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Despite the significant progress in both scientific understanding and regulations, the safety of
agricultural pesticides continues to be called into question. The need for complementary
analytics to identify dysregulation events associatedwith chemical exposure and leverage this
information to predict biological responses remains. Here, we present a platform that
combines a model organ-on-chip neurovascular unit (NVU) with targeted mass
spectrometry (MS) and electrochemical analysis to assess the impact of
organophosphate (OP) exposure on blood-brain barrier (BBB) function. Using the NVU to
simulate exposure, an escalating dose of the organophosphate chlorpyrifos (CPF) was
administered. With up to 10 μM, neither CPF nor its metabolites were detected across the
BBB (limit of quantitation 0.1 µM). At 30 µM CPF and above, targeted MS detected the main
urinary metabolite, trichloropyridinol (TCP), across the BBB (0.025 µM) and no other
metabolites. In the vascular chamber where CPF was directly applied, two primary
metabolites of CPF, TCP and diethylthiophosphate (DETP), were both detected
(0.1–5.7 µM). In a second experiment, a constant dose of 10 µM CPF was administered
to the NVU, and though neither CPF nor its metabolites were detected across the BBB after
24 h, electrochemical analysis detected increases in acetylcholine levels on both sides of the
BBB (up to 24.8 ± 3.4 µM) and these levels remained high over the course of treatment. In the
vascular chamber where CPF was directly applied, only TCP was detected (ranging from
0.06 μMat 2 h to 0.19 μMat 24 h). These results provide chemical evidence of the substantial
disruption induced by this widely used commercial pesticide. This work reinforces previously
observed OP metabolism and mechanisms of impact, validates the use of the NVU for OP
toxicology testing, and provides a model platform for analyzing these organotypic systems.
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INTRODUCTION

Organophosphates (OPs) are a class of compounds commonly used in commercial pesticides (e.g.,
parathion, chlorpyrifos, and diazinon) but also include nerve gas chemical warfare agents such as
sarin, VX, and Novichok agents. While OPs are widely used throughout the world for insect control,
concerns about their toxicity to humans and animals led to restrictions in the United States for
residential use in 2001. In 2018, a United States federal appeals court ordered the United States
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Environmental Protection Agency to completely ban the use of
the broad-spectrum organophosphate pesticide chlorpyrifos
(CPF) based in part on epidemiological studies linking
prenatal CPF exposure to neurobehavioral deficits in children
(Rauh et al., 2011; Rauh et al., 2012). To gain additional insights
into CPF-induced chemical and morphological perturbations,
in vitro organotypic models offer medium-throughput systems
that complement traditional cell culture techniques and may
replace or reduce animal testing (Pridgeon et al., 2018; Low
et al., 2021). These organotypic models aim to replicate
human physiology and provide the experimental flexibility
necessary to address the effects of OPs on human health
(Nolan et al., 1984; Marín-Padilla, 2012; Shamir and Ewald,
2014; Bruner-Tran et al., 2017; Vernetti et al., 2017; Theobald
et al., 2018).

The primary mechanism of CPF neurotoxicity is through the
inhibition of acetylcholinesterase, yet its full metabolic response
remains unclear. At a cellular level, cholinergic signal transmission
is accomplished by acetylcholine release into the neuronal synapse
before it is broken down by acetylcholinesterase and taken back up
by presynaptic neurons (Figure 1; Taylor et al., 1999). OPs inhibit
acetylcholinesterase by binding to serine in the active site,
preventing acetylcholine from interacting with the enzyme

(Mileson et al., 1998; Prendergast et al., 1998; Karanth et al.,
2006). Before binding, CPF is metabolically converted by
cytochrome P450s into the bioactive chlorpyrifos oxon (CPO)
form. When acetylcholinesterase is inhibited, acetylcholine can
accumulate in motor neuron synapses causing excitotoxicity,
seizures, and brain damage (Prendergast et al., 1998; Yang et al.,
2001; Timchalk et al., 2005; Slotkin, 2011). OP neurotoxicity can
also extend to necrosis, apoptosis, and oxidative stress-mediated
pathways (Carlson et al., 2000; Kashyap et al., 2010; Moore et al.,
2010; Kashyap et al., 2011; Kashyap et al., 2013; Park et al., 2015a).
Mice and rats are considered standard models for controlled
toxicological studies although historical studies include human
volunteers (Levin et al., 2001). In mice, CPF has been shown to
cause alterations to the integrity of the BBB upon exposure,
enabling CPF and other toxicants to enter the brain (Levin
et al., 2001; Li and Ehrich, 2013). These risks associated with
CPF exposure combined with its continued use in the United States
demand further investigation and refinement of our ability to
identify dysregulation events associated with chemical exposure
and leverage this information to predict biological responses (Rauh
et al., 2012; Smith et al., 2014).

In developing models for studying BBB toxicity, organs-on-
chips offer several advantages (Cucullo et al., 2011; Griep et al.,

FIGURE 1 | Schematic of acetylcholine and chlorpyrifos biochemistry. (A) Schematic of the mechanism of CPF toxicology at the cholinergic synapse showing
normal signaling where acetylcholine is recognized by the acetylcholine receptor on the dendrite’s postsynaptic membrane before being rapidly broken down by
acetylcholinesterase into acetic acid and choline. Normally, the free choline is taken back up into the presynaptic neuron where choline acetyltransferase turns it back into
acetylcholine before it is packaged into vesicles for subsequent release. The red “X” indicates CPO-induced inhibition of acetylcholinesterase that leads to a buildup
of acetylcholine in the synaptic cleft and, eventually, excitotoxicity, neuropathy, and death. (B) The major metabolic pathway for CPF bioactivation, dearylation, and
biodegradation showing associated primary metabolites including CPF; chlorpyrifos oxon (CPO); diethylthiophosphate (DETP); and 3,5,6-trichloro-2-pyridinol (TCP).
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2013; Prabhakarpandian et al., 2013; Adriani et al., 2017; Phan
et al., 2017; Wang et al., 2017; Maoz et al., 2018). Built upon the
knowledge gained from early experiments with cocultures and
Transwells, the development of organ-on-chip technologies aims
to combine the versatility of in vitro experimentation with
cutting-edge engineering and analytics to refine the questions
that can be addressed (Parran et al., 2005; Balbuena et al., 2010;
Daneman and Prat, 2015; Hopkins et al., 2015; Helms et al., 2016;
Voorhees et al., 2017; Zhang et al., 2017; Grebenyuk and Ranga,
2019). Organs-on-chips vary in construction but all contain
three-dimensional supports that spatially orient cultures to
develop organ-like qualities (Dingle et al., 2015; Adriani et al.,
2017; Soscia et al., 2017). Recent advances include modifying the
physical dimensions and mechanical properties by incorporating
gels or matrices, encouraging the production of an extracellular
matrix (ECM), and investigating novel materials (Tang-Schomer
et al., 2014; Jeong et al., 2015; Lozano et al., 2015; Hutson et al.,
2016; Zhuang et al., 2018; Zhuang et al., 2018; Grebenyuk and
Ranga, 2019). Within these structures, perfusion of media enables
the exchange of nutrients and metabolites and provides the shear
stress needed to stimulate cell proliferation and differentiation.
Perfusion has been driven by gravity, pneumatic, piezoelectric, or
mechanical systems (Takayama et al., 1999; Araci and Quake,
2012; Brown et al., 2015; Park et al., 2015b; Fernandes et al., 2016;
Koo et al., 2018; Wang et al., 2018; Balaji et al., 2018). The
miniaturization of these features reduces the quantity of reagents
used, thereby decreasing cost and supporting the incorporation of
cells that are either difficult to culture or difficult to isolate
(Herculano-Houzel, 2009; Volpatti and Yetisen, 2014;
Mohammed et al., 2015; DiMasi et al., 2016; Bang et al., 2017;
Campisi et al., 2018). Additionally, efforts to instrument these
chips can provide real-time, nondestructive measurements of
these systems (Booth and Kim, 2012; Griep et al., 2013; Kilic
et al., 2016). For example, neuron excitability can be studied by
integrating organ-on-chip technology with electrodes to both
stimulate and report the burst-firing frequency rate and power
(Hasan and Berdichevsky, 2016; Soscia et al., 2017). Perhaps the
most important role for organotypic cultures resides in their
application in toxicology, supplementing preclinical cell culture
methods, and reducing animal testing (Nolan et al., 1984; Low
et al., 2021). There are now a wide range of platforms available
with a high degree of specialization allowing researchers to ask
detailed questions about BBB health and disease (Lancaster et al.,
2013; Banerjee et al., 2016; Kilic et al., 2016; Adriani et al., 2017).

Recently, Wikswo and colleagues developed a neurovascular
unit (NVU), an organotypic model that approximates the human
BBB, by creating a paracellular barrier comprised of endothelial
cells, astrocytes, and pericytes and seeding it with neurons
(Brown et al., 2015). This NVU has been shown to be a useful
model to assess both acute (seconds to minutes) and chronic
(days to weeks) toxic exposure (Brown et al., 2015; Brown et al.,
2016). The dual-chamber NVU design—a neuronal (2.9 µL) and
a vascular (17.5 µL) section—is equipped with independent
microfluidic perfusion control so that environmental exposure
can be simulated by administration of toxicants to the vascular
side while analyzing the neuronal side for metabolic changes and
for the infiltration of toxicants that breach the engineered BBB.

Furthermore, these two chambers can be seeded with as little as
twenty thousand cells, making the NVU feasible for culturing rare
or difficult to isolate cells. Taken together, these features make the
NVU well suited for transbarrier analysis of OP exposure and,
with careful consideration, as a regulatory tool for toxicology
(Fennema et al., 2013; Andersen, 2014; Schadt et al., 2014; Koo
et al., 2018; Wang et al., 2018; Pimentel et al., 2020; Raimondi
et al., 2020).

This work presents a platform for simulating and analyzing
toxicological events that supports the prediction of biological
responses through morphological and metabolic analysis. NVUs
seeded with the four cell types necessary for proper BBB function
were cultured and the vascular side of these NVUs was then dosed
with the organophosphate CPF, simulating environmental
exposure. Eluate from the vascular and neuronal sides was
assessed using liquid chromatography coupled to tandem mass
spectrometry (LC-MS/MS) for targeted toxicant profiling and
electrochemical analysis for targeted metabolite profiling. These
data validate the predictive power of the NVU, the high analytical
utility of combined MS, and electrochemical measurements and
provide insight into the substantial disruption induced by this
widely used commercial pesticide. Applying this unique platform
with expanded analytics is an important advance in studying OP
toxicity.

MATERIALS AND METHODS

NVU Bioreactor Fabrication. The NVU bioreactor was designed
for independent perfusion of the two chambers and is described
in detail elsewhere (Brown et al., 2015), with some minor
modifications. The NVU is a two-chamber device made with
three layers of polydimethylsiloxane (PDMS) separated by a
0.4 µM pore polyethylene terephthalate (PET) membrane
(Fisher Scientific, Hampton, NH). First, the neuronal layer and
the vascular layer were created by pouring 2.5 and 16g,
respectively, of PDMS precursors (10:1 wt:wt ratio of base:
curing agent, Sylgard 184, Dow Corning) into encapsulated
wafers, cured (65°C, 4 h), and demolded. To fabricate the
middle layer, 30 g of PDMS precursors was poured into the
middle layer mold with spacers and placed in a dish. The dish was
covered and placed under vacuum until bubbles formed and
repressurized and the process was repeated. The dish was then
removed from vacuum and bubbles were blown off. To control
for layer thickness, the top mold of the middle layer was then
placed on the spacers with weights (≤70g) on top and allowed to
cure at room temperature for 48 h. After drying, excess PDMS
was trimmed off and the middle layer was removed and cured at
65°C for 2 h.

With all three layers cured and trimmed to size, the NVU
could be assembled. First, the vascular layer and a glass plate
(50 mm × 75 mm) were both plasma-activated (40 s, high power
setting, air metered into vacuum, Harrick Plasma Cleaner, Ithaca,
NY) and brought together to bond with the chamber facing
upwards. Meanwhile, the neuronal layer was punched with inlet
and outlet ports (Miltex 1.5 mmOD, Integra York, Inc., York PA)
to accommodate microfluidic perfusion. Both the middle and
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neuronal layers were plasma-activated and bonded together with
the neuronal layer channels facing the middle layer, and the
assembly was placed in a 65°C oven for 10 min to complete the
bonding process. After bonding, both the middle-neuronal and
the vascular-plate layer assemblies were annealed at 200°C for 4 h.
PET membranes were plasma-activated and immersed in an 80°C
solution of 0.2% bis-amino (Sigma Aldrich, St. Louis, MO) and
0.1% deionized water in IPA. After drying, these membranes were
placed in 70% ethanol (30 min, room temperature) and blown dry
with filtered N2. The membranes were then brought together with
the vascular layer to bond, and the neuronal-middle layer was
added by facing the middle layer to the membrane so that the
reliefs in the PDMS-created chambers overlapped completely
with one another except for the inlet and outlet ports. The
assembled device was placed in the oven (60°C) overnight to
finish curing. Completed NVU vascular and neuronal chambers
(2.9 and 17.5 µL, respectively) each incorporated an entrance and
exit port to facilitate independent perfusion. A noteworthy
change from previous versions of this device fabrication is the
incorporation of 0.4 µM pore PET membrane that is more
transparent and enhances imaging (previous iterations of this
device used a polycarbonate membrane). The transition to PET
membranes was done because of the manufacturer’s change in
membrane properties that made them unsuitable for the NVU
and also to increase visibility for enhanced microscopy. All NVU
devices were packaged and gamma sterilized overnight (Mark
1 Cesium Irradiator, Glendale, CA) before use. Schematics of the
NVU were made to scale in CAD with the help of the Vanderbilt
Institute for Integrative Biosystems Research and Education.

PDMS Absorption of CPF. To determine the extent to which
CPF is absorbed into PDMS, a floating disk experiment was
conducted as before with some modifications (Auner et al., 2019).
First, 3 mm thick medical grade PDMS (same as that used in the
NVU fabrication) was cut with a biopsy punch (diameter �
6 mm) to form disks. Using a 20 mM stock solution of CPF
made in DMSO, 25, 50 75, and 100 µM CPF solutions were made
in 10 mM SDS (to aid solubility). Then, each disk (3) was
submerged in 2 ml of 100 µM CPF solution inside of a 4 ml
glass vial and the absorption of this solution as well as that of
calibrants (25, 50, 75, and 100 µMCPF) was measured every hour
at 290 nm. From these data, the concentration of CPF still in
solution was calculated.

Harvesting Primary Rat Neurons. Primary rat neurons were
harvested as previously described with some modifications
(McKenzie et al., 2012). Briefly, pure neuronal cultures were
obtained from embryonic day 18 Sprague-Dawley rats. To obtain
primary rat neurons, brains from anesthetized rats were dissected,
and cortices were trypsinized (Sigma, United States) before being
transferred to 10 ml of neurobasal media (Sigma). This solution
was then strained (40 µm), counted, and centrifuged (1,000 RCF,
5 min). The resulting pellet was resuspended [neurobasal media,
10% DMSO (Sigma), at either 7.5 × 105 or 5 × 108 cells/ml] and
frozen down until needed for either plating in well plates or NVU
seeding, respectively.

Staining Primary Rat Neurons. Neurons were stained to
confirm the presence of cholinergic neurons in culture.
Neurons stored at −80°C at 750,000 cells/ml were plated 2 ml/6

well Transwell plates coated with polyornithine and maintained
in plating media [Dulbecco’s modified Eagle’s medium (DMEM)
media (Gibco) with 8% F12, 8% fetal bovine serum (FBS), 80 μM
L-glutamate, and 1% penicillin/streptomycin (Fisher)] for days
in vitro (DIV) 0–13. During this time, the cells were maintained
with half media changes every 2–3 days. Two weeks after harvest,
the neurons had a half media change to D2Cmedia (94%DMEM,
L-glutamine, 2% FBS, 0.025 M HEPES, 0.0125 mM L-glutamine,
24 U/mL penicillin, and 24 μg/ml streptomycin), and two drops
of AraC were added through a plugged pasture pipette for a final
concentration of 1–2 M/well. From then on, cells were
maintained with D2C media until use. Neurochemical staining
for choline acetyltransferase (ChAT), Neuron Specific Tubulin
(NST), and 4′,6-diamidino-2-phenylindole (DAPi) to stain all
cells merged to show overlap as done before with some
modifications (Lizama et al., 2018).

Neuronal Response to CPF. Neurons were either treated with
a media change control or 100 µM CPF for 18 h and imaged as
before (Lizama et al., 2018). Experiments were conducted at 37°C
and 5% CO2.

Cell Culture. Endothelial cells, astrocytes, and pericytes were
cultured as before with some modifications (Brown et al., 2016).
Primary human brain microvascular endothelial cells
(hBMVECS, Applied Cell Biology, Kirkland WA,
United States) were maintained in endothelial basal media 2
(EBM2, Lonza, Basa, Switzerland) containing 5% FBS, growth
bullet kit (hEGF, hydrocortisone, GA-1000 [gentamicin and
amphotericin-B], VEGF, hFGF-B, R3-IGF-1, ascorbic acid, and
heparin), and 1% penicillin/streptomycin (complete EBM-2).
Human astrocytes from brain tissue of a first trimester fetus
and SV40 transformed (SVG p12, ATCC, Manassas, VA,
United States) and pericytes isolated from human brain tissue
(Cat # 1200, ScienCell, Carlsbad, CA, United States) were
maintained in a 1:1 DMEM and F-12 with 10% FBS (Allt and
Lawrenson, 2001). Endothelial cells, astrocytes, and pericytes
were maintained in T-25 flasks (Fisher) under standard
culture procedures until collected (passage three) for seeding
into the NVU.

NVU Seeding and Culturing. The NVU supported the growth
of all four cell types necessary for proper BBB function and is
described in detail previously with some modifications (Brown
et al., 2015). Prior to cell seeding, NVU devices were first coated
with poly-D-lysine (10 μg/ml) in carbonate buffer (0.2 M, pH 9.6,
37°C, 4 h, Fisher) followed by coating with fibronectin and
collagen IV (both 400 μg/ml, overnight, 37°C, Sigma). After
washing the devices with warm complete EBM-2 media to
remove any unbound fibronectin or collagen, endothelial cells
were loaded into the vascular chamber (5–10 × 106 cells/ml). The
NVU was then placed vascular side up and incubated overnight
(37°C, 5% CO2). The next day, the vascular chamber was
connected to a syringe pump (Harvard Apparatus) and
perfused under low flow conditions (2 μL/min) with complete
EBM-2 media for 9 days. After this time, the neuronal chamber
was loaded with astrocytes (6 × 106 cells/ml) and pericytes (1 ×
106 cells/ml) and the device was placed neuronal chamber side up
(37°C, 5% CO2) to allow the cells to settle and adhere for 2 h
before flow was restarted. After culturing these three cell types
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together for 2 days under low flow conditions, primary rat
neurons were loaded into the neuronal chamber (10 ×
106 cells/ml) and allowed to attach for 2 h before flow was
again restarted. Within each NVU, all four cell types were
cultured for 3 days before these devices were ready for leakage
and toxicological testing. During the course of these experiments,
sister cultures of the cells loaded into the NVU devices were
plated and no contamination was detected.

To ensure proper barrier formation, leakage across the
engineered BBB was tested using 10 kDa fluorescein
isothiocyanate-dextran (FITC-dextran, Sigma) as previously
described (Brown et al., 2016). Briefly, FITC-dextran was
prepared (100 nM, cell culture media) and administered to the
vascular compartment of the NVU (23 h, 2 μL/min), allowing the
FITC-dextran to diffuse across the BBB and into the neuronal
chamber, reflecting barrier permeability. The effectiveness of the
BBB was evaluated by measuring the fluorescent intensity in the
neuronal side eluate using a plate reader (TECAN M1000). The
permeability, P, was calculated from the FITC concentration
using Eq. 1 where Vr is the volume in the receiving chamber,
t is the time of the experiment, A is the area of the membrane
(0.29 cm2), Ci is the initial concentration, and Cf is the measured
concentration.

P � Vr × Cf

Ci × A × t
(1)

The permeability of the NVU device with no cells was also
measured for comparison. This device was irradiated and soaked
in water but otherwise bare. The control device was treated with
DMSO as described below in NVU Treatment With Chlorpyrifos.

NVU Treatment With Chlorpyrifos. In normal operation,
both the vascular and neuronal side chambers of each NVU
were perfused with media under low flow (2 μL/min) to maintain
the viability of the cell layers that comprise the engineered BBB.
To investigate the effects of OPs on the engineered BBB, either
CPF (Sigma) or vehicle (dimethyl sulfoxide, DMSO, Sigma) was
introduced to the vascular chamber and eluate exiting both
vascular and neuronal chambers was collected to be analyzed
for biochemical changes. Two experimental setups were executed
with this approach: an escalating dose experiment and a time
course experiment.

The dose escalation experiment was conducted with varying
concentrations of CPF (0, 1, 3, 10, 30, and 100 µM) and six NVU
devices (two control devices and four test devices). First, CPF was
dissolved in DMSO to 200 mM, filter-sterilized (0.22 µm
membrane, Sigma), and stored at −80°C until use. Then, 1 µM
CPF was added to complete EBM-2 media and perfused on the
vascular side of each test device for 2 h. After collecting that
effluent, the syringe containing the 1 µM CPF was exchanged for
one containing 3 µM CPF and the process was repeated in this
way for all of the CPF concentrations tested. The control NVU
was treated with vehicle alone. Eluate samples (240 µL) were
collected from both the vascular and neuronal chamber of all
NVUs immediately prior to administering each dose and stored
at −80°C prior to analysis.

After the escalating dose experiment was conducted, a 10 µM
dose of CPF was chosen to investigate the effects of exposure time.

A total of five NVU devices (three treated and two control) were
prepared and used for the exposure experiments described herein.
Additionally, the NVU devices were first perfused with serum-
free EBM-2 media before CPF exposure (although the other
supplements and growth factors that contribute to the
complete media formulation, e.g., hFGF-B, VEGF, R3-IGF,
hEGF, GA-1000, ascorbic acid, and hydrocortisone, were
added to the media). To add statistical power while reducing
the number of NVUs used in the experiment, effluent was
collected from the three test devices prior to treatment to
serve as a baseline. Two control NVUs were treated with
vehicle alone. However, one control device was compromised
during the course of the experiment and was subsequently
excluded. Therefore, the results between the time-dependent
control and the baseline controls were compared for time
differences, and after verifying their similarity, the data from
both of these controls were pooled for analysis. For the test
devices, 10 µM CPF was added to this serum-free media and
perfused on the vascular side of each test device. Eluate samples
(∼240 µL) from all devices were collected from both the vascular
and neuronal chamber of all NVUs at 0, 2, 4, 8, and 24 h and
stored at −80°C prior to analysis.

NVUMicroscopy. After treatment with CPF or vehicle, NVUs
were imaged for morphological analysis. First, live/dead stain was
applied to the NVU devices as per manufacturer
recommendation (Thermo Fisher) and incubated for 15 min.
Fluorescent images of cells stained within the NVU were then
collected using an EVOS (Thermo Fisher) automated
microscope.

MS Analysis of NVU Eluate. A minimal-handling sample
preparation strategy was used, which limited metabolic turnover
and degradation while maximizing metabolite recovery. In this
strategy, metabolites were extracted from media using a volume
of 800 µL of cold (−20°C) methanol added to a 100 µL aliquot of
NVU media eluate, vortexed for 30 s, and incubated at −80°C
overnight to precipitate proteins. After incubation, samples were
cleared by centrifugation (21130 RCF,15 min), and the resulting
supernatant was removed and evaporated to dryness in a vacuum
concentrator. Dried extracts were reconstituted in 60 μL
reconstitution solvent [98:2 (v:v) water:acetonitrile with 0.1%
formic acid] for reverse phase LC-MS analysis. The
reconstituted samples were then centrifuged (15,000 rpm,
5 min) to remove insoluble debris. Quality control samples
were prepared by combining equal volumes (10 μL) of each
sample type.

Ultra-high-performance liquid chromatography-mass
spectrometry (UHPLC-MS) and multiple reaction monitoring
(MRM) were performed on a triple quadrupole mass
spectrometer (6,470, Agilent Technologies, Santa Clara, CA,
United States) equipped with an Infinity II UHPLC system
(1,290, Agilent). Chlorpyrifos and its metabolites were
separated on a reverse phase Hypersil Gold RPLC column
(1.9 µm, 2.1 mm × 50 mm, Thermo Fisher, Waltham, MA) at
ambient temperature. Chromatography was performed at
300 μL/min using solvent A (0.05% formic acid in water) and
solvent B (0.05% formic acid in acetonitrile) with the following
gradient profile—60% B for 0.5 min, 60–95% B over 3.5 min, and
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95–60% B over 0.1 min—and reequilibrated at 60% B over 2 min
(gradient length 4.1 min). The injection volume used was 1 μL,
with an autosampler temperature of 4°C. The exogenous small
molecule, 2,6-di-tert-butylpyridine (DtBP), was used as an
internal standard. Serial dilutions of DtBP at 10
concentrations were used to determine instrument limits of
detection (LOD), quantitation (LOQ), and the calibration
curve necessary to convert instrument response to analyte
concentrations.

Data acquisition was carried out in fast polarity switching
MRM mode using a thermally assisted ESI source (Jet Stream,
Agilent) operated with the following conditions: a capillary
voltage of 4 kV (positive ion mode) and 2.5 kV (negative ion
mode), a nebulizer gas temperature of 300°C with the flow of 8 L/
min, and a sheath gas temperature of 300°C with the flow of 11 L/
min. Data were acquired using MassHunter Workstation Data
Acquisition software (Agilent) and analyzed using MassHunter
Quantitative Analysis software (Agilent). A list of metabolites,
mass transitions, retention times, and ion polarities used for
targeted MS analysis can be found in supplemental materials
(Supplementary Table S1). Data represent between four and
eight replicate measurements (two–four NVU devices and two
technical replicates per sample).

Acetylcholine Sensor Fabrication and Calibration. A screen-
printed electrode (SPE) array was enzymatically modified to be
selective to acetylcholine (acetylcholine chloride, Sigma) and
incorporated into the microclinical analyzer (μCA)
microfluidic flow system for automated calibration and
analysis as before with some modifications (McKenzie et al.,
2015). The μCA consisted of a MicroFormulator and an
electrochemical detection cell. The MicroFormulator was
designed by and purchased from the Vanderbilt Institute for
Integrative Biosystems Research and Education (VIIBRE)/
Vanderbilt Microfabrication Core (VMFC) and consisted of a
rotary planar peristaltic micropump (US patents 9,874,285 and
9,725,687 and applications claiming priority from US patent
application 13/877,925) for delivering flow and a normally
closed rotary planar valve (US patent 9,618,129) to select
solutions. Microcontrollers and computer software for the
MicroFormulator were also purchased from VMFC. The
electrochemical detection cell, designed and fabricated by
VIIBRE/VMFC, was composed of an electrode array and a
microfluidic housing. The electrode array, designed in-house
and commissioned for fabrication (Pine Research, Durham,
NC), (McKenzie et al., 2015), was composed of five different
electrodes: three platinum disk electrodes and two band
electrodes. The disk electrodes (A � 1.8mm2) were used for
enzymatic detection of acetylcholine. The largest band
electrode (A � 19mm2) was silver plated and used as an Ag/
AgCl quasireference.

To make the electrodes selective to acetylcholine, a two-
enzyme solution of acetylcholinesterase (Sigma) from
Electrophorus electricus and choline oxidase (Sigma) from
Alcaligenes was prepared and deposited on the working
electrodes. First, each enzyme was dissolved separately to
10 mg/ml in phosphate buffer (2 mM PBS, pH 7, Fisher)
containing 800 mg/ml of bovine serum albumin (Sigma) and

stored (−18°C) until use. These enzyme solutions were retrieved
as required, combined equally by volume, mixed with
glutaraldehyde (0.5% wt/v, Sigma), and vortexed (∼5 s).
Immediately following vortexing, 1 µL of the mixed enzyme
solution was drop-cast onto each working electrode, allowed
to air dry for 1 h, and either used immediately or stored (low
light, 4°C, 2 mM PBS, 120 mM KCl, pH 7).

The LOD, LOQ, and linearity for the acetylcholine sensor were
determined as performed previously (McKenzie et al., 2015;
Miller et al., 2018). To incorporate the sensor into the µCA,
the SPE was sealed within a polymethylmethacrylate closed-cell
housing. The housing was plumbed with Tygon tubing (Cole
Parmer, Vernon Hills, IL) to a debubbler (Molecular Devices Inc.,
Sunnyvale, CA) and attached to a MicroFormulator to facilitate
automated calibration and analysis. Calibrations were performed
by monitoring the current generated by 21 calibrant solutions
(5 μM–5 mM acetylcholine) in buffer (2 mM PBS; 120 mM KCl,
pH 7). Calibrants were sampled through a MicroFormulator at a
flow rate of 100 μL/min and monitored by a CHI 1,440
potentiostat (CH Instruments, Austin, TX) held at 0.6 V vs.
Ag/AgCl with buffer in between to provide a baseline (2 min
each). The detection and quantitation limits, along with the
sensitivity and linear range of the sensor, were determined by
performing a linear regression on the calibration data. The
maximum limit of linearity was determined by visual analysis
of the calibration curve. The LOD was calculated by dividing
three times (10X for LOQ) the error of the blank (y values) by the
slope of the determined linear range. Dividing the slope by the
area of the disk electrode (1.8 mm2) resulted in the sensitivity of
the electrode.

Electrochemical Analysis of Acetylcholine in NVU Eluate.
The μCA electrochemical detection platform (Miller et al., 2018)
was used to determine the acetylcholine levels in NVU samples
both with and without CPF treatment. The acetylcholine SPE
containing three enzymatically modified acetylcholine sensors
was loaded into the µCA housing and the current was monitored
by all three to provide technical replicates. Using the
MicroFormulator, calibrants were sampled at a flow rate of
100 μL/min (as above, but with six calibrants from 0 to
114 µM). After calibration, NVU eluate was sampled with
buffer (2 min, 2 mM PBS, 120 mM KCl, pH 7.0) in between
each sample run to establish a baseline. The sensor was
recalibrated before and after each NVU sample set to check
for sensor degradation/inhibition. The acetylcholine
concentration in the sample was determined using the current
generated by the sample and the slope and intercept of the
calibration curve that was generated by performing a linear
regression on the calibration data. p-values between sample
sets were determined using t-test with unequal variance.

RESULTS AND DISCUSSION

This study was designed to assess the utility of the NVU and an
electrochemical/MS analytical platform to address three critical
aspects of CPF toxicity: 1) How does CPF degrade and what CPF
metabolites persist? 2) Does CPF or its metabolites cross the BBB?
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3)What effects does CPF exposure have on cellular metabolism at
and across the BBB? To this end, environmental exposure to CPF
was simulated within the NVU and morphological and metabolic
analysis was performed.

To answer these critical questions, it was important to model
CPF exposure resulting in significant metabolic disruption
without inducing cell death. A few benchmarks for CPF
exposure include the United States federally allowed dose of
up to 0.03 mg/L of CPF in drinking water (0.085 µM CPF).
Detailed murine studies for sublethal doses, report
0.5–5 mg/kg IV doses to result in 10–100 µM CPF in blood
(Smith et al., 2012). These dosing levels have been carefully
compared to oral administration and historical human studies
(Nolan et al., 1984; Smith et al., 2012; Smith et al., 2014). Because
CPF binds quickly upon administration, the in vivo range of
0–100 µM CPF and a slightly higher dose (300 µM) were chosen
for investigation (Lowe et al., 2009).

Using this range of CPF concentrations, we first explored the
response of the barrier-forming cells—the endothelial
cells—outside of the NVU. Endothelial cells were grown on
well plates, exposed to 0, 10, 30, 100, and 300 µM CPF, and
visually inspected for morphological changes at 24 h. The
treatments resulted in a range of perturbations. The lowest
concentration exposure (10 µM) showed slight changes in
morphology. At 30μM CPF, treatment was nonlethal but
resulted in morphological changes to more circular-shaped
cells. The highest exposure tested (300 µM) resulted in the
majority of the cells displaying punctate cell morphology and
clumping of cells indicating cell death (Supplementary Figure
S1). These initial endothelial cell experiments demonstrated
varied effects across the range of CPF concentrations. CPF
concentrations that were not expected to induce significant
cell death in the NVU were tested further (0–100 µM CPF).

Primary neuronal cultures were chosen to ensure that their
state of differentiation is representative of mammalian neurons.
Specifically, cholinergic neurons were desired to accurately
represent susceptibility to OPs. The primary cultures used in
this work were 90% neurons and 10% microglia and determined
to be 10% positive for choline acetyltransferase, indicating active
cholinergic signaling (Supplementary Figure S2). When these
neurons were tested for their response to CPF (100 µM), the cells
showed a “halo” effect indicating cell death (Supplementary
Figure S3). However, if the membrane stays intact, CPF may
never reach the neuronal chamber. Historically, research on
cholinergic neuronal cultures has been conducted on primary
cells, although recently a cholinergic neuronal line was
introduced (Ortiz-Virumbrales et al., 2017; Moreno et al.,
2018). We are currently working to bring this cholinergic
technology into our lab to integrate with the NVU.

The NVU incorporates all four cell types necessary to model
BBB function within a three-dimensional, dual-chambered device
(Brown et al., 2015; Brown et al., 2016). First, the NVU’s vascular
chamber (17.5 µL) was seeded with a human endothelial cell line
and grown to confluency. Next, the neuronal chamber (2.9 µL)
was seeded with three different cell types: human astrocytic and
pericytic cell lines and primary rat neurons (Hamilton, 2010).
The neurons were harvested from the forebrain of the rat and the

addition of these neurons created a chimeric model fusing a
majority of human-derived cells with primary rat neurons. With
all four cell types within the device, both chambers were equipped
with microfluidic perfusion control in preparation for simulating
acute environmental exposure to CPF (device schematic shown in
Supplementary Figure S4).

To assess the full-range response of the model BBB to CPF
exposure, the NVU was treated with an escalating dose of CPF. A
total of five NVU devices were used to serve as biological model
replicates. Under perfusion, the vascular sides of each NVU
device were exposed to varying concentrations of CPF (0, 1, 3,
10, 30, and 100 µM) in an escalating dose format (successive
exposures) over the course of 24 h. Media were collected from
both chambers of each NVU prior to each exposure point. Barrier
permeability was tested by spiking the vascular side media with
10 kDa fluorescein isothiocyanate-dextran (FITC) and
monitoring fluorescence across the barrier (Helms and Brodin,
2014). When an empty device was tested (no cells), the
permeability was (2.0 ± 0.4) × 10−6 cm/s (Supplementary
Figure S5). Compared to the permeability of the empty device
(no cells), when the four cell types were added (but before CPF
exposure), permeability decreased [0 µM CPF: (0.27 ± 0.05) ×
10−6 cm/s, control treated with DMSO: (0.28 ± 0.05) x 10−6 cm/s].
After exposing the NVUs to 1 µM CPF, the permeability
increased [(0.67± 0.27) × 10−6 cm/s] and continued to increase
upon adding 3 µMCPF [(1.15 ± 0.24) × 10−6 cm/s] at which point
it stabilized [(1.01 ± 0.46) x 10−6 cm/s, 100 µM CPF]. To
definitively report the concentration-dependent effects of
exposure on permeability without accumulation effects,
individual experiments at each concentration are needed.
However, this increased permeability indicates that CPF may
be able to cross the engineered BBB and enter the neuronal
chamber.

To directly investigate the potential crossover of CPF, MS
analysis of the media samples was used to track CPF and its
primary metabolites at and across the BBB. The canonical
pathway for CPF detoxification illustrates that CPF can
proceed through the toxic intermediate, CPO, or can be
metabolized directly to inactive compounds (Figure 1;
Sultatos, 1994). A targeted MS assay, was used to monitor
CPF and its metabolites in the escalating dose experiment. MS
analysis did not detect CPF nor CPO in either vascular or
neuronal eluate samples (Supplementary Figure S6, and
numerically in Supplementary Table S2). However, in all
conditions in which CPF was administered, TCP—the primary
urinary metabolite of CPF—was detected in the vascular effluent,
indicating CPF detoxification. At 30 µMCPF and above, TCP was
detected across the BBB in the neuronal effluent. At the highest
dose of CPF (100 µM), diethylthiophosphate (DETP), another
CPF metabolite, was also detected in the vascular effluent. These
CPF metabolites are a result of CPF detoxification, which is
limited by the enzymatic rate of chlorpyrifos dearylation and/or
CPO detoxification (Tang et al., 2006). However, components in
the serum used in this experiment such as acetylcholinesterase
may have scavenged the CPF and contributed to its lack of
detection (Lowe et al., 2009). Still, the observation that neither
CPF nor any of the primary metabolites were detected across the

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2021 | Volume 9 | Article 6221757

Miller et al. Chloropyrifos Across Model Blood-Brain Barrier

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


BBB with up to 10 µM CPF suggests that barrier integrity was
maintained under these conditions. Ultimately, the 10 µM
dose—a dose that was thought to have measurable effects in
our system without degrading the membrane—was chosen for
further investigation.

Before the second NVU experiment was conducted, an
electrochemical sensor previously developed by Cliffel and
coworkers for the detection of acetylcholine was evaluated for
possible interference in this system. The sensor was shown to be
sensitive, selective, and stable in the absence of serum
(Supplementary Table S4; McClain et al., 2019). Therefore,
the second NVU experiment was conducted without serum
being added to the media during CPF treatment (although the
other components of the Lonza growth bullet kit were added) so
that metabolic disruption in specific pathways—such as
cholinergic signaling and/or metabolism—could be sensitively
and selectively monitored using electrochemical
microphysiometry.

To test the effect of an acute dose of CPF onmetabolismwithin
the NVU over time, the vascular sides of the NVUs were dosed
with 10 µM CPF and the effluent was electrochemically analyzed.
In this study, four NVU devices were used in parallel. When
exposed to 10 µM CPF, the vascular eluate exhibited a significant
increase in acetylcholine (24 ± 3 μM, p-value < 0.003, Figure 2A)
after just 2 h and remained elevated for at least 24 h (24 ± 3 µM)
compared to control. This acetylcholine buildup is a hallmark of
organophosphate poisoning and can interfere with the
muscarinic, nicotinic, and central nervous systems causing
essential autonomic processes to fail such as respiration and
circulation. This acetylcholine buildup may be a result of CPF
bioactivation to the ultimate toxicant CPO. Bioactivation is
thought to take place primarily in the liver by a cytochrome
P450 enzyme (CYP). Within the NVU, a similar CYP produced
by the endothelial cells may be responsible for the bioactivation of
CPF (Dauchy et al., 2008; Ghosh et al., 2010). Future models of
CPF toxicity could include a kidney or liver chip in tandem with

the NVU to investigate CYP-dependent effects (Vernetti et al.,
2017).

In this same experiment, acetylcholine metabolism was also
significantly dysregulated on the neuronal side of the NVU,
despite not being treated directly with CPF. Across the BBB,
acetylcholine levels increased after 2 h (95 ± 10 μM, p-value <
0.04, Figure 2B) and stayed elevated for 24 h (100 ± 10 µM)
compared to control. The cholinergic neurons on the neuronal
side of the NVU are thought to be primarily responsible for
acetylcholine production, perhaps accounting for the even greater
change in acetylcholine levels compared to the vascular side. This
increase also suggests that either CPF, its toxic metabolites, or
other soluble factors were able to cross the BBB and interact
directly with the neurons. In future experiments, recently
published protocols describing cholinergic neuron
differentiation from human-induced pluripotent stem cells
(hiPSCs) can be implemented and integrated with this
platform so that these results can be compared with those of
human cholinergic neurons (McCracken et al., 2014; Paşca et al.,
2015; Amin et al., 2016; Moreno et al., 2018; Pas, 2018; Liu et al.,
2020).

To investigate how BBB morphology changed over time in
response to a long-term CPF exposure at 10 μM, microscopic
images were collected after CPF treatment. Treated NVUs
displayed some punctate cell morphology (contracted cells)
indicative of cellular stress and a compromised BBB, whereas
the control NVUs exhibited evenly dispersed cells characteristic
of a healthy BBB (Figure 3; Supplementary Figure S7). At
moderate levels (1–20 µM), other studies have also found CPF
to be tolerated by cells in culture, causing cellular stress but not
being directly cytotoxic (chlorpyrifos; Saulsbury et al., 2009;
Middlemore-Risher et al., 2011).

To directly investigate the potential crossover and metabolism
of 10 µM CPF over time, MS was used again to track CPF and its
primary metabolites at and across the BBB. Similar to the
escalating dose experiment, targeted MS did not detect CPF

FIGURE 2 | Effect of CPF on acetylcholine metabolism within the NVU as determined from the electrochemical assay. (A) Bar graph indicating the change in
acetylcholine concentration from control (DMSO) in vascular side eluate over time (2, 4, 8, or 24 h treatment), showing elevated acetylcholine levels (24 ± 3 µM) after 2 h
of CPF treatment (10 µM CPF, p-value < 0.003). (B) Bar graph indicating a change in acetylcholine concentration in neuronal side eluate over time showing elevated
acetylcholine (95 ± 10 µM) 2 h after CPF was administered to the vascular side, a significant increase from the control (p-value < 0.04). Data are represented as the
means and standard errors, symbols represent technical replicates, n � 6–9 for samples, and n � 9–12 for controls. Control samples were collected over 24 h and their
respective collection time is indicated in the control key.
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nor CPO in either vascular or neuronal eluate samples (Figure 4
and displayed numerically in Supplementary Table S2). Only
one metabolite, TCP, was detected above the limit of quantitation
(∼0.01 µM) and only on the vascular side. TCP was detected at
∼0.05 µM after 2 h of treatment and increased in concentration to
∼0.19 µM after 24 h (Figure 4, top plots). When targeted MS was
applied to the neuronal side eluate, none of the CPF primary
metabolites were observed in any of the neuronal samples
(Figure 4, bottom plots). Because CPF treatment also
corresponded to serum removal from the media, these changes
cannot be exclusively attributed to the effects of CPF and more
experiments are required to parse the effects of serum versus CPF
on barrier integrity. These data along with other studies show
TCP to be the primary urinary metabolite of CPF in both humans
and rodents (Timchalk et al., 2005; Atabila et al., 2019).

Although the CPF degradation observed in this work agrees
with what is seen in humans, the fact that the metabolite
concentration decreased tenfold compared to the administered
concentration raises questions as to the fate of CPF. One
hypothesis is that CPF is removed from the effluent by the
PDMS used to fabricate the NVUs. To test PDMS absorption
of CPF (Auner et al., 2019), a floating disk experiment was
conducted that demonstrated that, after 2 h, 14 ± 1% of the
CPF was lost, whereas after 24 h, as much as 67 ± 1.6% of CPF was
lost to PDMS (Supplementary Figure S8). These results indicate
that the absorption/adsorption of CPF is substantial for PDMS,
which has important implications in the design and
interpretation of PDMS-based microfluidic experiments.
Despite this loss to PDMS, the experiments conducted in this
work were run under a continuous flow of 2 μL/min. Under this
flow, the CPF-dosed media took less than 9 min to flow through
the PDMS-based device. Therefore, uptake of CPF by PDMS only
accounts for a small portion of the total CPF removal observed.

If CPF is metabolized within the NVU, where is it going and
how can it be tracked? Other in vitro BBB studies that have set out
to utilize MS to monitor CPF were unable to detect CPF or its
metabolites, leading researchers to rely on acetylcholinesterase
inhibition instead (Balbuena et al., 2010). Although the CPF

metabolites detected in this current work give promise to MS as
a tool for tracking organophosphate toxicity, the analysis may need
to be expanded beyond the NVU eluate. The increased
acetylcholine levels measured on the neuronal side indicate that
perhaps CPF, CPO, or other soluble factors were able to cross the
BBB but attached to the cells or matrix in the neuronal chamber,
allowing them to remain undetected by targeted MS methods. The
results encourage additional targetedMSdevelopments to assay the
cellular/matrix components for retained CPF.

Alternatively, the low detection of CPF may be due to it being
bound to other solublemolecules in themedia. CPF plasma protein
binding has beenmeasured using varying concentrations of rat and
human albumin in buffer (0.04–20mg/ml) and CPF (0.009 and
0.29 μM). At both of these CPF concentrations, it was reported that
when albumin concentrations were high, 99% of the CPF was
bound (Lowe et al., 2009). All the experiments presented in this
work have either serum or growth factors added to the media that
may be binding the CPF and/or CPO in solution. Because CPF is
highly bound to proteins in vivo, removing the supplement
proteins in addition to the serum would lead to higher
unbound CPF and greater ability to cross the membrane, but
the biological relevance would be compromised (Smith et al., 2012;
Smith et al., 2017). Indeed, it has been reported that under
physiological conditions CPF membrane transport increases,
whereas CPF membrane permeability increases when
physiological conditions are removed. In these reports, serum
protein concentration was the most substantial factor affecting
this transition (Smith et al., 2012). Acid hydrolysis has also been
used to recover CPF lost to conjugation, doubling CPF recovery in
some cases (Nolan et al., 1984). CPF recovery has also been
increased by treating with glucuronidase, liberating TCP
glucuronide conjugates (Nolan et al., 1984). These insights into
tracking CPF in eluate encourage future studies that include
additional processing steps to increase CPF recovery or MS
studies which implement broad, untargeted MS assays to assess
wide-scale unanticipated metabolic changes (Balbuena et al., 2010;
May et al., 2015; May et al., 2016; Sherrod and McLean, 2016;
Huang et al., 2019).

FIGURE 3 | Representative microscopy images of endothelial cells within an NVU following 24 h of continuous exposure with either (A) DMSO (vehicle control,
panel A) or (B) CPF (10 μM, panel B). The lattice seen at the right of each image is the microfluidic channels of the vascular side of the NVU. (A) A control NVU showing
evenly dispersed cells with typical morphology, indicating a healthy BBB. (B) A CPF-treated NVU showing punctate cell morphology (contracted cells), indicating cellular
stress in response to the CPF treatment. For these experiments, the NVUs were perfused with neurobasal media on the neuronal side and EBM2 media on the
vascular side either with or without CPF. All cultures were maintained at 37°C and 5% CO2.
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CONCLUSION

This study demonstrates the potential of the NVUand the power of
electrochemistry and MS as a predictive platform for
organophosphate toxicology. CPF’s role in society at the
intersection of food security and environmental policy in
addition to its potential hazard to human health makes
understanding its effects critical. When environmental exposure
was simulated by challenging the vascular side of the NVU with
CPF, neither the pesticide nor any of its metabolites were observed
to cross the engineered BBB until the CPF concentration rose to
30 µM. Interestingly, neither CPF nor its active oxon form, CPO,
was detected in any of the samples, whereas the inactive
metabolites, TCP and DETP, were detected. Although CPF
metabolism was observed, a majority of CPF was unaccounted
for, suggesting that the analysis may need to be expanded past the
NVU eluate. Regardless of the fate of CPF, the treatments were
found to cause significant disruption of acetylcholine metabolism
at and across the BBB, providing chemical evidence of the
substantial disruption induced by this widely used commercial
pesticide. These results support previous studies showing that
organotypic cultures and their respective analytical platforms
enable the identification of primary and secondary mechanisms
of action across the BBB. These data validate the predictive power
of the NVU and the utility of electrochemistry and MS in
identifying chemical exposure events while providing chemical
evidence of the substantial disruption in acetylcholine metabolism
induced by this widely used commercial pesticide.
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FIGURE 4 | Distribution of CPF and its three primary metabolites at and across the BBB with lengthening exposure times. Using targeted MS, CPF and its
metabolites were quantified in both the vascular (upper plots) and neuronal (lower plots) eluate media samples. These samples were obtained at lengthening durations
of exposure to 10 µMCPFwithin the NVU. The limit of quantitation (LOQ) was determined from serial dilutions of a TCP standard. An internal standard, DtBP, was used to
calibrate instrument response during each sample injection.
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