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Over the past decade the use of long-lasting insecticidal nets (LLINs), in combination with improved drug therapies, indoor

residual spraying (IRS), and better health infrastructure, has helped reduce malaria in many African countries for the first time in a

generation. However, insecticide resistance in the vector is an evolving threat to these gains. We review emerging and historical

data on behavioral resistance in response to LLINs and IRS. Overall the current literature suggests behavioral and species changes

may be emerging, but the data are sparse and, at times unconvincing. However, preliminary modeling has demonstrated that

behavioral resistance could have significant impacts on the effectiveness of malaria control. We propose seven recommendations

to improve understanding of resistance in malaria vectors. Determining the public health impact of physiological and behavioral

insecticide resistance is an urgent priority if we are to maintain the significant gains made in reducing malaria morbidity and

mortality.

KEY WORDS: Anopheles, indoor residual spraying, insecticidal nets, resistance.

1 2 1 8
C© 2013 The Author(s). Evolution C© 2013 The Society for the Study of Evolution.
Evolution 67-4: 1218–1230
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Long-lasting insecticidal nets (LLINs) and indoor residual spray-

ing (IRS) are currently the key components of vector manage-

ment strategies used for the control of malaria (Roll Back Malaria

Partnership 2005). Over the past decade the use of LLINs, in

combination with improved drug therapies, IRS, and better health

infrastructure, has helped reduce malaria in many African coun-

tries for the first time in a generation (O’Meara et al. 2010; World

Health Organization 2010). Malaria mortality has declined since

2000 by 25% globally and 33% in sub-Saharan Africa (World

Health Organization 2011a). These remarkable successes have

created unprecedented optimism about reaching the malaria re-

duction targets outlined in the Global Malaria Action Plan (Roll

Back Malaria Partnership 2008) and, ultimately, for the local

elimination of malaria; however, there is a growing threat to these

gains in the form of insecticide resistance.

Evolution of resistance to the chemotherapeutic is a common

outcome of effective (and ineffective) vector or parasite control

programs. Although this is often viewed as a failure of the pro-

gram, it is better regarded as an almost inevitable consequence

because history has repeatedly shown that intensive interventions

lead to the emergence of physiological (biochemical) resistance

due to the high selective pressure exerted on the targeted pop-

ulation. The emergence of resistance in the vector has not only

developed against all four classes of insecticide licensed to con-

trol adult mosquitoes for public health purposes (World Health

Organization 1970; Ranson et al. 2011), but also in the malaria

pathogen against the most widely used antimalarials, starting with

chloroquine, the standard drug of treatment during the Global

Malaria Eradication Campaign (GMEC) (Najera 1999). Indeed,

resistance was one of the reasons cited for ending the GMEC

in the late 1960s (Najera 1999). At that time resistance to DDT

had developed in 14 anopheline species. The recent emergence

of artemisinin drug resistance in South East Asia (World Health

Organization 2011b; Phyo et al. 2012) makes clear that this is not

simply a problem of the past, nor one confined to insecticides.

The finding of widespread physiological resistance to

pyrethroids in Anopheles gambiae, the major vector of malaria

in Africa (Ranson et al. 2011), is a major public health concern

because pyrethroids are the only insecticides currently used for

treating bed nets. Results from experimental hut studies in West

Africa demonstrate a marked reduction in mosquito mortality in

areas with high levels of physiological resistance (N’Guessan et

al. 2007). Of course, in the absence of effective chemical con-

trol, intact bed nets still provide barrier protection against biting

mosquitoes (Snow et al. 1988; Clarke et al. 2001); however, nets

become worn and it is likely that torn or holed treated nets provide

inadequate protection in areas where pyrethroid-resistant vectors

are common (N’Guessan et al. 2007; Irish et al. 2008). This has

recently been confirmed in studies at the same locations as the

experimental hut trial (Asidi et al. 2012). In households in the

areas where resistant mosquitoes were common there were high

rates of blood feeding and freshly treated nets provided no protec-

tion once holed. In contrast, sleeping under a holed bed net in the

location where susceptible mosquitoes were common decreased

the odds of being bitten by 66% and the majority of mosquitoes

were killed by the treatment.

At present there are 40 malaria-endemic countries report-

ing resistance to insecticides, most to pyrethroids (WHO Global

Malaria Programme 2012). Multiple insecticide resistance is also

common, with some regions having resistance to all four insecti-

cide classes used in public health (Ranson et al. 2009). Although

evidence is currently lacking that this level of resistance is im-

peding malaria control, most experts expect that current vector

control efforts will soon be compromised unless strategies are

implemented to manage the resistant vectors. It is estimated that

more than half of the benefits gained from the current coverage

of LLINs and IRS in Africa would be lost if pyrethroids lose their

efficacy, resulting in approximately 120,000 additional deaths per

year (WHO Global Malaria Programme 2012).

As a consequence of this growing threat, the World Health

Organization Global Malaria Programme have published a Global

Plan for Insecticide Resistance Management (GPIRM) (WHO

Global Malaria Programme 2012). This strategy focuses solely

on physiological resistance in malaria vectors. However, it is

likely that behavioral resistance may also develop in response

to insecticide exposure. Furthermore, how the behavior of phys-

iologically resistant vectors might differ in comparison to their

sensitive counterparts is very poorly known.

Behavioral resistance refers to any modification to mosquito

behavior that facilitates avoidance or circumvention of insecti-

cides. The contribution of behavioral changes in agricultural pests

to insecticide/pesticide resistance has been long acknowledged

(Sparks et al. 1989; Gould 2010), with theoretical studies pro-

viding valuable information to inform and improve management

practices (Gould 1984; Castillo-Chavez et al. 1988). In compari-

son, determining if behavioral adaption in vectors may be of med-

ical importance has lagged behind. Perhaps the best-documented

behavioral change in malaria vectors, and the biggest concern, is

the development of an early, outdoor feeding phenotype among

anopheline populations in areas of extensive indoor insecticide

use. These mosquitoes may circumvent LLIN and IRS control

through preferential feeding and resting outside human homes

and being active earlier in the evening before people have gone to

sleep. In addition, there are a variety of other changes in vector

behavior such as increased zoophagy that may evolve in response

to intensive interventions. Part of the reason for the lack of infor-

mation about behavioral resistance is that it is harder to investigate

using relatively simple exposure assays, and far more difficult to

monitor in field populations, compared to physiological resistance

(Takken 2002; Ferguson et al. 2010).
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Both physiological and behavioral resistance to insecticides

may be determined by a limited number of major genes or

be affected by a relatively large number of genes of small ef-

fect. The genetic basis of resistance affects the dynamics of

spread as well as the ease with which molecular markers of re-

sistance can be developed. Phenotypes caused by single gene

mutations generally demonstrate an exponential increase in fre-

quency, where much of the initial stage of spread occurs at

very low, near-undetectable gene frequencies, prior to a period

of rapid amplification to high frequencies. In contrast, pheno-

types based on standing genetic variation in many genes typ-

ically have a different dynamic: their spread is generally de-

scribed by an immediate and sustained change in their phenotypic

distributions.

One cannot predict a priori which model will apply to a

specific trait. Physiological resistance may occur through sin-

gle mutations, for example, "knock-down resistance" (kdr) in the

sodium channel protein targeted by pyrethroids, but may also arise

through altered levels of detoxifying enzymes such as P450s and

esterases, whose expression levels may well be modulated by vari-

ation in many genes, making it a quantitative genetic trait (Ranson

et al. 2004; Wondji et al. 2009). Similarly, behavioral changes are

often regarded as complex, quantitative genetic traits but there are

instances of a single gene mutation in insects having large effects

on behavior. For example, polymorphisms in the phosphoglucose

isomerase (pgi) gene are associated with differences in butterfly

dispersal rates as well as other phenotypic traits (Niitepold et

al. 2009), while major mutations in some Drosophila circadian

rhythm genes can affect their daily behavior cycles (reviewed in

Sokolowski 2001). Another possible example is single gene mu-

tations encoding physiological insecticide resistance, which also

appear to change behavior through pleiotropic action that alters

repellency (see later discussion). An important research gap is

therefore a detailed understanding of the likely genetic basis of

specific behavioral resistance traits, and how surveillance pro-

grams should be implemented to best monitor changes in these

traits.

Here we review emerging and historical data on behavioral

resistance in response to LLINs and IRS in an effort to under-

stand better the biology underlying the field observations and

highlight areas in need of further research. The data reviewed

specifically focus on the Anopheles vectors of malaria, with an

emphasis on sub-Saharan African species where much of the be-

havioral research has been conducted. The predominant species

are A. gambiae sensu lato and A. funestus. Anopheles gambiae

s.l. is a species complex consisting of several closely related sib-

ling species including A. gambiae sensu stricto, A. arabiensis,

A. melas, A. merus, A. quadriannulatus Species A, A. quadri-

annulatus Species B, and A. bwambae. There are a number of

secondary vectors contributing to malaria transmission in sub-

Saharan Africa, which we do not consider (Antonio-Nkondjio

et al. 2006).

Evidence for Impact of Indoor
Insecticides on Mosquitoes
VECTOR ABUNDANCE

The insecticides used for LLINs and IRS exert their effect on

the vector population in three ways: toxic chemical action, spa-

tial repellecy/deterrency, and contact irritancy (Box 1) (Smith and

Webley 1968; Lines et al. 1987; Takken 2002). The relative im-

portance of each of these in determining how an insecticide works

is dependent not only on the chemical and concentration used, but

also on the mosquito species (Dezulueta et al. 1963; Grieco et al.

2007; Chareonviriyaphap 2012) and the application methods (e.g.,

IRS vs. LLINs). The nontoxic chemical effects are highly relevant

when assessing the impact of physiological resistance because it

is the interaction between toxicity and behavior that determines

the level of insecticide uptake and ultimately the probability that

the insect dies.

Data collected from experimental hut studies indicate that

bed nets treated with pyrethroids and walls sprayed with DDT

dramatically increase the rate at which African mosquitoes leave

huts and reduce the number of blood-fed mosquitoes compared to

untreated controls (Lines et al. 1987; Asidi et al. 2005; Chandre et

al. 2010). This outcome suggests that these chemicals are contact

irritants.

Box 1: Definitions.
Anthrophagy: species that feed on humans mainly.

Contact irritant: a chemical that stimulates mosquitoes to

move away from the source after physical contact occurs.

Endophagy: species that have a preference to feed indoors.

Endophily: an inherent tendency to rest indoors after feeding

(mosquitoes may feed indoors or outdoors).

Exophagy: species that have a preference to feed outdoors

mainly.

Exophily: species that have a preference to rest outdoors

mainly.

Spatial repellent/deterrent: a chemical that stimulates

mosquitoes to move away from the source without the

need for physical contact.

Toxic chemical action: knockdown or death of mosquitoes

after physical contact with the chemical.

Vectorial capacity: the total number of infectious mosquito

bites on humans that will arise from a single infected

person on a single day.

Zoophagy: species that feed on animals mainly.
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The evidence for spatial repellency, where mosquitoes are

deterred from entering the house, is equivocal for treated nets,

with some studies finding no reduction in the rate of entry (Kirby

et al. 2008; Malima et al. 2008; Chandre et al. 2010; N’Guessan

et al. 2010) while others reported significant decreases (Lines et

al. 1987; Lindsay et al. 1991a; Asidi et al. 2005). In less con-

trolled settings, short-term use of treated nets did not appear to

impact the number of A. gambiae s.l. entering houses (Mathenge

et al. 2001), but instead acted as a contact irritant that increased

exit rates, particularly of unfed mosquitoes, resulting in fewer

mosquitoes resting indoors (Quinones et al. 1998; Mathenge et

al. 2001; Akogbeto et al. 2011). Studies with IRS employing

DDT suggested that the compound had some spatial repellence

that may reduce mosquito entry into the house (Dezulueta et al.

1963; Smith and Webley 1968; Roberts et al. 2000). The level

of deterrence reported for some experimental hut trials based on

the number of mosquitoes collected indoors is sometimes con-

founded by the fact that mosquitoes entering the hut can leave by

the same opening. This means that unless mosquito movements

are carefully recorded through all openings, reductions in the rate

of entry cannot be distinguished from unrecorded or higher rates

of departure (Silver 2008).

Whatever the precise mechanism, the large-scale use of

LLINs or IRS frequently results in a major reduction in the

abundance of vectors, often referred to as the "mass commu-

nity effect" (Hawley et al. 2003). This effect is the basis for the

universal coverage advocated by Roll Back Malaria where the

goal is that 80% of people at risk from malaria are protected

by vector control methods, primarily LLINs and IRS (Roll Back

Malaria Partnership 2005). Community surveys comparing vil-

lages with and without LLINs, or changes pre- and postinter-

vention show decreased abundance of indoor resting mosquitoes

(Mbogo et al. 1996; Lindblade et al. 2006; Bayoh et al. 2010),

feeding mosquitoes (Trape et al. 2011), and larvae (Bayoh et al.

2010).

MOSQUITO BEHAVIOR

There are a number of possible impacts that insecticide use indoors

could have on mosquito behavior including changes in biting phe-

nology and the frequency of endophagy. All anopheline vector

species predominantly feed at night. One of the consequences of

large-scale indoor insecticide use is the potential selection for vec-

tors that feed on people earlier in the night while they are outdoors.

Exophily was one of the reasons cited for why IRS (when used in

isolation) failed to reduce malaria parasite rates substantially in

the Garki project in northern Nigeria (Molineaux and Gramiccia

1980). Here large-scale use of IRS with propoxur, a carbamate

insecticide, in an area of high transmission (entomological inoc-

ulation rate [EIR] = 18–145 sporozoite-positive bites per person

each year) resulted in a 90% reduction in vectorial capacity, but
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Figure 1. Distribution of biting times for Anopheles arabiensis

after 40 years of DDT IRS in northern Ethiopia (Yohannes et al.

2005) and after 8 years of DDT IRS in northern Sudan (Dukeen and

Omer 1986).

only reduced the parasite prevalence for Plasmodium falciparum

by 25% (the major vector was A. gambiae s.l.).

Anopheles arabiensis populations show a wide range of peak

biting times at different sites (Mattingly 1949; Dukeen and Omer

1986; Braack et al. 1994; Fontenille et al. 1997b; Lemasson et

al. 1997; Yohannes et al. 2005; Yohannes and Boelee 2012), with

some of this variation being explained by season (Tirados et al.

2006). One possible explanation for the remaining variation is

that peak biting times may reflect the historical use of insecti-

cides. Most interventions against this vector have involved IRS,

which kills endophilic but not exophilic mosquitoes. Exophilic

mosquitoes that are strongly anthropophagic need to feed early

in the evening when humans are readily available outdoors. DDT

has been used for IRS in Ethiopia for the last 40 years and there

is some evidence in this country for increase exophily (Fig. 1)

(Biscoe et al. 2005; Yohannes et al. 2005; Tirados et al. 2006;

Yohannes and Boelee 2012). A clearer example of selection for

early feeding comes from extensive indoor spraying of DDT to

control A. farauti in the Solomon Islands (Taylor 1975). Prior to

IRS the peak biting time for A. farauti was early evening, declin-

ing gradually until early morning. After extensive IRS the biting

activity in the late evening and early morning almost disappeared,

with most occurring in the early evening (Fig. 2). Although these

examples demonstrate clear shifts in biting behavior, this response

to indoor spraying has not been found everywhere. For example,

in northern Sudan where indoor DDT spraying had been used

for the 8 years, an entomological survey found "standard" biting

cycle persisted in A. arabiensis (Fig. 1) (Dukeen and Omer 1986).

There are also mixed reports of the evolution of behav-

ior in response to bed net deployment. Increased exophagy by
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Figure 2. Distribution of biting times for Anopheles farauti before and after DDT spraying in the Solomon Islands (Taylor 1975).

A. gambiae s.l. in response to LLIN use has been reported in

Kenya (Mbogo et al. 1996) but not Tanzania (Russell et al. 2011),

while A. funestus exophagy increased significantly in Tanzania

(Russell et al. 2011). Inside houses, the proportion of A. gam-

biae s.l. and A. funestus feeding before 2200 h increased, though

peak biting still occurred after midnight (Mbogo et al. 1996; Rus-

sell et al. 2011; Trape et al. 2011). In addition, the proportion

of early feeding mosquitoes increased following the introduction

of LLINs, yet the absolute number of mosquitoes feeding during

this time was generally less. This suggests that the observations

may have resulted from failure to control a smaller population

of residual mosquitoes that continued to bite earlier in the night.

It should also be noted that the changes reported for A. gambiae

s.l. do not account for any potential shifts in species composi-

tion within the complex. That is, the apparent behavioral changes

could simply reflect effective control of a later-feeding member

of the complex so that a previously less abundant species that

feeds earlier in the night becomes relatively more dominant. In

spite of these inconsistencies, the limited data available highlight

the importance of monitoring for these behavioral changes in a

range of settings, using a robust experimental and/or observational

approach.

The difficulty and expense of accurately measuring mosquito

behavior in the field has also limited the documentation and
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understanding of behavioral resistance. In one study, Mbogo

et al. (1996) reported a reduction in the overall human biting

rate from 95 to 34 bites per night, and an increase in the propor-

tion of mosquitoes feeding outdoors from 1.2% to 30.3% follow-

ing the introduction of LLINs. In the control village the biting

rate remained constant at about five bites per person per night

over the intervention period, and the proportion feeding outdoors

increased from 2.7% to 20.3%. These results are difficult to inter-

pret and extrapolate as sampling preintervention was conducted in

five intervention and four control zones, whereas postintervention

sampling was only conducted in one intervention and one control

village. Data collected by pyrethrum spray collections from all the

villages in the study indicated significant variations between sites

meaning the pre- and postintervention data may not be directly

comparable.

Results presented by Russell et al. (2011) are equally difficult

to interpret. Their study used data from three field collections in

Tanzania conducted (1) prior to the introduction of LLINs (1997),

(2) after 75% of the community used untreated nets (2004), and

(3) after 47% of the population used LLINs (2009) (Russell et

al. 2011). No estimate of the overall biting rate is presented.

However, graphical data suggest there is little difference in the

overall biting rate between 2004 and 2009 for A. gambiae s.l.,

whereas biting rates for A. funestus are higher in 2009 compared

to 2004. Compelling data are presented for decreasing endophagy

rates for A. funestus over the time series, but not A. gambiae s.l.,

and a decreasing proportion of mosquitoes attempting to feed

between 2100 h and 0500 h in both species (Russell et al. 2011).

Interestingly, the trend for decreasing night feeding was consistent

across the sample period, even though the coverage of LLINs

only significantly increased in the second part of the time series,

between 2004 and 2009.

CHANGES IN VECTOR DOMINANCE

In parts of Africa the massive scale-up of LLIN deployment is

associated with an apparent shift in vector dominance from the

highly endophilic A. gambiae s.s. to the more exophilic A. ara-

biensis. This is seen in western and southern Kenya (Lindblade

et al. 2006; Bayoh et al. 2010; Mutuku et al. 2011; Zhou et al.

2011) and Tanzania (Russell et al. 2011), but not Senegal (Trape

et al. 2011). Recent data from western Kenya show an unex-

plained resurgence in A. gambiae s.s. during 2010 (Zhou et al.

2011). Species composition changes are also reported in coastal

Kenya with significantly less A. gambiae s.s and more A. merus

in intervention compared to nonintervention areas (Mbogo et al.

1996). However, as no preintervention data are presented, it is

not possible to infer whether this difference is a result of an

insecticide-induced change in species composition, or a differ-

ence in the initial species composition at the study sites. The

change in species composition of adult mosquitoes at some sites

is mirrored in the corresponding larval populations (Mutuku et al.

2011).

Analysis of data collected at Lupiro village, Tanzania begin-

ning in 2002 shows a significant reduction in the relative pro-

portion of A. gambiae s.s. compared to A. arabiensis over time

leading the authors to conclude that high LLIN usage has dra-

matically altered the mosquito populations (Russell et al. 2011).

However, closer examination of the data sources reveals a num-

ber of potentially confounding factors. For instance, the studies

use a variety of collection methods including CDC light traps,

human landing catches, resting collections, and “Ifakara traps,”

and some report data from indoor collections only whereas others

represent both indoor and outdoor collections. Also the studies

are conducted at different times of the year relative to the wet

and dry season, a factor known to differentially affect the abun-

dance, feeding, and resting behavior of the vectors (Wanji et al.

2003; Cano et al. 2004; Koenraadt et al. 2004; Mutuku et al. 2011;

Reddy et al. 2011; Trape et al. 2011). Unfortunately, several stud-

ies did not report when the collection was conducted, and the dry

season collections tended to be clustered later in the study period

confounding the interpretation of LLIN impact. Large variations

(range: 4–96%) in the proportion of A. gambiae s.s. between

sample clusters were also reported in at least one of the studies

included in the analysis (Killeen et al. 2007), demonstrating the

extreme variability in the ratio of A. gambiae s.s. to A. arabiensis

in the village.

The above example highlights the complexity of assessing

the exact impact of LLINs due to the background variability in

the vector populations. Indeed, a substantial decline in vector

numbers in the Tanga region of Tanzania where vector control

has not been used on a large scale was reported between 1998

and 2009 (Meyrowitsch et al. 2011), highlighting the variability

of malaria vector abundance. Relative species composition also

varies greatly over time in natural populations as demonstrated by

the unexplained change in dominant species from A. funestus to

A. arabiensis between 1992 and 1995 in Dielmo village Senegal

(Fontenille et al. 1997aa), and the strong seasonal relationship

between the relative abundance of A. gambiae s.s. and A. arabi-

ensis (Highton et al. 1979; Lindsay et al. 1991b; Dia et al. 2005;

Oyewole et al. 2007; Trape et al. 2011).

In one series of experimental hut trials A gambiae s.s. was

controlled more readily by LLINs than A. arabiensis despite hav-

ing similar sensitivity to pyrethroid (Kitau et al. 2012). It is pos-

tulated that this differential mortality may be attributable to the

more zoophilic A. arabiensis being less persistent in its attempts to

bite the human host through the net than the more anthropophilic

A. gambiae. Whatever the reason, the differential mortality pro-

vides one explanation for the possible shift in species ratio from

A. gambiae s.s to A. arabiensis in areas with high coverage of

LLINs.
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Whether the propensity for outdoor biting by individuals of a

given species is increasing or there is merely a residual population

of outdoor-biting vectors is debatable, but the consequences of this

change are important. Outdoor biting is difficult to counter with

available control methods. Larval source management, spatial

repellents, transgenic mosquitoes, and attractive toxic sugar bait

could be used or developed for malaria control, but are either

difficult to scale-up in all locations or are tools that will need

much more research before they can be successfully deployed.

The development of these, as well as new tools targeting outdoor-

feeding mosquitoes is an urgent priority.

What are the Population Dynamic
Consequences of the Continued
Use of LLINs and IRS?
Changes in vector abundance and species dominance are linked

to processes affecting mosquito population dynamics. The ob-

served abundance of mosquitoes is determined by the interaction

of density-independent and density-dependent processes affect-

ing mosquito survival and fecundity. The nature and action of

the density-dependent processes is particularly critical as it sets

the mean abundance about which populations fluctuate. We still

know relatively little about A. gambiae s.l. population dynamics

but most vector biologists believe that the most important density-

dependent process involves competition amongst mosquito larvae

for food (Smith and McKenzie 2004). A few studies that have

manipulated larval densities in seminatural breeding sites show

mortality increases relatively linearly with density (Gimnig et al.

2002; White et al. 2011). Understanding the location of density

dependence in the mosquito life cycle relative to where insecti-

cides act, as well as the shape of the mortality-density function, is

important as it determines the degree to which insecticide deaths

are compensated for by reduced density-dependent mortality; that

is, it determines the impact of insecticide on vector population

density (Hancock and Godfray 2007).

Reductions in mosquito abundance can have two further ef-

fects on disease transmission mediated through density depen-

dence. There is evidence that lower larval densities increase sur-

vival, increase adult size, and lower development rate. As Lyimo

and Koella (Lyimo and Koella 1992) among others has pointed

out, increased size may be particularly pertinent to disease trans-

mission if larger individuals live longer and so are more likely

to survive through the disease latent period. Longitudinal surveil-

lance data of mosquito size during an LLIN or IRS intervention

would address this question, as would more data about the re-

lationship between larval density and adult size, and adult size

and longevity, in the field. Second, we know that the larval habi-

tats for different members of the A. gambiae complex differ but

overlap (Service 1973; Schneider et al. 2000). We do not know

if these differences reflect adaptations to different niches or if

different taxa compete with one excluding the other. If the latter

is the case, then reducing the number of one type of mosquito

may lead to competitive release of another. If the two mosquito

taxa have different degrees of exophily/endophily then the ratio

of mosquitoes feeding indoors or outdoors may change through

interspecific population-dynamic processes.

Finally, the evolution of resistance typically entails fitness

costs to the mosquito, which are most likely to be manifest when

the insect is stressed, in particular when it is subject to density-

dependent mortality (Kraaijeveld and Godfray 1997). We do not

know the extent to which this happens, or indeed if it happens at

all, but it is quite likely that the demographic and genetic dynamics

of vectors are closely intertwined.

How Concerned Should We Be
About the Future Effectiveness of
LLINs and IRS?
The key to the prolonged future success of LLINs and IRS is

to understand the biological mechanisms underlying the changes

being observed in the field. One possibility is that insecticide in-

terventions are selecting for a heritable trait, that is, vectors that

are genetically programmed to feed early outdoors. In this situa-

tion the effectiveness of LLINs in reducing malaria infection rates

will decrease over time as the susceptible, indoor-feeding vectors

are removed from the population, leaving predominantly the early

outdoor feeders. There is clear evidence for a genetic basis for be-

havioral differences as the two closely related species A. gambiae

and A. arabiensis often broadly differ in their feeding preferences

and propensity to rest indoors or outdoors. In contrast, there are

limited data on the role of genetics in behavioral polymorphisms

within a species. It has been reported that there is an association

between the 2R inversion polymorphism on chromosome 2 and

differential endophily and endophagy in A. arabiensis (Coluzzi

et al. 1977), but also that the preference of individual mosquitoes

for a given resting location (indoor vs. outdoor) is not consistent

(Lines et al. 1986), and that A. arabiensis shows site fidelity (re-

turning to location of feeding) rather than host fidelity (McCall et

al. 2001). It has also been suggested that feeding preferences for

A. gambiae are related to the abundance of potential host species;

in environments where there are many people the proportion of

human blood-fed mosquitoes was high, but decreased when cattle

were abundant (White 1974). However, the sporozoite rates were

similar for mosquitoes, which were human blood-fed and cattle

blood-fed, suggesting that the feeding preferences of A. gambiae

s.s. are plastic (White et al. 1972). This overall plasticity in behav-

ior allows continued mosquito survival when host species vary in

abundance.
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An alternative hypothesis, and one which presents a more

promising outlook for LLINs, is that early outdoor feeding is

a consequence of unsuccessful feeding on the prior evening.

In this scenario, mosquitoes retain their inherent feeding pref-

erences (e.g., location, host, and time) and in ideal situations

will feed according to these preferences. With widespread LLIN

coverage mosquitoes may not successfully feed indoors, being

thwarted by the net barrier or repelled by the insecticide from

the dwelling. Some of these mosquitoes may succeed in their

search for a blood meal elsewhere, whereas others rest out-

doors until the following evening at which time they recommence

their search. These vectors may initiate their search soon after

dusk and feed opportunistically on any outdoor hosts they en-

counter en route to a more preferred indoor feeding location.

Under this hypothesis LLINs will continue to be effective as

populations of indoor feeding mosquitoes will be retained, al-

beit with declining abundance caused by direct killing or in-

creased mortality associated with delayed and nonoptimal feeding

conditions.

Direct evidence supporting such a thwarted feeding theory

is limited, although a similar model has been proposed to explain

changes in mosquito host-seeking activities after IRS of houses

with DDT (Roberts et al. 2000). Under this hypothesis the pro-

portion of mosquitoes feeding early in the evening should be cor-

related with the probability of obtaining a blood meal; the lower

the probability of finding the preferred late-evening blood meal,

the more mosquitoes that feed early in the evening. Searching

for new hosts (either human or animal), feeding on nonpreferred

hosts and finding less suitable resting sites are all likely to be

associated with increased mortality due to foraging risk, thus in-

creasing the indirect impact of LLINs on mosquito survival and

disease transmission. Previous modeling results have indicated

that endemic disease transmission is highly sensitive to changes

in mosquito survival during searching or feeding (Saul 2003). It is

becoming increasingly clear that interventions such as LLINs and

IRS are associated with dramatic reductions in malaria, which of-

ten exceed that expected based on measured changes in mosquito

abundance alone (Trape et al. 2011). Thus unobserved secondary

impacts, other than direct mosquito killing through toxicity, are

likely to be occurring.

A critical appraisal and understanding of the biology underly-

ing field observations is urgently needed to address the questions

surrounding the longer term prospects of current interventions and

assess potential new interventions. We need to be cautious about

inferring selection of new behavior patterns when mosquitoes

show an inherent plasticity in feeding when frustrated in access-

ing their hosts. Overall the current literature suggests behavioral

and species changes due to LLINs may be emerging, but the data

are sparse and, at times unconvincing and liable to publication

bias, highlighting the need for greater research effort in this area.

Only when these issues are better resolved can the future impacts

of LLINs be fully predicted.

Modeling studies provide an important way of investigat-

ing the impact that physiological and behavioral resistance could

have on disease prevalence; however, such studies are currently

limited by a lack of understanding of the biological processes af-

fecting insecticide resistance, particularly behavioral resistance.

Theoretical predictions of the impact of IRS demonstrated over

30 years ago that model output is highly sensitive to assumptions

regarding the uniformity of mosquito exposure to the insecticide

(Molineaux et al. 1979), but there has been little advance in under-

standing the baseline distribution of exposure and if (or how) this

changes following insecticide exposure. Resolving these issues

will lead to improved models and better information for policy

and control programs. Public health officials would then be able

to address the key questions of whether resistance will compro-

mise the long-term effectiveness of LLINs and IRS and how best

to combat the problem.

To demonstrate the potential of mathematical models for

investigating behavioral resistance we have selected one behav-

ioral parameter, exophagy, and investigated its influence on the

effectiveness of LLINS and IRS using two different comprehen-

sive malaria transmission models (Smith et al. 2008; Griffin et

al. 2010; Chitnis et al. 2012; OpenMalaria 2012) (see Box 2).

Importantly, both models reach the same conclusion; that the im-

pact of increased exophagy on EIR could be significant and of a

magnitude comparable to, or exceeding, physiological resistance.

There were also large differences in the predicted impact of resis-

tance, particularly behavioral resistance, depending on the model

assumptions regarding the structure of the mosquito population,

specifically whether there is one homogenously mixed population

or distinct populations of indoor and outdoor feeding mosquitoes.

This preliminary modeling work highlights the importance of un-

derstanding mosquito behavior.

Box 2: Modeling insecticide resistance and its impact on a
combined LLN–IRS intervention.
The potential impact of insecticide resistance, both behavioral

and physiological, on malaria transmission was assessed us-

ing two independent mathematical models: Imperial (Griffin

et al. 2010) and OpenMalaria (Smith et al. 2008; Chitnis et al.

2012; OpenMalaria 2012). Both models incorporated the full

malaria transmission cycle by including the mosquito life cycle

as well as the human disease component. Three independent

simulations were conducted using each model; (1) baseline

simulation where 80% of the population used LLINs, which

were replaced every 3 years and pyrethroid IRS treatment

was applied every year to 80% of houses (both distributed at

random), (2) physiological resistance where the interventions

were the same as the baseline simulation but the effects of the
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insecticide (both killing and repellency) were reduced by 70%

(though the physical effects of the nets remained the same),

and (3) behavioral resistance where the interventions were the

same as the baseline simulation but exophagy of the vectors

was increased so that 70% of bites take place outside, with

all other parameters kept constant. The two models assumed

extremes of mosquito biting behavior; the Imperial model as-

sumed only one population of mosquitoes that sometimes bit

outdoors and sometimes indoors, whereas the OpenMalaria

model assumed two populations of mosquitoes that either al-

ways bit indoors or always outdoors (Molineaux et al. 1979).

All simulations assumed a half-life of 3 months for pyrethroid

effectiveness with an exponential decay. The models were pa-

rameterized for An. gambiae s.s. with no seasonality. All other

baseline parameters were as previously reported for the indi-

vidual models: Imperial (Griffin et al. 2010) and OpenMalaria

(Briët et al. 2012).

All simulations were calibrated so that the average EIR was

100 infectious bites per person per year prior to the introduc-

tion of the LLINs and IRS interventions. To investigate the

impact of insecticide resistance (rather than the spread), it was

assumed that the physiological or behavioral resistance was

present when the interventions were introduced.

Ten years after the start of the interventions the average EIR

in both models decreased by approximately 90% to 6.1 and

12.0 infectious bites per person per year using the Imperial

model and the OpenMalaria model, respectively (Fig. 3). As

expected, the presence of physiological resistance reduced the

impact of the interventions. Increased exophagy in the behav-

ioral resistance simulations also decreased the effectiveness

of the interventions; with the EIR predictions over 10 years

after the start of the vector control being similar to, or higher

than, those predicted for physiological resistance (Fig. 3). This

suggests that the impacts of behavioral resistance could poten-

tially be as severe, or even worse than, those of physiological

resistance.

Is It All Bad News?
Causing vectors to feed more often outdoors may actually rep-

resent new opportunities for control. Blood-feeding vectors can

be captured in odor-baited traps (Okumu et al. 2010), killed by

insecticide-treated cattle (Rowland et al. 2001), or after feeding

on attractive toxic sugar bait (Muller et al. 2010), whereas gravid

females might be targeted if we can develop effective oviposition

traps (Harris et al. 2011). It is essential that new tools continue

to be developed targeting outdoor-feeding mosquitoes, as their

relative contribution to disease transmission will increase under
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Figure 3. Predicted average EIR for the first 10 years of vector

control (LLINs and IRS) using two mathematical models (Imperial

and OpenMalaria) of malaria transmission.

successful LLINS and IRS campaigns. Behavioral changes favor-

ing outdoor feeding and resting will also reduce vector exposure

to insecticides inside the home, thereby reducing the selection

pressure for physiological resistance.

The overall epidemiological effects of physiological insecti-

cide resistance are not easy to estimate because the impact of an

insecticide on individual mosquitoes is not only affected by geno-

type, but also their age and environment. Insecticide resistance is

often strongest in young adults (Rowland and Hemingway 1987;

Lines and Nassor 1991). The use of LLINS and IRS results in few

mosquitoes surviving to be old enough to transmit malaria para-

sites so any (resistance) gene that increases survival during the first

one or two gonotrophic cycles will have a major positive selective

advantage. If as mosquitoes age the survival benefits of the gene

decrease, many resistant mosquitoes may die before reaching the

minimum infectious age. Hence malaria is still controllable, albeit

to a lesser extent than in a purely sensitive mosquito population.

A side effect of physiological resistance is often a reduction

in the behavioral responsiveness to the insecticide (Rowland 1990;

Hodjati and Curtis 1997). For example, in one study, pyrethroid

resistant mosquitoes show reduced irritability when in contact

with the insecticide causing them to rest on the surface for longer

periods than susceptible mosquitoes, thus increasing the dose of

insecticide received (Hodjati and Curtis 1997). In most cases the

effect of physiological resistance is unquantified and dependent

on the mechanism of resistance (Rivero et al. 2010). There has also

been a recent suggestion that insecticides may select for vectors

that invest in short-term reproduction rather than longer term sur-

vival, resulting in a reduction in the number of older mosquitoes

and a corresponding reduction in those able to transmit malaria

parasites (Ferguson et al. 2012). For these reasons the overall
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consequences of accrued physiological and behavioral changes

developed in response to the large-scale use of insecticides may

not necessarily all be negative.

The Way Forward
This review has highlighted a number of gaps in our knowledge

of behavioral resistance in the vectors, which transmit malaria;

conclusive evidence for the evolution of behavioral resistance

has often been confounded by methodological issues. However,

our preliminary modeling study has demonstrated that behavioral

resistance could have a significant impact on the effectiveness of

malaria control. As a result, we propose seven recommendations

to improve understanding of both physiological and behavioral

resistance in malaria vectors.

(1) Develop robust methodologies for detecting specific types of

behavioral resistance in the field.

(2) Establish sentinel sites for long-term surveillance of physio-

logical and behavioral resistance.

(3) Improve understanding of the variability in behavior of in-

dividuals within a larger population of vectors (i.e., natural

heterogeneity of population).

(4) Report absolute mosquito abundance for each species in field

studies, rather than reporting only proportional changes.

(5) Determine whether apparent cases of behavioral resistance

are due to heritable traits, and if so, develop diagnostic tests

or identify a measured phenotype.

(6) Better understand how physiological resistance may affect

behavior, and consequently vectorial capacity.

(7) Improve understanding of the behavior of male mosquitoes

relative to exposure to insecticides via IRS and LLINS.

Determining the public health impact of both behavioral and

physiological insecticide resistance is an urgent priority if we are

to maintain the significant gains that have been made in reducing

malaria morbidity and mortality over the past decade. Although

there is still much research needed to understand better the spec-

trum of changes induced by intensive insecticide use, two points

are paramount for future policy discussions. First, it must be re-

membered that interventions such as LLINs will provide some

level of personal protection by presenting a physical barrier be-

tween sleeping hosts and mosquitoes, irrespective of the level of

resistance, provided they remain in good condition. Therefore the

development of insecticide resistance should never be a justifica-

tion for removing or reducing the distribution of LLINs; rather, ad-

ditional or modified interventions should be considered. Second,

behavioral resistance cannot generally be addressed by simply

changing insecticides. Instead, novel interventions exploiting new

behavioral patterns are required. It is not unreasonable to recom-

mend that interventions targeting outdoor feeding mosquitoes be

the mandatory second phase of all intervention programs given the

probability that resistance will eventually develop. At the moment

this second phase is lacking from most intervention programs but

the time has come to correct this.
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