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Abstract
Digital biomarkers are defined as objective, quantifiable physiological and behavioral data that are collected and measured 
by means of digital devices. Their use has revolutionized clinical research by enabling high-frequency, longitudinal, and 
sensitive measurements. In the field of neurodegenerative diseases, an example of a digital biomarker-based technology is 
instrumental activities of daily living (iADL) digital medical application, a predictive biomarker of conversion from mild 
cognitive impairment (MCI) due to Alzheimer’s disease (AD) to dementia due to AD in individuals aged 55 + . Digital 
biomarkers show promise to transform clinical practice. Nevertheless, their use may be affected by variables such as demo-
graphics, genetics, and phenotype. Among these factors, sex is particularly important in Alzheimer’s, where men and women 
present with different symptoms and progression patterns that impact diagnosis. In this study, we explore sex differences in 
Altoida’s digital medical application in a sample of 568 subjects consisting of a clinical dataset (MCI and dementia due to 
AD) and a healthy population. We found that a biological sex-classifier, built on digital biomarker features captured using 
Altoida’s application, achieved a 75% ROC-AUC (receiver operating characteristic — area under curve) performance in 
predicting biological sex in healthy individuals, indicating significant differences in neurocognitive performance signatures 
between males and females. The performance dropped when we applied this classifier to more advanced stages on the AD 
continuum, including MCI and dementia, suggesting that sex differences might be disease-stage dependent. Our results 
indicate that neurocognitive performance signatures built on data from digital biomarker features are different between men 
and women. These results stress the need to integrate traditional approaches to dementia research with digital biomarker 
technologies and personalized medicine perspectives to achieve more precise predictive diagnostics, targeted prevention, 
and customized treatment of cognitive decline.
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Introduction

Digital biomarkers in personalized medicine

In the last two decades, biomarkers have been increas-
ingly utilized as measurable indicators of a subject’s state 
in clinical research and clinical practice [1, 2]. Advances 
in sensor technology and increasing omniscience of 
research-grade devices have paved the way for digital 
biomarker-based technologies to rise in prominence. The 
difference between traditional and digital biomarkers is 
that the latter are collected via digital devices and can 
be collected outside of traditional clinical settings. The 
digital devices collecting these biomarkers can include 
wearables, implantables, ingestible devices, and smart-
phones and tablets [3, 4]. Examples of digital biomark-
ers are objective consumer-grade data such as voice [5], 
temperature [6], activity [7], gait [8], blood oxygen [9], 
heart rate [10], touch [11], and augmented reality [12, 13], 
all collected via mobile and wearable technologies. As 
opposed to standard clinical measures, digital biomark-
ers enable high-frequency, longitudinal, and objective 
measurements, largely independent of the clinical rater. 
Digital biomarkers can continuously monitor patients to 
assess therapy response and disease progression without 
the need for clinical assessment [4, 14]. Moreover, they 
often exhibit higher sensitivity than traditional clinically 
used methods, enabling early predictive diagnostics by 
identifying patients at risk of overt clinical disease [15].

Applications in Alzheimer’s disease

Digital biomarkers can make significant contributions 
to the assessment and diagnosis of neurodegenerative 
diseases, specifically Alzheimer’s disease [16]. Alzhei-
mer’s disease (AD) is a lethal neurodegenerative disease, 
causing a progressive loss of neurocognitive functions, 
eventually leading to dementia and death. The underlying 
pathological changes start to occur in the brain as early 
as midlife with a long “silent” preclinical phase [17]. The 
accumulation of a toxic aggregated peptide, amyloid-beta 
(Aβ), in the brain is one of the hallmark biological indica-
tors of ongoing AD pathology [18]. The combination of 
MCI with Aβ is typically considered an early indicator of 
Alzheimer’s disease, i.e., prodromal AD [19]. Predictive 
diagnostics using AD biomarkers in the presymptomatic 
or oligosymptomatic (MCI) stage, followed by targeted 
preventions and treatment personalized to those individu-
als considered high risk, are increasingly considered to 
represent the best chance at successful AD management 
[20]. The importance of early diagnosis is recently being 

emphasized with the introduction of treatments targeted 
against AD pathophysiological hallmarks, such as aduca-
numab. Compared to traditional methods of detecting AD 
(e.g., neuropsychological testing, genetic testing, imaging 
[21]), digital biomarkers are particularly well suited for 
testing early stages of AD because they can detect subtle 
behavioral, cognitive, motor, and sensory changes in the 
early stages of AD.

Although digital biomarkers show great promise, it is 
essential to consider that multiple factors can affect bio-
marker state and their predictive value, including demo-
graphic, genetic, and phenotypic aspects. Among these fac-
tors, sex has emerged as a crucial factor in several disorders 
[16, 22] and notably in AD [23]. Considering such differ-
ences, it is vital to increase the predictive value of any set 
of biomarkers. For instance, stratification of data by sex has 
been shown to increase predictivity of a polygenic hazard 
score for AD [24]. Similarly, in the ABIDE (Alzheimer’s 
biomarkers in daily practice) study, which developed risk 
models for AD based on CSF biomarkers, models that strati-
fied the markers by sex were more predictive than those that 
did not [25].

Interactions between sex and digital biomarkers

Sex is progressively recognized as a crucial source of AD 
heterogeneity and a promising target for personalized care 
in AD. Considering sex in predictive diagnostics as well 
as targeted prevention and sex-specific considerations in 
clinical trials [26] enables better accuracy in diagnostic and 
prognostic stratification [24, 25, 27] and may precipitate 
more successful targeted AD drug development. A number 
of digital instruments that have proven able to help with 
diagnosis of AD or MCI are now available, a few examples 
being MemTrax [28], CNS Vital Signs [29], CANTAB-
PAL [30], and CAMCOG-CAT [31] (see [32] for a review). 
A recent promising example of a digital biomarker-based 
technology for early diagnosis of AD is Altoida Inc.’s digi-
tal medical application [33]. The company Altoida Inc. has 
developed an application, in research known as the Neuro-
Motor Index (NMI), which leverages a smartphone- or 
tablet-based activity battery using augmented reality (AR) 
and finger motor tasks to simulate activities of instrumen-
tal daily living (iADLs). From the digital biomarker data 
collected during these activities, the device uses artificial 
intelligence (AI) to help predict an individual’s conversion 
from MCI to dementia, including dementia due to AD. In 
Buegler 2020 [33], Altoida demonstrated that the device is 
capable of detecting conversion to AD with a 94% ROC-
AUC, which is comparable to or moderately better than 
traditional biomarker-based approaches [25]. Additionally, 
the tablet-based activity allows home use and eliminates 
invasive procedures such as lumbar puncture, which could 
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enable application of predictive diagnostics to larger groups 
of patients. In turn, it could allow for more wide-spread spe-
cific prevention in at-risk groups, ease of use in potential 
future clinical trials, and personalized application of future 
disease-modifying treatments. Digital approaches for pre-
vention might be envisioned as predictive algorithms that 
consider a number of variables, risk factors, and protective 
factors, on top of objective measures of brain function, to 
estimate risk and potential progression. It has been estimated 
that about 40% of dementias are caused by modifiable risk 
factors [34], emphasizing the importance of early prediction. 
If risk is identified, digital tools like iADL might be put 
in place to monitor functions and the effect of preventative 
actions. In this context, as different risk profiles as well as 
progression of cognitive decline exist for men and women, 
considering sex differences might help us making such pre-
dictive algorithms more precise.

Working hypothesis in the framework of predictive, 
preventive, and personalized medicine (3PM/PPPM)

To date, it is unknown whether sex differences exist in digi-
tal biomarkers for AD. If there are indeed sex differences 
in digital biomarkers, their consideration is informative in 
interpreting the biomarker’s diagnostic and prognostic value, 
as well as for potential biomarker use in clinical trials. In 
this work, we explore the ability to use digital biomarker 
data, captured by Altoida’s application, to identify sex-
based neurocognitive performance. To this end, we trained 
a classifier using all digital features captured by Altoida’s 
application to distinguish between male and female subjects. 
We show here for the first time that this sex classifier could 
correctly predict sex in 75% of the cases, indicating that 
the digital biomarkers captured by Altoida’s application are 
able to capture significant differences in the neurocognitive 
performance signature of biological males and biological 
females. We next investigated the effects of age and differ-
ent stages of AD on the success of the sex classifier. Finally, 
we investigated the relative importance of each digital bio-
marker feature and describe here the most discriminative 
features. Our work informs future sex-based personalization 
of digital biomarker algorithms, with implications for AD 
risk stratification, early diagnostics, and prevention.

Methods

Data collection

We used a combination of clinical and population data, 
collected and provided by Altoida Inc. The clinical data 
(n = 438 data points) consists of controlled tests of elderly 
(50 +) subjects with known biological and cognitive 

biomarkers (e.g., MCI, amyloid-beta (Ab) + , Ab-, AD). 
We used the dataset described as “New validation study” 
(ClinicalTrials.gov Identifier: NCT02843529) for this work, 
and the original purpose of which was to evaluate the per-
formance of Altoida’s application as an adjunctive tool for 
diagnosing AD. The subjects were classified into the clinical 
groups of healthy (normal cognition), MCI, or AD dementia 
according to the internationally recognized National Institute 
on Aging- Alzheimer’s Association (NIA-AA) criteria [35]. 
The inclusion/exclusion criteria as well as further details 
on classification have previously been described in detail 
in publication [33] as well as in the details of the clinical 
trial (ClinicalTrials.gov Identifier: NCT02843529). The data 
was collected in Roma, Brescia, and Naples in Italy, with 
n = 60, males = 14, females = 46 data points, in Corfu, Thes-
saloniki in Greece with n = 166, males = 48, females = 118 
data points, and in Spain, Barcelona in Spain with n = 212, 
males = 98, females = 114 data points). The inclusion and 
exclusion criteria were identical for each country.

The population sample consists of a group of middle-
aged cognitively healthy Japanese subjects (n = 130). The 
inclusion criteria for participation were age 20–50 and self-
assessed cognitively healthy (i.e., no known cognitive disor-
ders). The subjects received no stipend for participation and 
permission for scientific studies was provided by accepting 
the terms and conditions of Altoida Inc. All subject informa-
tion was anonymized and de-identified. Beyond the digital 
biomarkers collected by the Altoida application, no further 
biomarkers were recorded for this population sample. For 
both datasets, the subject’s sex was self-reported. All sub-
jects (of both groups) performed multiple test sessions using 
Altoida’s application. See Table 1 for a distribution of the 
subjects by sex and AD progression.

Definition of sex and gender

The terms sex and gender are not synonymous. Whereas 
biological sex is driven by the expression of sexual chromo-
somes and sexual hormones, gender is related to the socio-
cultural construct of being a man or a woman in a given 
society [36]. Here, we use the term “sex” to refer to the 
individuals in the study identifying their sex as “man” or 
“woman” at enrollment.

Digital biomarkers

For this work, we repurposed data from Altoida’s applica-
tion which collects digital biomarkers for neurocognitive 
function measurement and predictive diagnosis of AD [33]. 
Altoida’s application collects digital biomarker data for 
detecting early onset AD. While holding a tablet or smart-
phone device, the subject is asked to perform a series of 
motor functioning tasks and two augmented reality (AR) 
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tasks. In the motor functioning tasks, the subject is required 
to draw shapes and tap on the (touch)screen using the finger 
of their dominant hand (see Fig. 1 for an illustration of all 
the motor functioning tasks). In one of the AR tasks, the 
subject is asked to place three virtual objects in a small space 
(approximately 3 m × 3 m or 2 m × 4 m) and afterward find 
them again. The AR task is performed by navigating around 
the space with the tablet or smartphone in both hands (see 
Fig. 2). During these tasks, the handheld device collects 
telemetry and touch data from the built-in sensors, enabling 
profiling of hand micro-movements, screen touch pressures, 
walking speed, navigation trajectory, cognitive processing 
speed, and additional proprietary inputs.

A single test session using Altoida’s application consists 
of two batches of motor tasks and two AR tasks. After a sub-
ject completes all tasks, the recorded digital biomarker data 
from the onboard electronics sensors is bundled and securely 
and anonymously uploaded to a server for further process-
ing. In previous work, machine learning was either used to 
classify subjects as healthy or at risk of AD (Buegler et al. 
2020). In this work, we examined digital biomarker data 
from test sessions using Altoida’s application to see if they 
demonstrated sex differences, expressed by the capacity of 
results to inform a sex classifier. Provided the data of multi-
ple subjects, machine learning can be used to detect patterns.

Machine learning

From the onboard electronics sensors, we extracted 793 digi-
tal biomarker features describing various cognitive, func-
tional, and physiological characteristics of each subject. 
These features include response times, eye-hand coordina-
tion precision, fluctuations in the telemetry (accelerometer 
and gyroscope) data, Fourier analysis of the telemetry data, 
step detection, and additional proprietary data. Based on the 
digital biomarker feature data from a selection of healthy 
subjects, we trained a sex classifier to distinguish males from 
females. For the classification, we used the XGBoost algo-
rithm [37] with sex as the target variable.

Performance evaluation

We applied stratified fivefold grouped cross-validation to 
estimate the generalization performance of the sex clas-
sifier. We grouped data points by subject to ensure that 
multiple data points of a single subject were all in the 
same fold (either training or testing), preventing learning 
bias. For our sex classifier, we report ROC-AUC (receiver 
operating characteristic area under curve), accuracy, and 
precision averaged over the 5 cross-validation testing 
folds. To assess the performance of the sex classifier on 
different age groups and different stages of AD, we trained 
9 additional classifiers (10 in total) each using different Ta
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random subsets of the data. We report the ROC-AUC aver-
ages, with SD, over the 10 different classifiers as the main 
performance criteria.

Model explainability

We used the Shapley Additive exPlanations (SHAP) [38] 
method to better understand the predictions made by the 
sex classifier. The SHAP method allocates to each feature 
of a classifier a game-theoretical value representing the con-
tribution of that feature towards the classification targets. 
The sign of the SHAP values indicates the direction of the 
contribution and the magnitude of the SHAP value indicates 
the importance. For our classifier, negative SHAP values 
contribute to classifying as female, positive numbers towards 
male. SHAP values have an additive property meaning they 
can be summed together to provide the feature contribution 
of a group of features [39].

Results

Sample characteristics and data collection

Table 2 describes our data characteristics for the entire 
sample and stratified by sex, with univariate comparisons. 
Our data consists of 568 subjects combined from two data-
sets, a clinical dataset [33] and a healthy population data-
set (see Methods “Data collection”). The clinical dataset 
consists primarily of female subjects (n = 314, 55%) with 
mean age of 67.6 years (see supplementary Table S1), and 
the healthy population dataset consists primarily of male 
subjects with mean age of 35 years (see supplementary 
Table S1). Subjects were distributed over several stages 
of the AD clinical continuum, namely healthy (77%), 
MCI (amyloid-beta negative) Ab- (7%), MCI Ab + (14%), 
and dementia due to AD (2%) as reported by clinical 
assessment. All subjects with MCI or AD come from the 

Fig. 1   The motoric functioning tasks in the Altoida test. These are 
executed one after another. Using their index finger of their dominant 
hand, from left to right, the task is to (1) draw a circle, (2) draw a 
square, (3) draw a rotated W shape within 7 s, (4) draw as many cir-

cles as possible within 7 s, (5) tap the highlighted buttons (left, right, 
left, right, etc.), and (6) tap the highlighted button as fast as possible, 
the buttons highlight at random

Fig. 2   Illustration of the augmented reality (AR) task in the Altoida 
test. During the AR test, the subject is asked to place and find three 
virtual objects in the room. To do so, the subject is required to walk 
around the room holding a tablet or smartphone device in front of 
him/her. While doing so, the camera of the device records the envi-

ronment and displays it back to the user on the screen, augmented 
with virtual objects (in this illustration, a teddy bear). The user needs 
to place the objects on flat surfaces and later recall their position by 
walking back to that location
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clinical dataset. We obtained one or more trials of digi-
tal biomarker data collection using Altoida’s application, 
providing us with a median distribution of 2 data points 
per subject. To counter the imbalance from multiple data 
points per subject and combining two demographically 
different datasets, we stratified all analysis by dataset, 
sex, and number of data points. This ensures that we have 
exactly the same number of data points from each sex and 
from each study (clinical and population).

Training and testing of a sex classifier

We trained an XGBoost classifier [37] with sex as the target 
variable. Although there is an imbalance in the subject’s 
demographics, our intention was to build a single sex classi-
fier and base our further findings on this classifier. Separate 
classification statistics for the Japanese population data and 
cohort subjects can be found in the supplementary material 
Sup. Figures 1 and 2. For our single classifier, to handle the 
imbalances in the subjects’ demographics, we selected train-
ing data from a combination of four groups: clinical trial 
healthy males, clinical trial healthy females, population data 
healthy males, and population data healthy females. In addi-
tion, due to imbalance in the number of data points per sub-
ject, we decided to take 165 data points at random from the 
pool of data points of each of the four previously mentioned 
groups to prevent over-representation of data of one of the 
groups. In total, we selected four times 165 (660 in total) 
data points from our database as training data for a single 
sex classifier. In essence, this is a random sub-sample of our 
entire dataset, stratified by sex and study (clinical and popu-
lation). Our classifier was then trained on a set of 660 data 
points (of 348 cognitively healthy subjects), which we used 
in both training and testing. Each datapoint corresponds to 
a set of 793 digital biomarker features collected using Altoi-
da’s application. The classifier’s generalizing performance 

was assessed by fivefold cross-validation (Fig. 3) giving an 
AUC of 0.75 (STD ± 0.06), which is considered “fair” [40]. 
The classifier exhibits a similar performance in accuracy 
(0.71 ± 0.05) and precision (0.71 ± 0.06).

Performance of sex classifier on different disease 
sub‑groups

To assess the performance of the sex classifier at different 
stages of the AD clinical continuum, we applied the previ-
ously trained sex classifier to MCI-amnestic subjects with-
out amyloid-beta in their cerebrospinal fluid (MCI/Aβ-; 42 
subjects), MCI-amnestic subjects with Aβ + (MCI/Aβ + ; 
78 subjects), and subjects diagnosed with AD dementia (13 
subjects). To make the results more robust, we trained 9 

Table 2   Data characteristics. 
P-value is calculated using 
two-sided t-test for age, chi 
square for status, and the 
Mann–Whitney rank test for 
the number of data points per 
subject

Men Women Total p-value

Population Clinical data N (%) 160 (63%) 278 (89%) 438 (77%)  < 0.001
Population data N (%) 94 (37%) 36 (11%) 130 (23%)

Age Mean (SD) 56.9 (17.4) 62.7 (12.8) 60.1 (15.3)  < 0.001
Status Healthy N (%) 198 (78%) 237 (75%) 435 (77%) 0.786

MCI ab −  N (%) 16 (6%) 26 (8%) 42 (7%)
MCI ab +  N (%) 35 (14%) 43 (14%) 78 (14%)
AD N (%) 5 (2%) 8 (3%) 13 (2%)

Number of NMI 
trials (data 
points)

N (%) 948 (52%) 859 (48%) 1807 -

Number of NMI 
trials (data 
points) per 
subject

Median (IQR) 2 (4) 2 (5) 2 (3)  < 0.001

Fig. 3   Receiver operating characteristic (ROC) curve with five-fold 
cross-validation results for the digital biomarker sex classifier

304 EPMA Journal (2022) 13:299–313



1 3

additional sex classifiers using 9 different randomly sam-
pled (sampled with replacement) subsets of our data. That 
is, we used the same stratified approach as discussed earlier 
and again sampled four times 165 data points to in total 
randomly select 660 data points. With such an approach, 
the number of subjects per classifier varies slightly, but the 
number of data points stays constant. Having trained the 9 
additional sex classifiers on healthy data, we then applied 
all 10 to the sub-groups of MCI and AD subjects. In total, 
we therefore trained 10 sex classifiers on cognitively healthy 
subjects.

Figure 4A shows the average ROC-AUC performance 
of 10 sex classifiers for each of these sub-groups. Com-
parisons between subgroups are reported using a Mann 
Whitney U test [41]. The sex classifier performed best on 
healthy subjects with an average ROC-AUC score of 74%, 
slightly below the performance of the single classifier pre-
sented earlier. Performance difference between healthy and 
MCI-amnestic subjects is significant with (P < 0.001). Both 
MCI subgroups score at ROC-AUC 66%, with no signifi-
cant difference between MCI Aβ- and MCI Aβ + (P = 0.17). 
Performance on the sex classifier in the AD subgroup was 
the lowest with an ROC-AUC of 60%, again scoring sig-
nificantly lower than both MCI/Aβ- (P < 0.001) and MCI/
Aβ + (P < 0.001).

Performance of sex classifier on different age 
subgroups

The differences in sex classification between the various 
stages of AD might be due to an imbalance in age distribu-
tion across the subgroups. In particular, since women were 
overall older in our datasets, we also studied the effect of age 
on the sex classifier.

We used the cross-validation results of each of the ten 
sex classifiers to investigate the performance over the vari-
ous age groups in the healthy population. We grouped all 
healthy subjects in age classes 10 years-wide and computed 
the sex classification performance in each of these sub-
groups. Figure 4B reports average sex classification perfor-
mance per age group. ROC-AUC scores varied across age 

groups, with overall significant differences between the age 
groups. Most age groups lie close to the group average of 
71% ROC-AUC, except the 60–70 year old group, which 
has a significantly higher value at 78% ROC-AUC. This is 
possibly related to our sample distribution which peaks at 
the age of 67–69 years for the clinical dataset (see additional 
material Table 1), with a small difference in distribution 
between males and females, as such, there is a slight imbal-
ance in demographics within the 60–70 year group to which 
the ROC-AUC might be overly sensitive.

Feature contribution in the sex classifier

We computed a SHAP value for each of the 793 digital bio-
marker features of our primary sex classifier to investigate 
which of the 793 features are the most relevant in the sex 
classifier. These values are calculated over the set of healthy 
subjects and illustrate the feature importance of the sex clas-
sifier as constructed using the same healthy subjects.

Figure 5A shows a grouping of features that were ranked 
as having the highest overall contribution in the sex classi-
fier. The primary contributing group of features is named 
the AR object placement fast Fourier transform (FFT). This 
group consists of a set of frequency magnitudes obtained 
by performing an FFT on the measured accelerometer and 
gyroscope signal over 1.28 s before placing a virtual object 
in the AR test. These features could therefore be interpreted 
as steady hand micro tremors. The second most important 
group of digital biomarker features is the AR global telem-
etry variance. The global telemetry variance is the variance 
in the accelerometer and gyroscope signal over the entire 
duration of the AR task. It could be interpreted as coarse 
scale hand motion variance. The third group, AR object 
place and find telemetry variance is similar to the previ-
ous group except that this takes the variance of the signal 
1.28 s before placing and finding a virtual object. The fourth 
group “Motor test drawing features” considers the speed and 
accuracy of the subject while drawing various patterns with 
the index finger. The “Motor test duration” measures how 
long the user spent reading the instructions and performing 
the motor tests.

Fig. 4   Receiver operating 
characteristics (ROC) area 
under curve (AUC) for different 
subgroups. A Comparison over 
different stages of Alzheimer’s 
progression. B Comparison 
over different age groups in the 
healthy population. Error bars 
show standard error of the mean 
(SEM). P-values are computed 
using the Mann Whitney U test
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Figure 5B shows a SHAP distribution plot for the top five 
standalone highest contributing features. In this figure, we 
used SHAP to perform an ontology analysis of the features, 
as it allows to identify the individual contribution of each of 
the features. The top two contributing features are the AR 
global accelerometer variance in the Z-axis of both rounds 
of the AR task. These two features belong to the group of 
AR global telemetry variance of Fig. 5A. On a smartphone 
and tablet device, the Z-axis is the axis perpendicular to 
the screen with negative values pointing downwards to the 
floor. Since the device is handheld, this feature measures the 
accelerometer variance in up and down motion during the 
AR tasks. The third and fourth most important features are 
frequency magnitudes during object placement, belonging 
to the top group of Fig. 5A. The most important frequencies 
seem to be in the range of 7–8 Hz in the accelerometer’s 
x-axes, which is the axes to the left and right when holding 
a device. The fifth most important feature measures the num-
ber of revolutions the user drew in the motor square drawing 
test. It belongs to the group of motor test drawing features. 
The color coding shows that for each of the top five features, 
if the relative feature value is high (red), it indicates a con-
tribution to classifying as male. If the value is low (blue), it 
indicates contribution to classifying as female.

Feature differences in male, female, healthy, 
and MCI subjects

In the SHAP values in previous section, we observed that 
higher acceleration variances are more indicative of males 
and lower variances are more indicative of females (see 
Fig. 5B). Since these are the top performing features, in 
theory, this means that this relationship of high values for 
males, low for females, should be (at least somewhat) dis-
torted in the group of MCI and AD subjects. In this sec-
tion, we use histograms to gain a better understanding of 
why MCI and AD subjects score lower on our general sex 
classifier.

For both the group of healthy subjects and the group 
of MCI (including AD) subjects, we created a set of his-
tograms showing the feature values of males and females 
for the top five performing features as indicated by SHAP. 
Figure 6 shows for the healthy subjects, for each of the top 
five features, a histogram of feature values for both the 
males (in blue) and the females (in red). We observe that 
the distribution of values is typically higher for the males 
and lower for the females, thereby confirming the SHAP 
predictions. Figure 7 shows the same set of histograms but 
then for the group of MCI and AD subjects. We observe that 

Fig. 5   Feature importance of the sex classifier in healthy individuals. 
A The top five feature groups according to the SHAP method. Each 
bar represents the summed SHAP value of the features in that feature 
group. B A feature value SHAP distribution plot for the top five con-
tributing features. Subject specific SHAP values were computed for 
each datapoint in the classifier training data. For each feature, we then 
plot for each datapoint a dot with the feature value of that datapoint, 
with the dot color coded by the relative feature value. The position 

of each dot on the SHAP value x-axis represents the magnitude and 
the direction of the contribution of that specific feature value of that 
specific datapoint towards classifying as female (− 1) or male (+ 1). 
Acronyms in the plots are augmented reality (AR), fast Fourier trans-
form (FFT), SHapley Additive exPlanations (SHAP), accelerometer 
(ACC), variance (var), first part of a single test (1st), or second part 
of a single test (2nd)
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the distribution of feature values is highly similar between 
the males and the females with the distributions largely over-
lapping. Comparing Figs. 6 to 7, we further observe that the 
distribution for females remains largely unchanged, but that 
males in the MCI group now display lower feature values.

Discussion

Neurodegenerative diseases and dementia are a field of study 
that shows high promise for application of precision and 
personalized medicine. Currently, clinical trials of drugs for 
treatment of AD have a very high degree of failure, suggest-
ing that individual factors should be taken into account both 
in searching new treatments and in designing clinical trials 
[42]. Biological sex is one such factor; a recent meta-analysis 

showed that the proportion of women enrolled in clinical tri-
als for AD is lower than in the general AD population, and 
that it correlates with severity of symptoms in the enrolled 
population [43]. An appraisal of the impact of sex on cogni-
tive decline and treatment response in Alzheimer is pivotal 
to build personalized treatment tailored to the unmet clinical 
needs of the patients.

In this paper, we tested the hypothesis that sex differences 
exist in the digital biomarkers collected by Altoida’s appli-
cation for detection of early AD. To this end, we developed 
a classifier which can predict the sex of the subject using 
digital biomarkers collected by Altoida’s application through 
a series of AR and motor activities. The sex classifier was 
built using 793 digital biomarker features and trained on 
a set of 348 healthy subjects with 660 data points. The 
classifier achieved a fair discriminatory ability in healthy 

Fig. 6   Comparative histograms of the top five contributing features 
(according to the SHAP results in Fig.  5) for the group of healthy 
subjects, with male data in blue and female data in red. Acronyms are 

augmented reality (AR), fast Fourier transform (FFT), accelerometer 
(ACC), variance (var), first part of a single test (1st), or second part 
of a single test (2nd)
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subjects, with an ROC-AUC of 0.75. The high performance 
is noteworthy, as the digital biomarker features collected 
by Altoida’s application are devoid of demographic infor-
mation. This result therefore shows that healthy males and 
females display detectable and unexpected neurocognitive 
performance signature differences when evaluated using 
Altoida’s application. In the field of predictive diagnos-
tics, the result is striking as it suggests that overlooking the 
complex interaction between sex and predictive digital bio-
markers can potentially impair our ability of early disease 
detection or of devising methods for targeted prevention of 
cognitive decline.

The discriminatory ability decreased when the classifier 
was externally validated on a set of patients in the AD con-
tinuum, from early stages (MCI, AUC​: 0.66) to full-blown 
AD dementia (AUC​: 0.60). Interestingly, the classifier had 

the same performance in MCI patients positive or negative 
for Aβ. Performance dropped significantly when validated 
with a small subset of patients with overt AD dementia. It 
is interesting that the drop in performance occurs gradually, 
with an initial decrease in MCI which progresses towards 
AD dementia. These results could indicate that the drop in 
discrimination might be linked to the progression of the neu-
rodegenerative process, which occurs differently in males 
and females.

However, we must note that both the MCI and predomi-
nantly AD dementia subgroups comprised much smaller 
sample sizes than the healthy subgroup (n = 13 and n = 120 
for AD dementia and MCI, respectively, as compared to 
n = 435 for healthy). To investigate whether this could have 
caused the drop in classifier performance, we conducted a 
pilot analysis (not shown here), computing an ROC-AUC 

Fig. 7   Comparative histograms of the top five contributing features 
(according to the SHAP results in Fig. 5) for the combined group of 
MCI and AD subjects, with male data in blue and female data in red. 

Acronyms are augmented reality (AR), fast Fourier transform (FFT), 
accelerometer (ACC), variance (var), first part of a single test (1st), or 
second part of a single test (2nd)
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over an equally small (n = 13) sub-sample of healthy sub-
jects. We achieved an AUC that was comparable to the 
results achieved in our main analysis, indicating that this was 
not the case. Despite that, our results on the AD dementia 
subgroup should be interpreted with caution and replicated 
in more adequately powered AD dementia studies. Addition-
ally, AD dementia patients are older than the other groups, 
and we reasoned that older age could be driving the loss of 
discriminatory activity across clinical groups. However, we 
found no clear effect of increasing age on the ROC-AUC, 
which suggests that the weakening discriminatory ability of 
our classifier in the AD continuum is not due to age.

There is evidence that sex-differences occur in clinical 
manifestation and progression of disease in AD [23]. In 
particular, women are known to outperform men in neu-
ropsychological tests involving verbal memory; interest-
ingly, this female advantage is largely retained in MCI, in 
spite of detectable brain damage being equal to that of men 
[44]. The female advantage is however quickly lost; women 
affected by MCI have been shown to decline twice as fast as 
men [45], and therefore later on, at the dementia stage, reach 
levels similar to those of men, with many studies indicating 
overall similar cognitive performance in men and women in 
AD dementia patients (for a review, [23]). In line with this 
evidence, our results suggest that sex differences fade with 
disease severity. One might speculate that men and women 
differ in a number of features at baseline, while these are 
progressively equalized with the progression of the clini-
cal symptoms over the course of 7 to 10 years. It is likely 
that specific digital biomarker features in our classifier that 
discriminate sex differences at baseline (i.e., prior to detect-
able cognitive symptoms) lose their discriminatory effect at 
the MCI or AD diagnosis stage. Based on the above, other 
features collected by Altoida’s application (likely, cognitive 
related) might become, in later stages of AD, more relevant 
towards sex classification. Unfortunately, our dataset was too 
small to test this hypothesis; an analysis of a larger dataset of 
digital biomarker data collected from Altoida’s application 
from individuals in MCI and AD dementia stages is needed.

Next, we investigated which features would contribute the 
most to the performance of our sex classifier in the healthy 
and MCI population as well as diagnostic subgroups. For the 
healthy subgroup, we found that the classifier’s discrimina-
tory ability is primarily due to 5 features (Fig. 5B). Interest-
ingly, the most important group of features in the sex clas-
sifier seems to be physiological micro tremors recorded by 
the accelerometer. We observe a higher amplitude of micro 
tremors at 7–8 Hz as indicative of male subjects. This seems 
to match findings of [46] where they observed a difference 
in hand stability with a peak physiological tremor at around 
8.3 Hz indicative of males. It also concurs with findings of 
[47] where steady state hand frequencies led to a sex clas-
sification performance of ~ 80% accuracy.

In comparing histogram of acceleration variances 
between healthy and MCI subjects, we observed that both 
the males and the females in the MCI have similar feature 
values as the females in the healthy group. Earlier work 
showed that differences in force steadiness between sex seem 
to decline over age [48], which might explain part of this 
observation as our group of MCI subjects is older than the 
group of healthy subjects. Yet, we showed in earlier results 
that the performance of the sex classifier is relatively sta-
ble with age. As such, there might be a cognitive basis for 
the decline in performance of the presented sex classifier. 
While there is little literature on sex differences in motor 
ability in AD, considerable evidence has been building in 
the wider context of neurodegenerative disease, particularly 
so in Parkinson’s disease. Indeed, a thorough analysis of the 
individual features might reveal important cognitive com-
ponents involved, beyond the motor function, for instance, 
related to attention and visuospatial processing. The clinical 
relevance of the discriminatory features in our sex classifiers 
will need to be further examined. An important, unanswered 
question which follows from our findings, remains if Altoi-
da’s application could also be suited for the discrimination 
of early signs of other neurodegenerative diseases, such as 
Parkinson.

In summary, our study provides strong evidence that men 
and women can be distinguished by an algorithm based on 
differences in a set of digital biomarkers and that these dif-
ferences are less prominent in MCI and potentially also in 
AD dementia. This is consistent with literature on sex-based 
differential dementia progression. Even if there is literature 
about sex classifiers based, for example, on EEG data [49] 
or brain structure [50, 51], the literature on sex classification 
based on motor pattern is scarcer and is usually focused on 
walking patterns [52]. Our work stands out as, to the best of 
our knowledge, no sex-classifier based on visuo-motor digi-
tal biomarkers has been tested in a population affected by 
cognitive impairment, and adds to previous evidence indi-
cating that sex can be detected based on kinematic features 
alone, in the absence of other demographic features such as 
height and weight. The fading of classificatory power in a 
pathologic population is also per se a striking result that has 
interesting implication about the role of sex in the manifes-
tation of dementia, with potential impact targeted patient 
monitoring. Our findings are particularly relevant in the con-
text of digital biomarkers, which enable non-invasive and 
potentially widely applicable predictive diagnostics. Person-
alization of these tools could further improve their predictive 
accuracy, allowing for earlier application of targeted preven-
tions, and potentially future disease-modifying treatments.

A limitation of this work is the low number of patients 
with AD dementia in our sample. Overall, only 2% of our 
patients had a diagnosis of AD, which limits the statisti-
cal power over this subset. In addition, this small subset 
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prevented us from building a sex classifier using only AD 
subjects and testing that on healthy subjects. Another short-
coming of the data was the imbalance in males and females 
between the population cohort and the clinical cohort. We 
overcame this by using sex and cohort stratified data as input 
to the sex classifiers, yet ideally we would have data equally 
distributed over age groups. Another shortcoming is that the 
subject’s sex in the population cohort was self-reported, and 
a mismatch between gender and sex could lead to noise in 
the machine learning model. In addition, the fact that cogni-
tive health in the population study was self-reported. Even 
though these subjects are relatively young to be at risk of 
Alzheimer’s, they could have other diseases affecting cogni-
tion. In general, our data also lacks information on comor-
bidities such as Parkinson’s.

Conclusions

In this work, we show that it is possible to differentiate males 
and females in using digital biomarker data collected from 
Altoida’s application. The discernible differences seem to 
decline in subjects with MCI or overt AD, independent of 
age. In the healthy population, the primary differentiating 
features are micro hand gestures detectable by Fourier analy-
sis on accelerometer data. We conclude that, akin to what 
observed with classical biomarkers, sex differences can be 
observed via digital biomarkers and they have the potential 
to impact diagnosis and treatment of AD.

Such sex differences, in both classical and digital bio-
markers for neurological disorders, are of interest for at least 
3 reasons: (1) from a research standpoint, they might shed 
light on the pathophysiological mechanisms of the disease, 
which might differ among sexes, with opportunities for per-
sonalized treatment; (2) from a predictive medicine perspec-
tive, including sex differences might make predictions, espe-
cially with algorithms that incorporate multiple variables, 
more precise (as already done in the Framingham’s risk 
score [53] for cardiovascular disease, where sex is one of the 
key variables considered); in particular, considering sex dif-
ferences might improve our ability to predict fast decliners 
in MCI patients, which is a key element for planning therapy 
and care options; (3) from a precision medicine perspective, 
whether a patient is a man or a woman makes a difference 
as our data show; more data on sex differences could guide 
future clinical practice, informing choices for ad hoc preven-
tion (knowing sex-specific risk profiles), diagnosis (adjust-
ing diagnostic cut-offs by sex), and treatment options (if 
sex specific efficacy and safety profiles will be found). For 
instance, women have been found to “mask” early stages of 
Alzheimer [54], hence reaching an MCI diagnosis later than 
men. Using sex-adjusted tools for diagnosis (or sex-adjusted 
cut-offs) might be needed to improve diagnostic precision.

Recent research supports the need to account for sex in 
investigating prospective treatments for AD [43] This should 
be integrated with the most powerful recent developments 
in digital medicine to build models of disease development 
that can fully integrate the effect of sex, digital biomarker 
technology being one of the most promising tools. The final 
objective is to build an integrated framework for sex-strat-
ified prediction, monitoring and personalized treatment of 
neurodegenerative diseases, as supported for example by 
the Alzheimer’s Precision Medicine Initiative [55]. Such a 
framework could be used for early detection of the disease, 
but also to enable targeted prevention strategies and to build 
personalized treatment strategies. This objective could be 
achieved by integrating sex with risk stratification based on 
genetics and individual risk factors, and coupling the pro-
cess with the extensive use of digital biomarker monitor-
ing applications allowing early detection and treatment of 
symptoms [56, 57].

It is therefore crucial that the community is aware of such 
potential differences in order to implement measures to miti-
gate biases in their clinical applications and ensure precision 
medicine and precision neurology approaches.

Conclusions and expert recommendations 
in the framework of PPPM

The findings presented in this paper add to our body of 
knowledge and are going to be relevant in the context of 
predictive, preventive as well as precision medicine in Alz-
heimer’s patients.

First, sensitive digital biomarkers represent useful tools 
for personalized prediction of progression from MCI to 
Alzheimer.

Second, such prediction might in the future allow for 
individualized follow-up and management of each patient, 
to reduce risk of progression based on their specific risk 
profile.

Finally, digital biomarker data might also be used in the 
future, together with additional biomarkers, in algorithms to 
identify optimal treatment for each patient.
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