyllin VI, a component isolated from Trillium tschonoskii Maxim, inhibits NSCLC
development by inducing pyroptosis via the activation of the NLRP3 inflammasome–
caspase-1–GSDMD pathway (Figure 3A) [99,100]. The expression of GSDME is significantly
reduced in lung cancer tissue compared with normal tissue; in addition, patients with
a low expression of GSDME presented a poor prognosis under cisplatin treatment [101].
Therefore, GSDME may serve as a prognostic marker for a personalized therapy.

5.2. Pyroptosis in HCC and Its Chemotherapeutic Responses

HCC, as one of the most prevalent malignancies, often results from chronic hepatitis
and cirrhosis [102]. Chemotherapy and immunotherapy for advanced HCC have limited
efficacy nowadays [103]. A differential expression analysis of 33 pyroptosis-related genes
(PRGs) between normal liver and HCC samples from The Cancer Genome Atlas (TCGA)
database demonstrated that only 3 of the 26 differentially expressed genes were signifi-
cantly downregulated; the remaining 23 differentially expressed genes were significantly
upregulated [104]. As most PRGs are upregulated, PRGs may be explored as prognostic
biomarkers for HCC. Sorafenib is a kinase inhibitor that achieves a therapeutic effect for
HCC by modulating the tumor microenvironment [105,106]. In addition to the direct
effect on cancer cells and angiogenesis, other immunomodulatory effects of sorafenib have
recently been reported. Sorafenib induces the macrophage to undergo pyroptosis and
release pro-inflammatory cytokine; natural killer (NK) cells are then activated to ultimately
eliminate the hepatocellular cancer cells (Figure 3B) [107]. Alpinumisoflavone induces
NLRP3-mediated pyroptosis to inhibit the proliferation of SMMC 7721 and Huh7 cells,
resulting in HCC cell-growth suppression [108]. Berberine, an isoquinoline quaternary
alkaloid isolated from medicinal plants, inhibits the proliferation and migration of cancer
cells [109]. Berberine induces pyroptosis in HepG2 cells by promoting the expression of
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caspase-1, inhibiting the migration and proliferation ability of HepG2 cells; and in vivo
experiments showed that the tumor volume was significantly shrinked after Berberine
treatment compared with that of the control group (Figure 3B) [110]. In addition, a high
expression of GSDME is significantly correlated with a short overall survival whereas other
GSDMs are not [111].
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Figure 3. Pyroptosis induced by chemotherapeutic agents for cancer therapy. (A) Simvastatin (1),
polyphyllin VI (2), and 4-hydroxybenzoic acid (3) inhibit NSCLC by promoting the expression of
NLRP3 inflammasome and caspase-1 to induce pyroptosis. (B) Berberine, Alpinumisoflavone, and
sorafenib induce pyroptosis to restrain HCC. (C) FL118 and Lobaplatin induces pyroptosis via
NLRP3–caspase-1 and caspase-3–DSDME to suppress CRC, respectively. (D) To cure GC, BIX-01294
with cisplatin and 5-fluorouracil induce pyroptosis through NLRP3 and GSDME, respectively.

5.3. Pyroptosis in CRC and Its Chemotherapeutic Responses

CRC, a digestive malignancy with a high morbidity, is mainly caused by chronic
inflammation [112]. LPS from the outer membrane of Gram-negative bacteria improves
the sensitivity of CRC to oxaliplatin and increases antitumor activity by inducing GSDMD-
mediated pyroptosis in HT-29 cells [113]. Camptothecin analogue FL118 inhibits CRC
growth and metastasis by inducing NLRP3/caspase-1-mediated pyroptosis in SW48 and
HT129 cells [114]. The antitumor drug 5-aza-2-deoxycytidine, a DNA methylation inhibitor,
treats CRC by upregulating the expression of NLRP1. The expression levels of NLRP1
were increased after both in vitro and in vivo treatments by DAC, resulting in CRC in-
hibition [115]. Therefore, the NLRP1 inflammasome is a negative regulator of intestinal
tumorigenesis. In NLRP3-deficient mice, the incidence of CRC tended to increase, indicat-
ing that NLRP3 is also a negative regulator of intestinal tumorigenesis [116]. Another study
also showed that the AIM2 expression was absent in nearly two-thirds of CRC patients and
the loss of the AIM2 expression may be an important biomarker to evaluate and identify
CRC patients with a poor prognosis [117]. In addition, the knockout of TGFBR2 in CRC
resulted in the upregulation of the GSDMC expression and promoted the proliferation
of tumor cells [118]. GSDMC plays an oncogene role in the occurrence of CRC; GSDME
is a tumor suppressor gene, which may serve as a biomarker for a CRC diagnosis [119].
In HT-29 and HCT116 cells, lobaplatin induces pyroptosis via the activation of caspase-3
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and GSDME, which provided evidence that lobaplatin eradicate CRC cells via proptosis
(Figure 3C) [120].

5.4. Pyroptosis in GC and Its Chemotherapeutic Responses

GC has a high mortality and recurrence rate and is mainly caused by an infection of H.
pylori [121,122]. There is no specific chemotherapy for GC as yet. A total of 11 pyroptosis-
related regulators, including CASP1, CASP3, CASP4, CASP5, CASP8, GSDMB, GSMDC,
GSDMD, GSDME, GZMA, and GZMB, are highly expressed in GC [123]. This indicates
that the expression levels of pyroptosis-related regulatory genes are closely associated with
GC; this provides a new strategy to predict the survival and prognosis of GC patients
from the perspective of pyroptosis. GSDMB and GSDMC are considered to be tumor
suppressor genes in GC [124]. BIX-01294, with chemotherapeutic agent cisplatin, induced
caspase-3/GSDMD-mediated pyroptosis in SGC-7901 cells and restrained GC growth [125].
A 5-fluorouracil treatment induced the expression of GSDME, which switched caspase-3-
dependent apoptosis to pyroptosis (Figure 3D) [126]. Another study reported that a loss of
the GSDME expression promoted tumor cell growth in vivo and in vitro [127]. Therefore,
GSDME, as a tumor suppressor gene in GC, may be explored as a therapeutic target for GC
by inducing pyroptosis.

To date, most studies have focused on chemical drug-induced pyroptosis, but drug
resistance and severe side effects hinder their application. New approaches are being
explored to induce pyroptosis to stimulate cancer therapies such as photon-mediated
biomedical engineering techniques [128].

Table 2. The effect of pyroptosis on cancer in the main cancer types.

Cancer Type Pyroptosis-Related Genes Effect on Cancer References

NSCLC

Caspase-1 Inhibit [96,98,100]

NLRP3 Inhibit [98,100]

GSDMD Inhibit [100]

GSDME Inhibit [101]

HCC

Caspase-1 Inhibit [110]

NLRP3 Inhibit [108]

GSDME Promote [111]

CRC

Caspase-1 Inhibit [114]

Caspase-3 Inhibit [120]

NLRP1 Inhibit [115]

NLRP3 Inhibit [114,116]

AIM2 Inhibit [117]

GSDMC Promote [118]

GSDME Inhibit [119,120]

GC

Caspase-3 Inhibit [125]

GSDMB, GSBMC Inhibit [124]

GSDMD Inhibit [125]

GSDME Inhibit [127]

6. Pyroptosis in Immunotherapy

Chemotherapy and radiotherapy are conventional cancer treatment methods. How-
ever, these treatments quickly kill both cancer cells and normal cells, including immune
cells [129]. Immunotherapy stimulates the immune system to eliminate cancer cells [130].
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An immune checkpoint inhibitor (ICI) therapy, particularly anti-PD1 and anti-PD-L1, pri-
marily acts by activating pre-existing tumor immune responses [131]. PD-L1, caused by
hypoxia, enters the nucleus, binds to phosphorylated STAT3 (which forms a complex with
the promoter region of GSDMC), and then triggers pyroptosis [66]. In summary, GSDMC-
mediated CCP promotes tumor necrosis and restrains tumor development. Perforin and
granzyme are two protein toxins released by cytotoxic lymphocytes to kill cancer cells;
perforin released by CTLs enabled a tumor regression by inducing pyroptosis through
GZMA [29,42]. Cancer cells can escape the “hunt” of the immune system by resorting to
ESCRT-mediated membrane repair. The inhibition of the ESCRT pathway by CHMP4B
knockout increased the killing power of CTLs against cancer cells [132]. In addition, our
research group established a novel strategy to predict cancer patient survival and im-
munotherapy outcomes from the perspective of pyroptosis and screened out five PRGs that
may further enhance immunotherapy [133]. On the one hand, pyroptosis alters the tumor
microenvironment and inhibits tumor growth by releasing inflammatory factors such as
IL-1β and IL-18; on the other hand, pyroptosis reduces the immune responses of the body
to tumor cells and accelerates the growth rate of different cancers [134]. Therefore, how to
balance the two requires a further understanding of pyroptosis in cancer progression and
the anticancer potential.

7. Conclusions

Pyroptosis, different from the other forms of PCDs (apoptosis and ferroptosis), is
accompanied by a cell rupture and severe inflammatory reaction. Here, we provided a
comprehensive introduction to pyroptosis and discussed the relationship between pyropto-
sis and carcinogenesis. First, there are various stimulation signals to activate pyroptosis,
including PAMPs, DAMPs, drug stimulations, and granzymes. Most of the stimuli are trans-
mitted by activating caspases and granzymes, which subsequently activate gasdermins.
Gasdermins are then cleaved by active caspases or granzymes to expose the gasdermin
N-terminus, which punch the cell membrane. Finally, pyroptosis induces the release of
intracellular inflammatory factors IL-1β and IL-18 to trigger inflammation and cell death.
Increasingly, studies have shown that pyroptosis is closely associated with cancer.

However, the relationship between pyroptosis and cancer is not well-defined at present.
On one hand, the occurrence of pyroptosis can effectively regulate the tumor immune mi-
croenvironment, activate a strong T cell-mediated antitumor immune response, inhibit
tumor growth, and enhance the sensitivity of cancer cells to chemotherapeutic drugs. On
the other hand, as pyroptosis is a pro-inflammatory cell death mode, it also provides a
suitable microenvironment for tumor growth. Therefore, studies on the mechanism of
pyroptosis can provide new strategies for follow-up cancer treatments. The link between
pyroptosis and tumor immunity also provides important ideas for cancer treatments; py-
roptosis plays a driving role in tumor immunity and tumor immunotherapy. As increasing
studies have shown that pyroptosis is a “divine assistant” for immunotherapy, the devel-
opment of pyroptosis-related agonists will potentially become a booster to enhance the
immunotherapeutic efficacy.
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122. Pawluczuk, E.; Łukaszewicz-Zając, M.; Mroczko, B. The Role of Chemokines in the Development of Gastric Cancer – Diagnostic
and Therapeutic Implications. Int. J. Mol. Sci. 2020, 21, 8456. [CrossRef] [PubMed]

123. Shao, W.; Yang, Z.; Fu, Y.; Zheng, L.; Liu, F.; Chai, L.; Jia, J. The Pyroptosis-Related Signature Predicts Prognosis and Indicates
Immune Microenvironment Infiltration in Gastric Cancer. Front. Cell Dev. Biol. 2021, 9, 676485. [CrossRef] [PubMed]

124. Saeki, N.; Usui, T.; Aoyagi, K.; Kim, D.H.; Sato, M.; Mabuchi, T.; Yanagihara, K.; Ogawa, K.; Sakamoto, H.; Yoshida, T.; et al.
Distinctive expression and function of fourGSDMfamily genes (GSDMA-D) in normal and malignant upper gastrointestinal
epithelium. Genes, Chromosom. Cancer 2008, 48, 261–271. [CrossRef]

125. Deng, B.; Jiao, B.; Liu, Y.; Li, Y.; Wang, G. BIX-01294 enhanced chemotherapy effect in gastric cancer by inducing GSDME-mediated
pyroptosis. Cell Biol. Int. 2020, 44, 1890–1899. [CrossRef] [PubMed]

126. Wang, Y.; Yin, B.; Li, D.; Wang, G.; Han, X.; Sun, X. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochem.
Biophys. Res. Commun. 2018, 495, 1418–1425. [CrossRef] [PubMed]

127. Rogers, C.; Erkes, D.A.; Nardone, A.; Aplin, A.E.; Fernandes-Alnemri, T.; Alnemri, E.S. Gasdermin pores permeabilize mi-
tochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 2019, 10, 1–17.
[CrossRef]

128. Yu, L.; Xu, Y.; Pu, Z.; Kang, H.; Li, M.; Sessler, J.L.; Kim, J.S. Photocatalytic Superoxide Radical Generator that Induces Pyroptosis
in Cancer Cells. J. Am. Chem. Soc. 2022, 144, 11326–11337. [CrossRef]

129. Cao, W.; Gu, Y.; Meineck, M.; Xu, H. The Combination of Chemotherapy and Radiotherapy towards More Efficient Drug Delivery.
Chem. Asian J. 2013, 9, 48–57. [CrossRef]

130. Abbott, M.; Ustoyev, Y. Cancer and the Immune System: The History and Background of Immunotherapy. Semin. Oncol. Nurs.
2019, 35, 150923. [CrossRef]

131. Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [CrossRef]
132. Liu, J.; Kang, R.; Tang, D. ESCRT-III-mediated membrane repair in cell death and tumor resistance. Cancer Gene Ther. 2020, 28, 1–4.

[CrossRef] [PubMed]
133. Wang, Q.; Liu, Q.; Qi, S.; Zhang, J.; Liu, X.; Li, X.; Li, C. Comprehensive Pan-Cancer Analyses of Pyroptosis-Related Genes to

Predict Survival and Immunotherapeutic Outcome. Cancers 2022, 14, 237. [CrossRef] [PubMed]
134. Xia, X.; Wang, X.; Cheng, Z.; Qin, W.; Lei, L.; Jiang, J.; Hu, J. The role of pyroptosis in cancer: Pro-cancer or pro-“host”? Cell Death

Dis. 2019, 10, 1–13. [CrossRef] [PubMed]

http://doi.org/10.1053/j.gastro.2003.11.010
http://www.ncbi.nlm.nih.gov/pubmed/14762782
http://doi.org/10.2147/CMAR.S244374
http://doi.org/10.1016/j.lfs.2020.118065
http://www.ncbi.nlm.nih.gov/pubmed/32659366
http://doi.org/10.1038/cddis.2014.532
http://www.ncbi.nlm.nih.gov/pubmed/25611377
http://doi.org/10.1084/jem.20100050
http://www.ncbi.nlm.nih.gov/pubmed/20385749
http://doi.org/10.1002/ijc.28891
http://doi.org/10.1371/journal.pone.0166422
http://doi.org/10.1002/cam4.2103
http://doi.org/10.1038/s41419-019-1441-4
http://doi.org/10.5114/pg.2018.80001
http://www.ncbi.nlm.nih.gov/pubmed/30944675
http://doi.org/10.3390/ijms21228456
http://www.ncbi.nlm.nih.gov/pubmed/33182840
http://doi.org/10.3389/fcell.2021.676485
http://www.ncbi.nlm.nih.gov/pubmed/34179006
http://doi.org/10.1002/gcc.20636
http://doi.org/10.1002/cbin.11395
http://www.ncbi.nlm.nih.gov/pubmed/32437063
http://doi.org/10.1016/j.bbrc.2017.11.156
http://www.ncbi.nlm.nih.gov/pubmed/29183726
http://doi.org/10.1038/s41467-019-09397-2
http://doi.org/10.1021/jacs.2c03256
http://doi.org/10.1002/asia.201301294
http://doi.org/10.1016/j.soncn.2019.08.002
http://doi.org/10.1126/science.aar4060
http://doi.org/10.1038/s41417-020-0200-0
http://www.ncbi.nlm.nih.gov/pubmed/32669618
http://doi.org/10.3390/cancers14010237
http://www.ncbi.nlm.nih.gov/pubmed/35008400
http://doi.org/10.1038/s41419-019-1883-8
http://www.ncbi.nlm.nih.gov/pubmed/31501419

	Introduction 
	The Developmental History of Pyroptosis 
	The Process of Pyroptosis 
	The Capture of Stimulatory Signals 
	The Transmission of Stimulatory Signals 
	The Activation of Pyroptosis Executors 
	The Execution of Pyroptosis 

	Three Categories of PCD: Apoptosis, Pyroptosis, and Ferroptosis 
	Pyroptosis in Cancer Progression and Chemotherapeutic Responses 
	Pyroptosis in NSCLC and Its Chemotherapeutic Responses 
	Pyroptosis in HCC and Its Chemotherapeutic Responses 
	Pyroptosis in CRC and Its Chemotherapeutic Responses 
	Pyroptosis in GC and Its Chemotherapeutic Responses 

	Pyroptosis in Immunotherapy 
	Conclusions 
	References

