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The innate immune response constitutes the first cellular line of defense against initial 
HIV-1 infection. Immune cells sense invading virus and trigger signaling cascades 
that induce antiviral defenses to control or eliminate infection. Professional antigen- 
presenting cells located in mucosal tissues, including dendritic cells and macrophages, 
are critical for recognizing HIV-1 at the site of initial exposure. These cells are less 
permissive to HIV-1 infection compared to activated CD4+ T-cells, which is mainly due 
to host restriction factors that serve an immediate role in controlling the establishment 
or spread of viral infection. However, HIV-1 can exploit innate immune cells and their 
cellular factors to avoid detection and clearance by the host immune system. Sterile 
alpha motif and HD-domain containing protein 1 (SAMHD1) is the mammalian deoxy-
nucleoside triphosphate triphosphohydrolase responsible for regulating intracellular 
dNTP pools and restricting the replication of HIV-1 in non-dividing myeloid cells and 
quiescent CD4+ T-cells. Here, we review and analyze the latest literature on the antiviral 
function of SAMHD1, including the mechanism of HIV-1 restriction and the ability of 
SAMHD1 to regulate the innate immune response to viral infection. We also provide 
an overview of the dynamic interplay between HIV-1, SAMHD1, and the cell-intrinsic 
antiviral response to elucidate how SAMHD1 modulates HIV-1 infection in non-dividing 
immune cells. A more complete understanding of SAMHD1’s role in the innate immune 
response to HIV-1 infection may help develop stratagems to enhance its antiviral 
effects and to more efficiently block HIV-1 replication and avoid the pathogenic result 
of viral infection.
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inTRODUCTiOn

Innate immunity is the cell-intrinsic defense mechanism that senses incoming pathogens and is 
characterized by type-I interferon (IFN-I) induction and the release of inflammatory cytokines that 
upregulate antiviral IFN-stimulated genes (ISGs) (1, 2). The activation of the innate response to 
pathogens is dependent on cellular pattern recognition receptors (PRRs) that detect pathogen-asso-
ciated molecular patterns (PAMPs), including viral structures or nucleic acids. Interferon-inducible 
protein IFI16 and cyclic GMP-AMP synthase (cGAS) are cytosolic sensors of HIV-1 that detect viral 
DNA (3, 4). Recognition of PAMPs results in induction of IFN-I and ISGs to control initial infection 
and spread, while the concomitant induction of the inflammatory response and cytokines can initiate 
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adaptive immune responses (5, 6). Modulation of IFN-I activa-
tion is essential for viral clearance. However, overstimulation of 
IFN pathways can lead to inflammatory autoimmune disease (7).

HIV-1 is sensitive to ISGs and the IFN-induced antiviral 
response; so it is not surprising that HIV-1 is a poor inducer of 
IFN (8). HIV-1 benefits from evading innate immune activa-
tion and utilizes a variety of tactics to escape detection (9, 10). 
Professional antigen-presenting cells located in mucosal tissues, 
including dendritic cells (DCs) and macrophages, are critical 
for recognizing HIV-1 at the site of initial exposure. However, 
these cells are less permissive to HIV-1 infection compared to 
activated CD4+ T-cells, mainly due to host restriction factors that 
control the establishment or spread of viral infection. Several host 
proteins can restrict HIV-1 at various points in the viral lifecycle, 
including APOBEC proteins, TRIM5α, and tetherin (11–13). 
However, HIV-1 can exploit innate immune cells and their cel-
lular factors to avoid detection and clearance by the host immune 
system (13).

SAMHD1 is host protein capable of blocking replication of 
retroviruses and several DNA viruses in cells (14–18). SAMHD1 
is constitutively expressed at various levels in all cell types and 
highly expressed in myeloid lineage and resting CD4+ T-cells 
(14, 15, 19). IFN-I treatment increases SAMHD1 expression 
in certain cell types with low endogenous SAMHD1 levels  
(20, 21). SAMHD1 has been implicated as a negative regulator of 
the IFN-I inflammatory response (22–24), however, the under-
lying mechanism is not fully understood. While HIV-2 encodes 
the SAMHD1 antagonist Vpx, the more pathogenic HIV-1 does 
not. It was hypothesized that HIV-1 lacks a countermeasure 
against SAMHD1 because it is beneficial for infection. In this 
review, we will discuss the contributions of SAMHD1 to both 
the direct restriction of HIV-1 and to the modulation of the 
antiviral innate response and to analyze the hypothesis that 
HIV-1 restriction by SAMHD1 leads to a diminished induction 
of innate immunity.

innATe iMMUne SenSinG OF Hiv-1

Although HIV-1 can be sensed by the innate immune system, 
the prevailing theory is that HIV-1 avoids immune surveillance 
through poor replication in immune cells causing ineffective 
triggering of innate cytosolic sensors (25). Several studies have 
identified the molecular basis of cytosolic sensors important 
for targeting viral pathogens. Here, we focus on HIV-1 DNA 
as a trigger of the innate antiviral response. After sensing viral 
DNA, cGAS generates the second messenger, cyclic guanosine 
monophosphate-adenosine monophosphate (26–28), that acti-
vates the stimulator of IFN genes (STING) (6). STING activation 
leads to phosphorylation of TANK-binding kinase 1 (TBK1) 
and the subsequent phosphorylation and dimerization of IFN-
regulatory transcription factors IRF3 and IRF7. Nuclear trans-
location of the IRF3/IRF7 homo-or-hetero dimers will activate 
IFN-I gene expression (Figure 1). This signaling cascade results 
in an upregulation of IFN-I and ISGs as a defense against viral 
infection (29, 30). Reverse transcribed HIV-1 DNA was identi-
fied as the trigger to the cGAS-STING pathway (3). Although 
cGAS is the primary sensor of cytosolic viral DNA, IFI16 can also 

act as a sensor of HIV-1 single-stranded DNA that induces an 
IFN-β response in macrophages by a cGAS-STING-dependent 
pathway (4).

inTRODUCTiOn TO SAMHD1

Human SAMHD1 is a 626-amino acid protein containing an 
N-terminal nuclear localization signal followed by a sterile-alpha 
motif and histidine/aspartic acid (HD) domain. SAMHD1 is a 
deoxynucleoside triphosphate triphosphohydrolase (dNTPase) 
(33, 34) that converts dNTPs into the constituent deoxynucleo-
side and inorganic triphosphate upon stimulation by dGTP or 
GTP (33–35). SAMHD1 and ribonuclease reductase, the enzyme 
responsible for de novo dNTP synthesis through the conversion 
of ribonucleotide diphosphates to deoxyribonucleotides (36), 
are allosterically regulated to achieve balanced intracellular 
dNTP levels in a cell-cycle-dependent manner (37). During G1 
to S-phase transition in actively proliferating cells, ribonuclease 
reductase expression increases, leading to expansion of the 
dNTP pool to facilitate DNA synthesis (38, 39). The activity of 
SAMHD1 is activated by high dNTP levels, and degradation 
of nucleic acids in the absence of DNA replication protects the 
cell from innate immune activation and cancer development 
(40, 41). Mutations in SAMHD1 that affect its enzyme activity 
are associated with Aicardi-Goutières syndrome (AGS), an 
encephalopathic autoimmune disease characterized by symp-
toms mimicking chronic viral infection (22). The accumulation 
of intracellular dNTPs caused by mutations in the genes encod-
ing proteins involved in nucleic acid metabolism, including 
SAMHD1 and TREX1 (42), are sensed by PRRs, resulting in 
aberrant production of IFN-I (43). AGS patients present with 
increased production of IFN-α, the chemokine most character-
istic of congenital virus infection. AGS patients with SAMHD1 
mutations can present with signs of lupus erythematosus, with 
many symptoms mimicking those of HIV-1 infection (22, 44). 
Furthermore, cells isolated from AGS patients with homozygous 
SAMHD1 mutation revealed that SAMHD1-deficient monocytes 
supported productive infection by HIV-1 (20), suggesting a 
link between SAMHD1 function in both autoimmunity and  
HIV-1 restriction.

Long interspersed element 1 (LINE-1) is the only autono-
mous and active human retroelement capable of producing new 
genomic insertions through its endogenous endonuclease and 
reverse transcriptase activities (45, 46). A study on AGS-related 
SAMHD1 mutations indicate that all disease-related mutations 
reduced LINE-1 inhibition in dividing cells (47). Recent work 
suggests that SAMHD1 potently blocks LINE-1 transposition in 
cycling cells by triggering the sequestration of LINE-1 ORF1p 
into stress granules (48). Impaired inhibition of LINE-1 retro-
transposition may lead to triggering of the autoimmune response 
by stimulating toll-like receptors (TLRs) (49), although this has 
not been confirmed. Impaired dNTPase activity and LINE-1 
suppression by mutant SAMHD1 could explain the chronic 
inflammatory response characteristics of AGS disease. These 
studies outlining the pathogenic effect of SAMHD1 deficiency on 
autoimmune disease implicate SAMHD1 as a negative regulator 
of the innate immune system.
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FiGURe 1 | Innate immune sensing of HIV-1 DNA. HIV-1 undergoes uncoating through the interaction between viral capsid and host factors (31, 32). Reverse 
transcribed HIV-1 DNA, mainly abortive transcripts, activates cytosolic DNA sensors IFI16 and cyclic GMP-AMP synthase (cGAS) resulting in TANK-binding kinase 1 
(TBK1)-mediated phosphorylation and nuclear translocation of hetero-or-homo dimers of interferon regulatory factor-3 (IRF3) and IRF7 and induction of type-I IFN 
response. Expression of ISGs allows for immune activation and the induction of an antiviral state of the cell. gRNA, HIV-1 genomic RNA; cDNA, complementary 
DNA; vRNA, viral RNA; dsDNA, double-stranded DNA; STING, stimulator of IFN genes; the letter P indicates phosphorylation.
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SAMHD1-MeDiATeD Hiv-1 ReSTRiCTiOn

HIV-1 replicates inefficiently in non-diving cells, such as quies-
cent CD4+ T-cells, DCs, and monocytes. HIV-1 infection can be 
enhanced in these cells by Vpx, an accessory protein encoded by 
HIV-2 and certain lineages of simian immunodeficiency viruses 
(SIVs) (50, 51). This hinted at the existence of a cellular restriction 
factor counteracted by Vpx (50). SAMHD1 was identified as the 
mystery HIV-1 restriction factor by a mass spectrometry analysis 
of cellular proteins immunoprecipitated from cells express-
ing Vpx (14, 15). Vpx interacts with the C-terminal domain of 
SAMHD1, thereby initiating proteasomal degradation by an 
E3 ubiquitin ligase complex, and relieving SAMHD1-mediated 
lentiviral restriction (14, 15, 52, 53).

The mechanism and modulation of SAMHD1-mediated 
HIV-1 restriction is an area of intense scrutiny (Figure  2). 
Overexpression of SAMHD1 in PMA-treated monocytic U937 
cells results in a depletion of dNTP levels (54). It was later 

confirmed that SAMHD1 restricts the replication of retrovi-
ruses and several DNA viruses by depleting the concentration of 
intracellular dNTPs to levels insufficient to support viral DNA 
synthesis (14–18, 54, 55). Structural studies strengthened a 
model of nucleotide-dependent tetramer assembly of SAMHD1 
(56–58), where GTP binds to guanine-specific allosteric sites 
and dNTP binds to non-specific activator sites, initiating the 
formation of enzymatically active tetramers with the catalytic 
core of the HD domain (33, 34, 37, 59). Moreover, binding 
of single-stranded nucleic acids (ssNAs) to the dimer–dimer 
interface of SAMHD1 inhibits the formation of the catalytically 
active tetramer (60).

As SAMHD1 is also highly expressed in activated CD4+ T-cells 
that support productive infection, several studies demonstrated 
posttranslational modification as a means of mechanistic regula-
tion of SAMHD1 function in restricting HIV-1. SAMHD1 is 
phosphorylated at several residues; however, phosphorylation 
of threonine 592 was identified as essential for the negative 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 2 | SAMHD1 negatively regulates the innate immune sensing of HIV-1 DNA. SAMHD1 blocks HIV-1 infection through intracellular dNTP depletion, thus 
preventing the accumulation of viral DNA accessible to sensing by IFI16 and cyclic GMP-AMP synthase (cGAS) and the activation of the type-I interferon (IFN-I) 
response. The dNTPase activity of SAMHD1 is structurally regulated. Consecutive binding of dGTP/GTP and any dNTP to two allosteric sites provokes formation  
of the catalytically active tetramer, which can be destabilized by phosphorylation, oxidation, or the binding of single-stranded nucleic acids (ssNAs). dN, 
deoxynucleosides; PPPs, triphosphate; two linked letters S indicate the disulfide bond.
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modulation of its HIV-1 restriction activity (61–65) and tetramer 
formation (66, 67). SAMHD1 is phosphorylated by cyclin-
dependent kinase 1 (CDK1) and CDK2 in complex with cell 
cycle regulatory protein cyclin A. This regulation of SAMHD1 
function is associated with the cell cycle, as CDK1 and cyclin 
A are highly expressed in dividing cells. Furthermore, S-phase 
requires elevated dNTP levels, indicating modulation of the dNT-
Pase activity of SAMHD1 during the cell cycle (64). SAMHD1 
protein levels may be altered during various stages of the cell 
cycle depending on different cell types (68, 69). Interestingly, 
proliferation-induced oxidation of SAMHD1 by hydrogen perox-
ide reversibly inhibits its dNTPase activity through the formation 
of tetramer-inhibiting disulfide bonds (70), suggesting a dynamic 
structure-based regulatory mechanism of SAMHD1’s dNTPase 
activity that is influenced by the cell cycle (Figure 2).

Although the accepted consensus is that SAMHD1 restricts 
HIV-1 infection through the depletion of intracellular dNTPs, 
several studies suggested the existence of an additional yet-undis-
covered mechanism of SAMHD1-mediated retroviral restriction. 
This undefined antiviral activity appears to be dependent on 

phosphorylation (61, 63, 65) and is not fully dependent on low 
dNTP levels (71). SAMHD1 acts as a ssNA binding protein that 
degrades single-stranded DNA and RNA via a metal-dependent 
3′–5′ exonuclease activity in vitro (72–74). It has been suggested 
that SAMHD1 utilizes its nucleic acid binding potential to exert 
a ribonuclease activity against incoming HIV-1 genomic RNA 
in a phosphorylation-dependent manner (75). SAMHD1 was 
shown to restrict retroviruses though degradation of HIV-1 RNA 
in human monocyte-derived macrophages (MDMs), monocytes, 
and CD4+ T-cells (75, 76). It was proposed that SAMHD1 
degrades incoming HIV-1 gRNA, thereby restricting infection 
and preventing innate immune sensing of viral nucleic acids. 
However, recent studies have been unable to confirm the contro-
versial findings (55, 77–79). As a nuclear-localized protein (80), 
incoming viral genomic RNA would be inaccessible by SAMHD1 
for hydrolysis. Additional studies showed that dNTPase inac-
tive SAMHD1 mutant retained exonuclease activities in  vitro, 
indicating the exonuclease activity could not be attributed to 
the known dNTP-binding active site (77). Seamon et  al. (77) 
suggested that the nuclease activity attributed to SAMHD1 was 
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due to contamination during purification. Cell-based assays also 
failed to recapitulate the findings, thereby confirming the lack 
of SAMHD1 RNase activity to restrict HIV-1 in infected cells  
(55, 78). Ryoo et al. suggested that the differences in experimental 
conditions are responsible for the conflicting results, including  
a shorter infection time and the use of RNaseH-defective reverse 
transcriptase (81). They further identified SAMHD1 as a phos-
phorolytic not hydrolytic ribonuclease (82).

THe inTeRSeCTiOn OF Hiv-1, SAMHD1, 
AnD THe innATe AnTiviRAL ReSPOnSe

SAMHD1 cDNA was originally identified as a ortholog of the 
mouse IFN-γ-induced gene Mg11 in human DCs (83). A link to 
the innate immune response was strengthened by the discovery 
that cytokines, including toll-like agonists and IFNs, can induce 
SAMHD1 expression (84, 85). Cell lines treated with IFN-I  
(21, 86) and human primary monocytes treated with IFN-α  
and IFN-γ (20, 84, 87) show enhanced expression of SAMHD1. 
While SAMHD1 is highly expressed in MDMs, monocyte-
derived dendritic cells (MDDCs), and primary CD4+ T-cells, 
IFN treatment does not increase SAMHD1 protein levels further 
(21, 88–90). However, treatment of MDMs and MDDCs with 
IFN-I results in reduced phosphorylation of SAMHD1 at residue 
T592 (61), indicating a shift from catalytically inactive to active 
SAMHD1. Interestingly, the SAMHD1 promoter is a direct target 
of IRF3. The overexpression and activation of IRF3 enhances 
SAMHD1 promoter activity in HeLa cells (86).

HIV-1 does not trigger a sterilizing immune response (91) and 
is a poor activator of inflammatory pathways (8), resulting in an 
impaired response to HIV-1 and the development of persistent 
infection. The DC response to HIV-1 infection contributes to this 
dysfunctional immune response (92). Myeloid cells constantly 
sample the cellular environment to identify pathogens and send 
out danger signals in the form of IFN-I. DCs are essential for 
activating the adaptive immune response to infection, as matura-
tion leads to T-cell responses through antigen priming (91, 93). 
Interestingly, HIV-1 infects DCs without activating an effective 
antiviral response. As SAMHD1 limits HIV-1 cDNA synthesis 
in myeloid cells (14, 54), it was hypothesized that degradation 
of SAMHD1 by Vpx in DCs would result in productive HIV-1 
infection and the synthesis of viral proteins that would directly 
enter antigen presentation, thereby strengthening the T-cell 
response to infection (94). This could be why the vpx gene was 
lost from the ancestor of HIV-1 during the coevolution of pri-
mate SAMHD1 and lentiviruses (95).

Vpx-mediated degradation of SAMHD1 in DCs leads to 
enhanced HIV-1 infection, and studies in primary MDMs and 
MDDCs indicate that Vpx-mediated SAMHD1 degradation 
results in cGAS stimulation and IRF3 activation (3). Early work 
suggested that enhanced infection by SAMHD1 depletion leads 
to DC maturation (94). A study utilizing coculture of autologous 
activated CD4+ T lymphocytes with SAMHD1-deficient MDDCs 
infected with primary clinical HIV-1 isolates indicated enhance-
ment of both infection and IFN response (96). Interestingly, 
cocultured primary T-lymphocytes, but not HIV-1, trigger a 

decrease in SAMHD1 expression in MDDCs independent of 
dNTP levels (96). This study suggests that crosstalk between 
lymphocytes and DCs induces downregulation of SAMHD1 
expression, a requirement for stimulation of HIV-1 production 
in DCs, thereby inducing the innate sensing of HIV-1 and DC 
maturation (96).

Conversely, recent work indicates that DC maturation, 
measured by CD83 and CD86 expression, does not occur in 
SAMHD1-deficient cells due to additional manipulation of the 
innate immune system by HIV-1 (97). HIV-1 suppresses TLR-
induced maturation of DCs independent of SAMHD1 expres-
sion, although Vpx-mediated depletion of SAMHD1 enhanced 
the effect of HIV-1 infection on lipopolysaccharide-induced 
DC maturation (97). Vesicular stomatitis virus G-protein-
pseudotyped HIV-1 suppressed maturation similar to strains 
containing HIV-1 envelope protein, suggesting that viral replica-
tion, not envelope-receptor interactions, is required for suppres-
sion of maturation (97). Removing the SAMHD1-mediated block 
of reverse transcription resulted in a stronger suppression of 
maturation. Although infection and subsequent innate immune 
sensing in DCs is blocked by SAMHD1, HIV-1 maintains an 
additional SAMHD1-independent mechanism of suppressing 
DC maturation through downregulation of TLRs (97).

Two additional models suggest that, in MDDCs, HIV-1 
attempts to hide its genomic RNA and newly synthesized cDNA 
from cytosolic sensors by obstructing the nucleic acids using viral 
capsid. The models differ with respect to the effect of recruitment 
of cellular cyclophillins and cleavage and polyadenylation-
specific factor 6 (CPSF6) by capsid. One model suggests increased 
cyclophillin A (CypA) binding to the capsid increases sensitivity 
to innate sensing (94), while another proposes CypA binding 
coordinates uncoating, reverse transcription, and nuclear import 
of the preintegration complex (98), all to minimize the exposure 
of viral nucleic acids to cytosolic sensors. Future work is needed 
to clarify the contribution of CypA and SAMHD1 to the negative 
regulation of the innate immune response in myeloid cells to 
provide insight into HIV-1 mechanisms of evasion.

Non-cycling CD4+ T-cells and macrophages are less permissive 
to HIV-1 because of SAMHD1. However, during HIV-1 infection 
in vivo, activated CD4+ T-cells and macrophages are infected due 
to phosphorylation of SAMHD1. Although cytosolic HIV-1 
DNA is abundant in these permissive cells, a cell-autonomous 
IFN response is not triggered (99). This is due at least in part 
to host protein TREX1. As a single-stranded DNA exonucle-
ase, TREX-1 digests cytoplasmic DNA from retroviral DNA 
intermediates, thereby preventing the activation of mislocalized 
DNA by an innate immune sensor (99). Cytosolic HIV-1 DNA 
is accumulated in HIV-1 infected TREX1-deficient CD4+ T-cells 
and macrophages, which leads to inhibition of TBK1-dependent 
IFN-I response (99). This suggests a competition between two 
DNA sensors: cGAS leading to antiviral effects, and TREX1 lead-
ing to enhanced viral replication (100).

ReMAininG QUeSTiOnS

Although it is clear that HIV-1 utilizes a variety of mechanisms 
to evade myeloid cell activation, controversial questions still exist. 
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Conflicting reports could be due to the use of different cell types, 
and the differential use of clinical HIV-1 isolates, replication-
competent lab strains, or pseudotyped virus. It is essential to 
confirm experimental findings with primary cells that accurately 
recapitulate in vivo mucosal infection sites. Further understand-
ing of the strategies HIV-1 utilizes to evade the innate response 
will allow for better ideas on how to increase the innate immune 
response to HIV-1.

The existence of a yet-undiscovered mechanism of HIV-1 
restriction that is dependent on phosphorylation cannot be 
overlooked (63). Pretreatment MDMs with Vpx enhances the rate 
of HIV-1 cDNA synthesis (101), suggesting that the decrease in 
reverse transcription kinetics conferred by SAMHD1-mediated 
modulation of dNTP levels negatively regulates the rate of pro-
viral DNA synthesis in non-dividing cells. When transcription 
is silenced, integrated proviral DNA can lead to latency (102). 
Although SAMHD1 is highly expressed in cells purported to 
harbor latent provirus (19, 103) and the HIV-1 proviral promoter 
is activated by transcription factors (104), the effect of SAMHD1 
expression on latency development or reversal has not been 
explored. It is possible that SAMHD1 utilizes its nucleic acid bind-
ing ability to restrict HIV-1 infection postintegration, although a 
recent study confirmed SAMHD1 exerts no effect on HIV-1 Gag 
synthesis, viral particle release, and virus infectivity in 293T cells 
transfected with a proviral DNA construct (55). SAMHD1 may 
exert a direct effect on proviral DNA through binding, as purified 
recombinant SAMHD1 was shown to bind in vitro transcribed 
fragments of gag and tat cDNA (72), or indirect effects may occur 
due to SAMHD1 modulation of inflammatory pathways. It is 
plausible that suppression of latency reactivation by SAMHD1 
would further prevent activation of the innate antiviral response. 
Although viral nucleic acids can be sensed by IFI16 or cGAS in 
the absence of SAMHD1 (24, 105), whether other pro-inflam-
matory pathways are affected by SAMHD1 expression remains  
unknown.

Discovering the mechanisms used by HIV-1 to avoid innate 
immune sensors is critical for the design of new therapies to 
eradicate HIV-1 infection. Therapeutic strategies aiming to 
inhi bit host factors that promote HIV-1 replication and to stimu-
late the immune response could diminish viral infection and  
transmission. Current work aims to determine whether a role 
exists for drugs targeting SAMHD1. Expression of SAMHD1 can 
increase the susceptibility of HIV-1 to nucleoside reverse tran-
scriptase inhibitors by reducing the levels of competitive dNTPs 
(106–109), suggesting modulation of SAMHD1 function may be 
a means to enhance drug effectiveness. Conversely, as SAMHD1 
expression enables immune evasion by HIV-1 (13), it is tempting 
to hypothesize that SAMHD1 could be used as a drug target to 

enhance the innate immune response to viral infection. However, 
research is just beginning to uncover mechanisms to modify the 
dNTPase activity of SAMHD1 (110, 111). Importantly, as an ISG 
and a negative regulator of the innate immune system, SAMHD1 
may be involved in an unknown negative feedback loop aimed 
at modulating the complex and delicate system of inflammatory 
pathways.

The effect of SAMHD1 on IFN-I induction during viral infec-
tion should be further studied in vivo. Although initial robust 
IFN-I responses can lead to an upregulation of antiviral genes 
and a block in infection, chronic immune hyperactivity could 
lead to desensitization of IFN-I and an eventual suppression of 
antiviral gene expression. This phenotype was observed when 
Sandler et al. manipulated the IFN-α2a response to SIV infec-
tion in rhesus macaques (112). The dismantling of the antiviral 
state after long-term IFN-α2a treatment led to an increase in 
SIV reservoir size and an accelerated CD4+ T-cell loss (112). 
Studies are necessary to determine whether stimulation of the 
IFN-I response through inhibition of SAMHD1 function leads to 
chronic inflammation and progression to AIDS in vivo.

COnCLUSiOn

The identification of SAMHD1 as a regulator of the innate 
immune response to viral infection has led to the development 
of an exciting field of research. The structural and functional 
studies of SAMHD1 connect the physiology of HIV-1 infection 
to the innate antiviral response and the dynamic regulatory 
mechanisms in cells. Further work will aid in the development 
of stratagems to enhance the antiviral effects of the intrinsic 
immune system.
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